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Abstract / Objectives

Abstract The Fokker-Planck (FP) equation tion is found in terms of an i?finite series of mixed moments of particle < x2>0 ~ t/3. The present paper provides all the higher moments Questions to Answer At times much shorter than the collision time,
Oif + Hdxf = 3y (1 _ yz) ouf (1) distribution, M (1) = < ulx > The basic moment by a recurrent formula. The full set of moments is equivalent to the t < 1, most particles propagate with their initial velocities or their pro-
: : : ST S jections on the magnetic field direction, if present. This regime is called

is solved analytically. Among other applications, it describes propaga- <x2> = <x2> +t/3+ lexp (—2t) —1] /6 (2) sl ol e 9f 8P @gEon, @piesas i g ©F e e SehEs b . 1 . . .
0 moments <Pl j xk> An explicit, easy-to-use approximation for a point the ballistic, or rectilinear propagation. The question then is what hap-

tion of energetic particles through a scattering medium in x- direction, YT P ot 1 : ' ' e s
with y being the x- projection of their normalized velocity. The solu- 2;8;[1;18 2 x;rinsflig / ;r::)m ze;nlhfhc r(rll‘eih:imezgf pli‘opag; ton Tzlasi' source spreading of a pitch-angle averaged distribution f( (x.t) (start- pens next, naTnely at t ~ 1 but before tl.le. onset of d1f.fus1on at t .>> 1?
g o a time-asymptotic, diffusive phase, ing from fy (x,0) = & (x), i.e. Green’s function), is presented and veri- What exactly is the value of t > 1, when it is safe to switch to the simple
fied by a numerical integration of FP equation. diffusive description?

Solution of FP Equation

to the Green function fo =/ f(x, u)du/2, as fo(x,0) = J (x). This can be converted into a Fourier

The Fokker-Planck equation (1) is in units with the particle velocity and scattering frequenc d L . oy
k P 4 & TEAREREY —M;i+i(i+1) M= jMiq; 1 +i(i—1)M; 5; (4) . . .
transform by setting A = —ik. The Green function f (x, t)

v=D(E)=1(i.e, obtained via D (E)t — t, Dx/v — x). Restriction att = 0, x"*f (x) — 0 for dt
For any 7,7 > 0, this equation can be resolved

|x| — oo and n > 0 (guarantees existence of all moments) | e o
My (1) = (i) = [~ [ pixifips2 ) My (£) = Myj (0) e (D! [Rel DI [, gy () 4 (0= 1) Mo (1) | dt) folwt) =5 [ ake® Y. (1" yiMoan () 7)

for integer i,j > 0. Multiplying eq.(1) by y#'x/ and integrating by parts, we obtain Seliiiig Migy = 1, vive ielhiie e imotmiein Feeahing fun(;cion . For t > 1, one obtains
fa(t) = /_Oofo (x,t) eMdx = nX::O (gn)!Mo,zn (t) (6) fo () = %/‘” Jkeikx—k2t/6 _ Zime—sxz/zt ®)

Simplified Propagator

Fort < 1and t > 1, by summing up the series in eq.(7) one obtains: 0.8 fo(x.t) 0.8 fo(x,0) For t > 5, the solution becomes diffusive, eq.(8), as predicted by Jokipii (1966).
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where A = 2t2/3v/5, t < 1, ballistic phase A = 2t2/3./3, trans-diffusive, A = /2t/3, dif- il 04l 0.307 60
fusive, t > 1,y (t) = t,t < 1, y:o(\/f) , t > 1. Note that vy () are the coordinates of two I I 0.251
fronts propagating in opposite direction from the initial 6— pulse at x = 0, while A (¢) is the 02~ 0.2 0.20 -
front width. We observe: (1) solution in eq.(9) conserves the total number of particles, for any y [ | - 0.15 4l W :
. 0.0 0.0 = : ool N 4
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