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Why need two di�erent approaches to CR transport?
simple facts about CRs in SNR and in ISM

D‖ ' DBohm (B/δB)2→D‖ varies between ∼ DB (in CR
source, e.g. SNR) and DISM ∼ 105DBohm (�quiet� ISM).

Away from the sources (SNR), CR energy is comparable to
magnetic energy, thermal plasma & star light and CMB all
∼ eV /cc

Therefore, in and around a CR source (SNR) PCR � B2/8π

Therefore, CRs cannot escape the source without driving
strong MHD waves, so

need to evolve CR from strong self-con�nement regime
D ∼ DBohm in and around the source to their dissolution
into the ambient ISM, D ∼ DISM � DBohm

→Interface Problem
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Problems where each of the two regimes is important

Self-con�nement

acceleration

illumination of
adjacent MC

source
morphology

source
calorimetry...

�Free� propagation

CR background spectra

CR chemical composition, spectral
anomalies

p/He Pamela (Adriani 2011)

Interpretations: Drury; Ohira; Blasi;
Ptuskin; MM, Diamond, Sagdeev (PRL
2012 )

CR anisotropy, particularly sharp ∼ 10◦

Milagro (Abdo 2008)

Interpretations: Drury&Aharonian;
Desiati&Lazarian; MM, Diamond, Drury
and Sagdeev (ApJ 2010)

4 / 28



CR escape from SNR/Problem setting/geometry

CR escape along MF from
two polar cusps of SNR

CR di�use along MF

generate Alfvén waves that
suppress di�usion

to obtain CR distribution both
processes are to be treated
self-consistently

result will determine MC
emissivity
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Equations

CR propagation in self-excited waves

d

dt
PCR (p) =

∂

∂z

κB
I

∂PCR
∂z

PCR (p) -partial pressure, I (p) -wave energy, resonance kp = eB0/c,
d/dt = [∂/∂t + (U + CA) ∂/∂z] , κB ∼ crg (p)

Wave generation by ∇PCR associated with the CR
pitch-angle anisotropy

d

dt
I = −CA

∂PCR
∂z

− ΓI

QL integral (Sagdeev et al '61)

PCR (z , t) = PCR0
(
z ′
)
− κB

CA

∂

∂z
ln
I (z , t)

I0 (z ′)

z ′ = z − (U + CA) t
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Equations

CR/Alfven wave coupling

∂W

∂t
− ∂

∂z

1

W

∂W

∂z
= − ∂

∂z
P0 (z)

W = CAa(p)
κB(p)

I -dimensionless wave energy, d/dt ≈ ∂/∂t, P0-initial CR
distribution, |z/a| < 1

Self-similar solution in variable ζ = z/
√
t, W (z , t) = w (ζ)

for |z | > a, outside initial CR cloud

d

dζ

1

w

dw

dζ
+
ζ

2

dw

dζ
= 0

solution depends on background turbulence level W0 � 1,
and on integrated CR pressure in the cloud:

Π =

∫
1

0

P0dz � 1
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CR self-similar distribution
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Exact Analytic

Test Particle Solution

Self-con�nement vs test-particle escape,
√
tPCR

vs z/
√
t for di�erent values of CR pressure Π

(from MM, P. Diamond, R. Sagdeev, F.
Aharonian and I. Moskalenko ApJ 2013)

Comparing and Contrasting with

conventional TP predictions:�
�

�
�Π ' 3

CA

c

a (p)

rg (p)

P̄CR (p)

B2

0
/8π

� 1

considerable delay of CR
escape

narrower spatial
distribution of CR cloud

extended self-similar,
P ∝ 1/z region
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Results/CR pressure distribution

CR partial pressure (found in closed but implicit form) is
well approximated by:

√
tP = 2

[
ζ5/3 + (DNL)5/6

]−3/5
e−W0ζ2/4, ζ = z/

√
t

particle di�usivity is strongly suppressed by
self-con�nement e�ect:

DNL ∼ DISMe
−Π,

integrated CR pressure parameter is typically large:

Π ' 3
CA

c

a (p)

rg (p)

P̄CR (p)

B2

0
/8π

� 1
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Breaks in Spectra of Escaping CRs

normalized partial pressure P (p) approximation

P ≈ 2
{
z5/3 + [DNL (p) t]5/6

}−3/5
for DNL (p) < z2/t momentum independent (DSA TP
f ∼ p−4)

at p = pbr, DNL (pbr) = z2/t, DNL ∝ pδ, break index
= δ/2

δ from DISM (p) and CR pressure Π (p)

if exp (−Π) ∝ p−σ and DISM ∝ pλ at p ∼ pbr, so δ = λ− σ,
then

P is �at at p < pbr for δ > 0 and steepens to p−δ/2 at
p = pbr.

if δ < 0, P raises with p as p−δ/2 at p < pbr and it levels o�
at p > pbr
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Morphological Signatures of CR Self-Con�nement

Fermi-LAT γ-image of SNR
W44, Uchiyama et al 2012

central source (magenta radio image)
emission is masked

bi-polar morphology of escaping CR is
clearly seen

not everywhere correlated with the
dense gas (green contours) distribution:
strong γ-�ux is expected from
overlapping regions of CR and gas
density

strong indication of �eld aligned
propagation

CR di�usivity is suppressed by up to a
factor of ten (e.g. Uchiyama et al 2012)
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Spectral Signatures of the DSA and subsequent escape
from W 44
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NL with break q= 1.75 --> 2.75

Fermi Points

Agile

γ -emission from MC near
SNR W44

Fermi-LAT - Agile
combined spectrum

presumably from dense MC
illuminated by CR

best �t is given by a TP source
spectrum E−q, q = 2, no
cut-o� required within

CR subjected to propagation
in evanescent Alfven waves
inside MC

wave evanescence and damping
are due to ion-neutral
collisions in MC

→break in the CR spectrum of
index unity E−q → E−q−1
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Escape Summary and Conclusions

escape of CR from accelerator is treated self-consistently

with self-generated Alfven waves

resulting CR distribution is obtained in a closed form

strong self-con�nement of CR is demonstrated for
PCR � B2/8π

results are consistent with recent observations of W44 by
Fermi-LAT

escape spectra are roughly DSA-like power laws with
breaks (not peaked at Emax)

environment (target for pp reactions) is equally important
to interpret observed emission from adjacent MC
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Test Particle Transport: Basic Equation

CR transport driven by pitch-angle scattering, gyro-phase
averaged

∂f

∂t
+ vµ

∂f

∂z
=

∂

∂µ

(
1− µ2

)
D (µ)

∂f

∂µ

z -along B; µ -cosine of CR pitch angle

need evolution equation for

f0 (t, z) ≡ 〈f 〉 (t, z) ≡ 1

2

1∫
−1

f (µ, t, z) dµ.

Answer deems well known (e.g., Parker 65, Jokipii 66): average
and expand in 1/D:

∂f0
∂t

= −v
2

∂

∂z

〈(
1− µ2

) ∂f
∂µ

〉
,

∂f

∂µ
' − v

2D

∂f0
∂z
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�Master� Equation

equation for f0

∂f0
∂t

=
∂

∂z
κ
∂f0
∂z

κ =
v2

4

〈
1− µ2

D

〉
Critical step: ∂f /∂t is neglected compared to v∂f /∂z

Justi�cation: for Dt & 1 anisotropic part f̃ = f − f0 must
largely decay ∝ e−λ1Dt

higher orders → suggest retaining ∂f /∂t →∂2f0/∂t2 and
higher derivative terms in �master� equation, e.g. Earl
1973, Litvinenko & Schlickeiser 2013

arrive at telegrapher's equation:

∂f0
∂t
− ∂

∂z
κ
∂f0
∂z

+ τ
∂2f0
∂t2

= 0

where τ ∼ 1/D, κ ∼ v2/D
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Pros and Cons of telegraph equation
∂f0
∂t −

∂
∂zκ

∂f0
∂z + τ ∂

2f0

∂t2 = 0

Pros

ameliorates the major defect of di�usive approximation,
in�nite propagation velocity (UHECR: Aloisio $
Berezinsky, 2013)
allows for a wave-like transport of CR clouds
keeps the transport description simple (cf. Medvedev's talk
on asymmetric transport, this session)

Cons

parabolic equation becomes hyperbolic
no longer an evolution equation
cannot be solved with no recourse to lower-level equation
(needed to compute ∂f0/∂t at t = 0)
in�nite sequence of ∂nf0/∂t

n -terms will result from
iterations
smells of not properly handled (eliminated) secular terms
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Looking ahead: Is the telegraph term real? TE:
∂f0
∂t −

∂
∂zκ

∂f0
∂z + τ ∂

2f0

∂t2 = 0

In a sense... yes, BUT!

coe�cient τ at ∂2f0/∂t
2-term obtained by simple iteration

in 1/D, is numerically incorrect

neglected ∼ ∂4f0/∂z4-term contributes to the same order

∼ ∂3f0/∂z3 contribute to even lower order unless D (µ) is
symmetric and the term zeroes out

being converted into ∂2f0/∂t
2 term the term ∼ ∂4f0/∂z4

alters τ

τ -term is subdominant compared to the other two for
Dt & 1 and may largely be ignored altogether in the long
time transport
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Basic Equation with magnetic focusing

gyro-phase averaged equation with magnetic focusing

∂f

∂t
+ vµ

∂f

∂z
+ v

σ

2

(
1− µ2

) ∂f
∂µ

=
∂

∂µ
νD (µ)

(
1− µ2

) ∂f
∂µ

σ = −B−1∂B/∂z - magnetic mirror inverse scale; ν -pitch angle
scattering rate, while D (µ) ∼ 1

small parameter

ε =
v

lν
=
λ

l
=

CR m.f .p.

problem scale
� 1

l - scale of the problem;
τν → τ ; z/l → z ; σl → σ ∼ 1

∂f

∂t
− ∂

∂µ
D (µ)

(
1− µ2

) ∂f
∂µ

= −ε
(
µ
∂f

∂z
+
σ

2

(
1− µ2

) ∂f
∂µ

)
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Formal Expansion in ε� 1

f = f0 + εf1 + ε2f2 + · · · ≡ f0 + f̃

where

〈f 〉 = f0, with 〈·〉 =
1

2

1∫
−1

(·) dµ

�Master� equation

∂f0
∂t

= −ε
(
∂

∂z
+ σ

)〈
µf̃
〉

=
ε2

2

(
∂

∂z
+ σ

) ∞∑
n=1

εn−1
〈(

1− µ2
) ∂fn
∂µ

〉
�xed evolutionary structure
similarly to Lorenz's gas (Gurevich 61, Kruskal &Bernstein)
f0 depends on �slow time� t2 = ε2t rather than on t.
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Regular Expansion

slow time in f0 evolution suggests to attribute time
derivative term to higher orders, so term ∝ ∂2f0/∂t2
appears, converting the convection - di�usion equation into
a �telegraph� equation.

However, f̃ does depend on t (as on the �fast� time)

Ordering should be di�erent (f = f0 + εf1 + · · · ≡ f0 + f̃ ):

∂fn
∂t
− ∂

∂µ
D (µ)

(
1− µ2

) ∂fn
∂µ

= −µ∂fn−1
∂z

− σ

2

(
1− µ2

) ∂fn−1
∂µ

≡ Φn−1 (t, µ, z)
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Chapman-Enskog analysis

Solubility condition for f2:
〈Φ1〉 = 1

2
(∂/∂z + σ)

〈(
1− µ2

)
/D
〉
∂f0/∂z = 0

Too strong restriction...

However, f0 depends on slow time t2 suggesting multi-time
expansion:

CE: ∂/∂t = (∂/∂t)
0

+ ε (∂/∂t)
1

+ . . .

more customary is a hierarchy of independent variables
t → t0, t1, . . .

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
. . .

∂fn
∂t0
− ∂

∂µ
D (µ)

(
1− µ2

) ∂fn
∂µ

= Ln−1 [f ] (t0, . . . , tn;µ, z)

≡ −µ∂fn−1
∂z

− σ

2

(
1− µ2

) ∂fn−1
∂µ

−
n∑

k=1

∂fn−k
∂tk
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Chapman-Enskog analysis

Solution can be written as

fn = f n (t2, . . . ;µ) + f̃n (t0, . . . ;µ)

where f̃n and f n satisfy, respectively, the following equations:

∂ f̃n
∂t0
− ∂

∂µ
D (µ)

(
1− µ2

) ∂ f̃n
∂µ

= Ln−1
[
f̃
]

(t0, . . . , tn;µ, z)

and

− ∂

∂µ
D (µ)

(
1− µ2

) ∂ f̄n
∂µ

= Ln−1
[
f̄
]

(t2, . . . , tn;µ, z)

The solution for f̃n takes the form
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Chapman-Enskog analysis

f̃n =
∞∑
k=1

C
(n)
k

(t) e−λk t0ψk (µ)

can be easily found for any n using eigenfunctions of di�usion
operator

− ∂

∂µ
D (µ)

(
1− µ2

) ∂ψk
∂µ

= λkψk ,

For D = 1, for example, ψk are the Legendre polynomials with
λk = k (k + 1), k = 0, 1, . . . .

constants C
(n)
k

are determined by initial conditions for f̃n

all f̃n exponentially decay in time for t & 1

Starting from n = 0

∂ f̄0
∂t0

= 0
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Chapman-Enskog analysis

solubility condition for f̄1

∂ f̄0
∂t1

= 0.

f̄1 = −1

2
W
∂f0
∂z

where

∂W

∂µ
=

1

D
, 〈W 〉 = 0.

solubility condition for f2 yields nontrivial result for master
eq., the leading term of the ∂f0/∂t expansion in ε� 1

∂f0
∂t2

=
1

4

(
∂

∂z
+ σ

)
m
∂f0
∂z

, m =

〈(
1− µ2

)
D

〉
.
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Chapman-Enskog analysis

solubility condition for f3 and f4, ...

∂f0
∂t3

= −1

4

(
∂

∂z
+ σ

)(
∂

∂z
+
σ

2

)〈
µW 2

〉 ∂f0
∂z

∂f0
∂t4

=
1

8

(
∂

∂z
+ σ

)
×

{(
∂

∂z
+
σ

2

)2 〈
W 2

(
U ′ −m

)〉
+

1

2

(
∂

∂z
+ σ

)
∂

∂z

〈
[m (1− µ) + U]2

D (1− µ2)

〉}
∂f0
∂z

where

U ≡
µ∫
−1

1− µ2

D
dµ, U ′ = ∂U/∂µ
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Chapman-Enskog analysis

process may be continued ad in�nitum since terms
containing

〈(
1− µ2

)
∂fn/∂µ

〉
can be expressed through

fn−1, fn−2, ...

interested in evolving f0 on time scales t2 & 1 or t & ε−2

neglect contributions of f̃n and retain only f̄n's:

master equation up to ε4 :

∂f0
∂t

=
ε2

4
∂′z
{
m − ε∂′′z

〈
µW 2

〉
+

ε2

2

[(
∂′′z
)2 〈

W 2
(
U ′ −m

)〉
+

1

2
∂′z∂z

〈
[m (1− µ) + U]2

D (1− µ2)

〉]}
∂f0
∂z

here ∂′z = ∂z + σ and ∂′′z = ∂z + σ/2.
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Is Telegraph Equation recoverable?

The structure of ME (magnetic focusing, asymmetry dropped)

∂t f = ε2∂2z
(
1− τε2∂2z

)
f

or, to the leading order in ε, �formally�

ε2∂2z f ≈ ∂t f , ε4∂4z f ≈ ∂2t f

∂f0
∂t
− ε2∂

2f0

∂z2
+ τ

∂2f0
∂t2

= 0

τ -term belongs to the fast time part of the CE reduction
scheme

associated with the anisotropic part of f , ε→ 0:

(1 + τ∂t)∂t f = O
(
ε2
)

First solution: transient phenomenon, decays at t & τ

Second solution: long time evolution f = const for ε = 0
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Conclusions (Test Particle CR transport)

CR transport, constrained by scattering on magnetic
irregularities revisited

Chapman-Enskog approach revealed convective terms
arising from the magnetic focusing e�ect, only

no �telegrapher� (second order time derivative) term
emerges in any order of the proper asymptotic expansion

the telegraph ∂2/∂t2 -term may formally be back-converted

from the fourth order of expansion, (usually not entertained
in the literature) as well as higher time derivative terms but
they do not play any signi�cant role in the CR transport
within the method's validity range
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