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Outline

» Background 1: Good Confinement and good power
handling,

* Background 2: Ballooning in a torus vs. k - B resonance in
a cylinder

» Background 3: Hints from old simulations and recent
experiments

* Resistive interchange mode in a stochastic magnetic Field

* Quasi-mode: a counterpart of ballooning mode in the
“cylinder universe”

» Effects of stochastic magnetic field on quasi-Mode

* Conclusion: Lessons we learned & suggested experiments
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Background

H-mode Good
Confinement
Fusion scientist Power Power Heating ELM Boundary
handling Handling Power Control
Confinement
RMP
Stochastic
Magnetic Field RMP

RIVIP can suppress ELM, but it enhance L-H transition power threshold at the same time.

A new trend: good confinement is no longer deemed sufficient. We must reconcile good

confinement with good power handling and manageable boundary control.
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Background

A basic question: how does stochastic magnetic field modify the instability process?
Start with the simplest instability: resistive interchange mode

Instability and turbulent relaxation in a stochastic magnetic field No! @ oy

M Cao, PH Diamond - Plasma Physics and Controlled Fusion, 2022 - iopscience.iop.org ( )

An analysis of instability dynamics in a stochastic magnetic field is presented for the tractable @

case of the resistive interchange. Externally prescribed static magnetic perturbations __.
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e But...is anyone interested in interchange mode? Yes!

Reconciliation of two pictures:
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Ballooning mode in a torus vs. resonant magnetic perturbations in a cylinder
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Background

Simulations and experiments on plasma turbulence with RMP: °

1. Beyer, P., Xavier Garbet, and Philippe Ghendrih. Physics of Plasmas 5, no. 12 (1998): 4271-4279.
. Choi, Minjun J., et al. Physics of Plasmas 29, no. 12 (2022): 122504.
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Simulations of resistive ballooning modes
in a stochastic magnetic field. (!
* Increased small-scale structures and
spatial roughness.
e Stronger suppression of large-scale
fluctuations
Experimental study of the fluctuations
with RMP. [2]
* Anincrease in the bicoherence
(increased phase coupling)
 Areduction in the Jensen-Shannon
complexity.
e Jensen-Shannon complexity:
¢ (s = g X Q

)
Shannon J—S
entropy  djvergence
A/ ~
a measure of a measure of distance

missing information from thermal equilibrium
* Low complexity: perfect crystal
(low H, high Q), ideal gas (high
H, low Q), white noise
e High complexity: logistic map,
chaotic systems



Resistive Interchange Mode

A multi-scale model maintaining V- J = 0 at all scales.

Small-scale current along chaotic field lines= V - J;, # 0.

A current density fluctuation J, must be drive to balance J,.

= small-scale convective cells = microturbulence

Large-scale single mode + + stochastic magnetic field
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Quasi-mode vs. Ballooning Mode

Problem: ballooning mode “lives” in a torus while RMP “lives” in a cylinder (parallel universe?)

Solution: find the counterpart of ballooning mode in a cylinder = quasi-mode

Quasi-modellis a wave-packet of localized interchange modes

Ballooning mode is a coupling of localized poloidal harmonics

Takeaway: a quasi-mode in a cylinder resembles a ballooning mode in a torus.

1. Roberts, K. V., and J. B. Taylor. The Physics of Fluids 8, no. 2 (1965): 315-322. 7
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Quasi-mode in a Stochastic Magnetic Field

* Modified equations for quasi-mode:

) B2(d S o(p + p)
Po E_VTV_L Vi(<p+<p)+— a(+b vy (<p+<0)—gBoT=0
0 N -
a —|Dp|\Vi | (p+P) = _(vx + Vx)apo
v
Microturbulence = turbulent viscosity & turbulent diffusivity
* Introduction of b = V - J, # 0 = accumulation of polarization
charge = @, p, ¥ = a non-vanishing correlation between @ and b.
 Scale orderings:
19 _ 139 <<1a <<1a <<1a~
vxaf S S5 Cum? S
:016 <<1a <<1a" k2 Ly Ly, < vrk?
14 v
vxa(“’ P 6("0 TRy K Yk K Vi, TR1y 8
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Quasi-mode in a Stochastic Magnetic Field

Large-scale
guasi-mode
Background stochastic
magnetic field

* Model: a multi-scale system...
 Approach: quasi-linear theory HEIR e

» Workflow: standard steps of mean field theory

Solve small-
) scale dynamics

¢ Get the linear

Closure

e

Nonlinear ]

(o Plug in the response
and get the large-scale

(o Define a proper
spatial averaging.

e Split the dynamics of
small and large scales.

Scale
separation

;[

|

response of U, to b
and v.

® Get a non-vanishing

(D, A) correlation.

eigenmode equations.

¢ Calculate the corrected
growth rate.

Solve large-

‘scale dynamics

|

e Calculate the scaling
of turbulent viscosity
and turbulent
diffusivity generated
by microturbulence.

=

J




Quasi-mode in a Stochastic Magnetic Field

* Dynamics of different scales can be separated by taking a spatial averaging:

_ Ly/2
(A) = A = j e Ry X Ady
Ly/2

* The full set of equations of the model is

o .. N '
a_((b'vl)fp + (b-Vl)a—(qo _930@'0:0

(b) (©)

0 32 02 B? (. . 2\
(@)

AR B P ik +B0 —(b-v,)g+ (b v)a— By—j =0
Po ot VrVy | V1P n 0 ® ¢ 1)P la(<P goayp—

Large scale: slow interchange
Small scale: fast interchange
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Quasi-mode in a Stochastic Magnetic Field

* With the scale orderings:
2 2

0% _ . B po o @gpPo
200kl BB )+ 0 7K BB (B ) —

XT

- POVkay) (298 (gkl: ()
2

] - - )
=ik [=5By, (8,) (260 + 1) + 2By, (§4,)0¢ | 7 (9D expl—isky i, ]

=1

B¢ _ _ 5
_TOklykZII [_Scbxkz (gkl) + byk2 (fkl)] Vxr () ?Xp[_iSkyfklc] (SkyA ~ 1/6; K 1/5k1)

=1

e L.H.S: quantum harmonic oscillator; R.H.S: drive of the beat of b and ¥,
ek, = | GG 8i) * RHS d,

* = Non-trivial correlation (ﬁxﬁ)

A B5 4
Ly [ gyt | Lo BERTOR, 5

(D 4) ~
2 Y/
UCSanDiegg ( ) ponvrkiy, "



Quasi-mode in a Stochastic Magnetic Field

« Using the linear response of #, to b, the perturbed eigenmode equationis H,3, = A,y

_ 02 k2 [«
i, = Vkpzoﬂ Z(Zkz VkPoZ y ‘3—1
& B§ B§ Yi
_ ~ a D k4 1+ s27%
H, = [s2¢2k2|b2| — 25¢k2|b,b, | + k2|b2|] + il —7 (2 ¢ )+p°" rkE(1 + 5202)?
YiBo Bo
~ 2 2
ooy (S ot
(Zﬂ)z g ,0077VT|k1y| w’ ¢

* The correction to the growth rate is

7O 50 V4
y® = — o (z)chpk L _ 5 2 <1+§ 1 ) . f)|b2|+ 5
—(0) _(0) 6 5 g2A\2 A2
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Quasi-mode in a Stochastic Magnetic Field

5 . s magnetic br:akingzeffect ﬂ . vrk? ag 3 w1
y,El)——gszszTk32,<1+§SZA2>—§a (1—f)|59%|+52A2|532/| <0 ﬁ@@
«1 = ~
* Magnetic braking effect: ) e § reduce drive _
:—;ﬁxk — (%yk + |b2|> k252020, + (%y—f = |b§|> kyTxge = 0

» Balancing linear bending term with random bending term

k 1/2

O, ~ Ok (k_y) — Feature of a multi-scale system
1y

* The turbulent viscosity vy of quasi-mode is larger than that of resistive interchange mode!

[ Bl |? 470}, 507 tyod, )|
- _ z y
Vr = Z|vk1| Tkl = (27‘[)yz j dkly 3|k1y| L p 1 2 +< 2,)

k1

penviks, w'(ag)t? Vi \kywiw

new
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Effects of stochastic magnetic field on quasi-mode

 Since quasi-mode is a wave-packet of interchange modes, similar results are expected.
* Dueto the difference in mode structure, there are also some changes in the results.

destabilize [ e
‘ 1, Extra channel to stabilize the quasi-
Curvature damp Turbulent mode, i.e., reducing the effective
y viscosity vr drive of the quasi-mode.
drive Quasimode |~ 2. Larger turbulent viscosity vy
generate saturate compared with resistive interchange
Density enhance | magnetic | .. mode.
Gradient effective | braking | Microturbulence 3, Microturbulence tends to
7 S—— inertia | effect! destabilize the quasi-mode, though
effective drive tochastic | maintain l this effect is much weaker compared
Magnetic Field | V-J=0 | to the stabilization by magnetic
braking effect.

1. Rutherford, Paul Harding. The Physics of Fluids 16, no. 11 (1973): 1903-1908. 14
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Lessons Learned about Ballooning Mode

i) Generation of microturbulence to maintainV-J = 0.

* Appearance of small-scale structure, increased
spatial roughness

e Microturbulence promote spectral transfer =
increased bicoherence

i) A non-trivial correlation (/Tﬁx)

* Velocity fluctuation locks on to the stochastic
magnetic field = change the statistics of the plasma
turbulence = reduced Jensen-Shannon complexity
of edge turbulence

iii) Slow-down of the ballooning mode growth
» Stronger suppression of large-scale fluctuations
e Enhance effective inertia
* Reduce effective drive
e Turbulent damping
iv) Larger turbulent viscosity and turbulent diffusivity

Future: include zonal flow into our model
UCSanDiegg o




Suggested Experiments

» Use BES to measure the velocity fluctuation spectra
before and after the ELM suppression phase.

» Suppression of low-k structures
* Appearance of high-k structures?

* Use BES to calculate the ;5 of the velocity fluctuation
spectra before and after the ELM suppression phase.

* Prediction: stochastic magnetic field changes the
statistics of plasma turbulence

 Calculate the correlation between velocity fluctuation
and magnetic perturbation.

2. Beyer, P., et al. Physics of Plasmas 5, no. 12 (1998): 4271-4279.

UC San Diego

1. McKee, George R., et al. Review of scientific instruments 74, no. 3 (2003): 2014-2019.

Expanded
View of
BES Spatial
Channels

Beam emission spectroscopy on DIII-D [
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Spectra of pressure fluctuations w/wo

stochastic magnetic field [2!
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Quasi-mode Revisiting

* Features of the quasi-mode gl
* Broad mode structure in the vertical direction
* Finite mode length in the main field direction
* Finite, linear magnetic shear, by = (0, sx, 1)

« Equations for quasi-mode
e Continuity equation

dp
a9t v Vpo = —vxapy
* Vorticity equation Twisted coordinate transformation:
d 1 d — 9, —
—p—ga—Vicp——(bo-V)2<p+Bia—p=0 §=x Oy = O — 50y
Byot = m o D9V X =Y —sxz Oy = Oy
Vi Jpol Virdy Vailps {=z 0, = 0; — 50,

18
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Resistive Interchange Mode

» Multi-scale feedback loop of resistive interchange mode in a stochastic magnetic field

UC San Diego

1.

magnetic ~ slow down
curvature
scatter
Pressure : drive | Large-scale 4—
gradient cell maintain
enhance > drive Small-scale
o W, inertia cells
resistivity _
Stochastic
. generate| |saturate
magnetic field
M.agnetlc ] Turbulent
braking effect S

Rutherford, Paul Harding. The Physics of Fluids 16, no. 11 (1973): 1903-1908.
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Jensen-Shannon Complexity

N data points

AL (]1 - (1,2,3)
4 A J2 = (1,3,2)
e o o aq a, as Ay asg Ag a- ag dg 1a10 1211 1212 e o o Orderings < ]:3 - (2,1,3)
Ja = (2,3,1)
—— Js = (3,1,2)
window of length d E.g,a,=4,a3=7,a,=5>=j, =(1,32) Us = (3,2,1)
Get the probability distribution function of orderings P = {pj}j=1 i (N > d))
Then [
C]S - H X Q
Sha\flﬂnon ]:FJS
entropy  djvergence
S
H= S , S = —ij ln(pj),Smax = In(d!)
max ]
P+ P, S(P) S(PR,) 1
- o fs(P5E) S0 SE) 1
ucC SanDlegg 1. Rosso, O.A, et al., Physical review letters, 99(15), p.154102. 20
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