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Outline
• Background 1: Good Confinement and good power 

handling,

• Background 2: Ballooning in a torus vs. 𝒌 ⋅ 𝑩 resonance in 
a cylinder

• Background 3: Hints from old simulations and recent 
experiments

• Resistive interchange mode in a stochastic magnetic Field

• Quasi-mode: a counterpart of ballooning mode in the 
“cylinder universe”

• Effects of stochastic magnetic field on quasi-Mode

• Conclusion: Lessons we learned & suggested experiments
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Background

A new trend: good confinement is no longer deemed sufficient. We must reconcile good 

confinement with good power handling and manageable boundary control.

Confinement

Power 
handling

Fusion scientist

RMP

H-mode

ELM

RMP

Heating 
Power

RMP can suppress ELM, but it enhance L-H transition power threshold at the same time.



4

Background
• A basic question: how does stochastic magnetic field modify the instability process?
• Start with the simplest instability: resistive interchange mode

• But…is anyone interested in interchange mode?
• Reconciliation of two pictures: 

Ballooning mode in a torus vs. resonant magnetic perturbations in a cylinder

𝒌 ⋅ 𝑩 = 0

Ballooning mode

Toroidicity effect

Resonant magnetic perturbation

Resonant surfaces in a cylinder

𝜓

𝜓

interchange

ballooning

No!

Yes!
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Background
Simulations and experiments on plasma turbulence with RMP:

Normal

Stochastic

• Simulations of resistive ballooning modes 
in a stochastic magnetic field. [1]  

• Increased small-scale structures and 
spatial roughness.

• Stronger suppression of large-scale 
fluctuations

• Experimental study of the fluctuations 
with RMP. [2]

• An increase in the bicoherence 
(increased phase coupling)

• A reduction in the Jensen-Shannon 
complexity.

• Jensen-Shannon complexity:
• 𝐶𝐽𝑆 = ณ𝐻

Shannon
entropy

× ณ𝑄
J−S

divergence

• Low complexity: perfect crystal 
(low H, high Q), ideal gas (high 
H, low Q), white noise

• High complexity: logistic map, 
chaotic systems1. Beyer, P., Xavier Garbet, and Philippe Ghendrih. Physics of Plasmas 5, no. 12 (1998): 4271-4279.

2. Choi, Minjun J., et al. Physics of Plasmas 29, no. 12 (2022): 122504.

a measure of 
missing information

a measure of distance 
from thermal equilibrium
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Resistive Interchange Mode

• A multi-scale model maintaining ∇ ⋅ 𝑱 = 0 at all scales.

• Small-scale current along chaotic field lines ⇒ ∇ ⋅ ෨𝑱∥ ≠ 0.

• A current density fluctuation ෨𝑱⊥ must be drive to balance ෨𝑱∥.

• ⇒ small-scale convective cells ⇒ microturbulence

• Large-scale single mode + microturbulence + stochastic magnetic field
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Quasi-mode vs. Ballooning Mode
• Problem: ballooning mode “lives” in a torus while RMP “lives” in a cylinder (parallel universe?) 

• Solution: find the counterpart of ballooning mode in a cylinder ⇒ quasi-mode

• Quasi-mode [1] is a wave-packet of localized interchange modes

• Ballooning mode is a coupling of localized poloidal harmonics

• Takeaway: a quasi-mode in a cylinder resembles a ballooning mode in a torus.

1. Roberts, K. V., and J. B. Taylor. The Physics of Fluids 8, no. 2 (1965): 315-322.
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Quasi-mode in a Stochastic Magnetic Field 
• Modified equations for quasi-mode:

• Introduction of ෩𝒃 ⇒ ∇ ⋅ ෨𝑱∥ ≠ 0 ⇒ accumulation of polarization 

charge ⇒ ෤𝜑, ෤𝜌, ෤𝑣 ⇒ a non-vanishing correlation between ෤𝜑 and ෩𝒃.

• Scale orderings:

𝜕

𝜕𝑡
− 𝐷𝑇 ∇⊥

2 ( ᪄𝜌 + ƿ𝜌) = − ᪄𝑣𝑥 + ƿ𝑣𝑥 𝛼𝜌0

𝜌0
𝜕

𝜕𝑡
− 𝜈𝑇 ∇⊥

2 ∇⊥
2 ( ᪄𝜑 + ƿ𝜑) +

𝐵0
2

𝜂

𝜕

𝜕𝜁
+ ƿ𝒃 ⋅ ∇⊥

2

( ᪄𝜑 + ƿ𝜑) − 𝑔𝐵0
𝜕( ᪄𝜌 + ƿ𝜌)

𝜕𝑦
= 0

Microturbulence ⇒ turbulent viscosity & turbulent diffusivity

1

ҧ𝑣𝑥 ถ

𝜕

𝜕𝜉
ത𝜑

=0

≪
1

ҧ𝑣𝑥

𝜕

𝜕𝜁
ത𝜑 ≪

1

ҧ𝑣𝑥

𝜕

𝜕𝜒
ത𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝑥
෤𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝜒
෤𝜑

𝜈𝑇𝑘𝑦
2 ≪ 𝛾𝒌 ≪ 𝛾𝒌1 < 𝜈𝑇𝑘1𝑦

21

ҧ𝑣𝑥

𝜕

𝜕𝜁
ത𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝜁
෤𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝜒
෤𝜑
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Quasi-mode in a Stochastic Magnetic Field 

• Model: a multi-scale system…

• Approach: quasi-linear theory 

• Workflow: standard steps of mean field theory

Large-scale 
quasi-mode

Background stochastic 
magnetic field Microturbulence

• Define a proper 
spatial averaging.

• Split the dynamics of 
small and large scales.

Scale 
separation

• Get the linear 
response of ෤𝑣𝑥 to ෩𝒃
and ҧ𝑣.

• Get a non-vanishing 
෤𝑣𝑥 ሚ𝐴 correlation.

Solve small-
scale dynamics • Plug in the response 

and get the large-scale 
eigenmode equations.

• Calculate the corrected 
growth rate.

Solve large-
scale dynamics

• Calculate the scaling 
of turbulent viscosity 
and turbulent 
diffusivity generated 
by microturbulence.

Nonlinear 
Closure
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Quasi-mode in a Stochastic Magnetic Field 

• Dynamics of different scales can be separated by taking a spatial averaging:

• The full set of equations of the model is

𝐴 = ҧ𝐴 =
1

𝐿𝑦
න
−𝐿𝑦/2

𝐿𝑦/2

𝑒−𝑖𝑘𝑦𝜒𝐴𝑑𝜒

𝜌0
𝜕

𝜕𝑡
− 𝜈𝑇∇⊥

2 ∇⊥
2 ത𝜑 +

𝐵0
2

𝜂

𝜕2

𝜕𝜁2
ത𝜑 +

𝐵0
2

𝜂
ƿ𝑏 ⋅ ∇⊥

2

(𝑎)

᪄𝜑 +
𝜕

𝜕𝜁
ƿ𝑏 ⋅ ∇⊥ ƿ𝜑

(𝑏)

+ ƿ𝑏 ⋅ ∇⊥
𝜕

𝜕𝜁
ƿ𝜑

(𝑐)

− 𝑔𝐵0
𝜕

𝜕𝑦
᪄𝜌 = 0

𝜌0
𝜕

𝜕𝑡
− 𝜈𝑇∇⊥

2 ∇⊥
2 ෤𝜑 +

𝐵0
2

𝜂

𝜕2

𝜕𝜁2
෤𝜑 +

𝐵0
2

𝜂

𝜕

𝜕𝜁
ƿ𝒃 ⋅ ∇⊥ ᪄𝜑 + ƿ𝒃 ⋅ ∇⊥

𝜕

𝜕𝜁
᪄𝜑 − 𝑔𝐵0

𝜕

𝜕𝑦
ƿ𝜌 = 0

𝜕

𝜕𝑡
− 𝐷𝑇∇⊥

2 ҧ𝜌 = − ҧ𝑣𝑥𝛼𝜌0
𝜕

𝜕𝑡
− 𝐷𝑇∇⊥

2 ෤𝜌 = −෤𝑣𝑥𝛼𝜌0
Large scale: slow interchange
Small scale: fast interchange
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Quasi-mode in a Stochastic Magnetic Field 

• With the scale orderings:

−2𝜌0𝜈𝑇𝑘1𝑦
2

𝜕2

𝜕𝜉2
෤𝑣𝑥𝒌1

መ𝜉𝒌1 , 𝜁 +
𝐵0
2

𝜂
𝑠2𝑘1𝑦

2 መ𝜉𝒌1
2 ෤𝑣𝑥𝒌1

መ𝜉𝒌1 , 𝜁 −
𝛼𝑔𝜌0
𝜒𝑇

− 𝜌0𝜈𝑇𝑘1𝑦
4 ෤𝑣𝑥𝒌1

መ𝜉𝒌1 , 𝜁

=
𝐵0
2

𝜂
𝑖𝑘1𝑦 −𝑠෨𝑏𝑥𝒌2

መ𝜉𝒌1 2𝜁𝜕𝜁 + 1 + 2෨𝑏𝑦𝒌2
መ𝜉𝒌1 𝜕𝜁 ҧ𝑣𝑥𝒌 𝜁 exp −𝑖𝑠𝑘𝑦 መ𝜉𝒌1𝜁

=1

−
𝐵0
2

𝜂
𝑘1𝑦𝑘2∥ −𝑠𝜁 ෨𝑏𝑥𝒌2

መ𝜉𝒌1 + ෨𝑏𝑦𝒌2
መ𝜉𝒌1 ҧ𝑣𝑥𝒌 𝜁 exp −𝑖𝑠𝑘𝑦 መ𝜉𝒌1𝜁

=1

𝑠𝑘𝑦Δ ∼ 1/𝛿𝒌 ≪ 1/𝛿𝒌𝟏

෤𝑣𝑥𝒌1 = න𝐺 መ𝜉𝒌𝟏 ,
෠𝝃𝒌𝟏
′ ∗ 𝑹𝑯𝑺 𝑑 መ𝜉𝒌𝟏

′

• ⇒ Non-trivial correlation ෤𝑣𝑥 ሚ𝐴

• L.H.S: quantum harmonic oscillator; R.H.S: drive of the beat of ෩𝒃 and ҧ𝑣𝑥

෤𝑣𝑥 ሚ𝐴 ≈
𝐿𝑧𝐿𝑦

2𝜋 2න𝑑𝑘1𝑦𝑠
2 𝑘1𝑦

ሚ𝐴0𝒌1
2
𝐵0
2

𝜌0𝜂𝜈𝑇𝑘1𝑦
2

4 𝜋𝑜𝒌1
2

𝑤′ ҧ𝑣𝑥𝒌 0



12

Quasi-mode in a Stochastic Magnetic Field 

• Using the linear response of ෤𝑣𝑥 to ෩𝒃, the perturbed eigenmode equation is

• The correction to the growth rate is 

෡𝐻0 ത𝜑𝒌 = ෡𝐻1 ത𝜑𝒌

෡𝐻0 =
𝜕2

𝜕𝜁2
−
𝛾𝒌𝜌0𝜂

𝐵0
2 𝑠2𝜁2𝑘𝑦

2 +
𝛾𝒌𝜌0𝜂𝑘𝑦

2

𝐵0
2

𝛼𝑔

𝛾𝒌
2 − 1

෡𝐻1 = 𝑠2𝜁2𝑘𝑦
2 ෨𝑏𝑥

2 − 2𝑠𝜁𝑘𝑦
2 ෨𝑏𝑥 ෨𝑏𝑦 + 𝑘𝑦

2 ෨𝑏𝑦
2 +

𝛼𝑔𝜌0𝜂𝐷𝑇𝑘𝑦
4 1 + 𝑠2𝜁2

𝛾𝒌
2𝐵0

2 +
𝜌0𝜂

𝐵0
2 𝜈𝑇𝑘𝑦

4 1 + 𝑠2𝜁2 2

+
𝐿𝑧𝐿𝑦

൫ )2𝜋 2
න𝑑 𝑘1𝑦

𝑠3𝑘𝑦
2𝐵0

2 ሚ𝐴0𝑘1
2

𝜌0𝜂𝜈𝑇 𝑘1𝑦

8 𝜋 𝑜𝒌1
2

𝑤′ 𝜁𝜕𝜁

𝛾𝒌
1
=

∞−׬
∞

ത𝜑𝒌
0

𝜁 ෡𝐻1 ത𝜑𝒌
0

𝜁 𝑑𝜁

∞−׬
∞

ത𝜑𝒌
0

𝜁 𝜕
𝛾𝒌

0 ෡𝐻0 ത𝜑𝒌
0

𝜁 𝑑𝜁
= −

5

6
𝑠2Δ2𝜈𝑇𝑘𝑦

2 1+
8

5

1

𝑠2Δ2

new

−
1

3

𝑆

𝜏𝐴
1 − 𝑓 ෨𝑏𝑥

2 +
2

𝑠2Δ2
෨𝑏𝑦
2

new
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Quasi-mode in a Stochastic Magnetic Field 

• Magnetic braking effect:

• Balancing linear bending term with random bending term

𝛾𝒌
1
= −

5

6
𝑠2Δ2𝜈𝑇𝑘𝑦

2 1 +
8

5

1

𝑠2Δ2
−
1

3

𝑆

𝜏𝐴
1 − 𝑓 ෨𝑏𝑥

2 +
2

𝑠2Δ2
෨𝑏𝑦
2

magnetic braking effect

< 0
𝑓 ∼

ถ

𝜈𝑇𝑘𝑦
2

𝛾𝒌
0

≪1

𝛼𝑔

𝜈𝑇
2𝑘2𝑦

4

≤1

8

𝑘1𝑦𝛿𝒌𝟏
~1

≪ 1

𝜈𝑇 =෍

𝒌𝟏

෥𝒗𝒌𝟏
2
𝜏𝒌𝟏 ≅

𝐿𝑧𝐿𝑦

2𝜋 2න𝑑𝑘1𝑦𝑠
3 𝑘1𝑦

𝐵0
4 ሚ𝐴𝒌1

2

𝜌0
2𝜂2𝜈𝑇

2𝑘1𝑦
4

4 𝜋𝑜𝒌1
2 ҧ𝑣𝑥𝒌 0 2

𝑤′ 𝛼𝑔 Τ1 2
ณ2
old

+
𝑘1𝑦𝑜𝒌2

2

𝑘𝑦𝑤𝒌𝑤
′

2

new

1/3

𝜕2

𝜕𝜁2
ҧ𝑣𝑥𝒌 −

𝜌0𝜂

𝐵0
2 𝛾𝒌 + ෨𝑏𝑥

2 𝑘𝑦
2𝑠2𝜁2 ҧ𝑣𝑥𝒌

enhance intertia

+
𝜌0𝜂

𝐵0
2

𝛼𝑔

𝛾𝒌
− ෨𝑏𝑦

2 𝑘𝑦
2 ҧ𝑣𝑥𝒌

reduce drive

= 0

• The turbulent viscosity 𝜈𝑇 of quasi-mode is larger than that of resistive interchange mode!

𝑜𝒌1 ∼ 𝛿𝒌
𝑘𝑦

𝑘1𝑦

Τ1 2

Feature of a multi-scale system
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Effects of stochastic magnetic field on quasi-mode

• Since quasi-mode is a wave-packet of interchange modes, similar results are expected.

• Due to the difference in mode structure, there are also some changes in the results.

Curvature

Density
Gradient

Quasi-mode

Stochastic 
Magnetic Field

Microturbulence

Turbulent 
viscosity 𝜈𝑇

drive

reduce 
effective drive

enhance 
effective 

inertia

drive

saturategenerate

damp damp

∇ ⋅ 𝑱 = 0

maintain

Differences: 
1, Extra channel to stabilize the quasi-
mode, i.e., reducing the effective 
drive of the quasi-mode.
2. Larger turbulent viscosity 𝜈𝑇
compared with resistive interchange 
mode. 
3, Microturbulence tends to 
destabilize the quasi-mode, though 
this effect is much weaker compared 
to the stabilization by magnetic 
braking effect. 

destabilize

magnetic 
braking 
effect1]

1. Rutherford, Paul Harding. The Physics of Fluids 16, no. 11 (1973): 1903-1908.
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Lessons Learned about Ballooning Mode
i) Generation of microturbulence to maintain ∇ ⋅ 𝑱 = 0. 

• Appearance of small-scale structure, increased 
spatial roughness 

• Microturbulence promote spectral transfer ⇒
increased bicoherence

ii) A non-trivial correlation ሚ𝐴 ෤𝑣𝑥
• Velocity fluctuation locks on to the stochastic 

magnetic field ⇒ change the statistics of the plasma 
turbulence ⇒ reduced Jensen-Shannon complexity 
of edge turbulence

iii) Slow-down of the ballooning mode growth
• Stronger suppression of large-scale fluctuations

• Enhance effective inertia
• Reduce effective drive
• Turbulent damping

iv) Larger turbulent viscosity and turbulent diffusivity

Normal Stochastic

Future: include zonal flow into our model
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Suggested Experiments
• Use BES to measure the velocity fluctuation spectra 

before and after the ELM suppression phase. 

• Suppression of low-k structures

• Appearance of high-k structures?

• Use BES to calculate the 𝐶𝐽𝑆 of the velocity fluctuation 
spectra before and after the ELM suppression phase.

• Prediction: stochastic magnetic field changes the 
statistics of plasma turbulence

• Calculate the correlation between velocity fluctuation 
and magnetic perturbation.

Beam emission spectroscopy on DIII-D [1]

1. McKee, George R., et al. Review of scientific instruments 74, no. 3 (2003): 2014-2019.
2. Beyer, P., et al. Physics of Plasmas 5, no. 12 (1998): 4271-4279.

Spectra of pressure fluctuations w/wo 
stochastic magnetic field [2]



Thank you
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Quasi-mode Revisiting

• Features of the quasi-mode

• Broad mode structure in the vertical direction 

• Finite mode length in the main field direction 

• Finite, linear magnetic shear, 𝒃𝟎 = 0, 𝑠𝑥, 1

• Equations for quasi-mode

• Continuity equation

• Vorticity equation

𝑔

𝜕𝜌

𝜕𝑡
= −𝒗 ⋅ ∇𝜌0 = −𝑣𝑥𝛼𝜌0

−
𝜌0

𝐵0
2

𝜕

𝜕𝑡
∇⊥
2𝜑

∇⊥⋅𝑱𝒑𝒐𝒍

−
1

𝜂
𝒃𝟎 ⋅ ∇

2

∇∥⋅𝑱∥

𝜑 +
𝑔

𝐵0

𝜕

𝜕𝑦
𝜌

∇⊥⋅𝑱𝑷𝑺

= 0 𝜉 = 𝑥
𝜒 = 𝑦 − 𝑠𝑥𝑧
𝜁 = 𝑧

Twisted coordinate transformation:

𝜕𝑥 = 𝜕𝜉 − 𝑠𝜁𝜕𝜒
𝜕𝑦 = 𝜕𝜒
𝜕𝑧 = 𝜕𝜁 − 𝑠𝜉𝜕𝜒
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Resistive Interchange Mode

• Multi-scale feedback loop of resistive interchange mode in a stochastic magnetic field

magnetic 
curvature

Pressure 
gradient

resistivity

Stochastic 
magnetic field

Small-scale 
cells

Turbulent 
viscosity

∇ ⋅ 𝑱 = 0

enhance 
inertia

drive

slow down

scatter

generate saturate

Large-scale 
cell maintain

Magnetic 
braking effect[1]

drive

1. Rutherford, Paul Harding. The Physics of Fluids 16, no. 11 (1973): 1903-1908.



20

Jensen-Shannon Complexity

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

N data points

window of length d

orderings

𝑗1 = (1,2,3)
𝑗2 = (1,3,2)
𝑗3 = (2,1,3)
𝑗4 = (2,3,1)
𝑗5 = (3,1,2)
𝑗6 = (3,2,1)E.g., 𝑎2 = 4, 𝑎3 = 7, 𝑎4 = 5 ⇒ 𝑗2 = (1,3,2)

Get the probability distribution function of orderings 𝑃 = 𝑝𝑗 𝑗=1,…,𝑑!
(𝑁 ≫ 𝑑!)

Then [1]

𝐶𝐽𝑆 = ณ𝐻
Shannon
entropy

× ณ𝑄
J−S

divergence

𝐻 =
𝑆

𝑆𝑚𝑎𝑥
, 𝑆 = −෍

𝑗

𝑝𝑗 ln 𝑝𝑗 , 𝑆𝑚𝑎𝑥 = ln 𝑑!

𝑄 = 𝑄0 𝑆
𝑃 + 𝑃𝑒
2

−
𝑆 𝑃

2
−
𝑆 𝑃𝑒
2

, 𝑃𝑒 = 𝑝𝑗 =
1

𝑑!

1. Rosso, O.A., et al., Physical review letters, 99(15), p.154102.
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