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1 Background:  “noisy” plasma turbulence under the application of RMP
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Challenge: disparate geometries in the theories of ballooning mode and RMP

Model: quasi-mode, the counterpart of ballooning mode in a cylinder

Results: lessons learned for ballooning modes in a stochastic magnetic field
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Future: suggested experimental and theoretical studies



Background: theoretical progress
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H-mode ELMHeating

RMP

leads to generate

suppressconstrain
Question: how does stochastic magnetic field 
modify plasma turbulence & instability process?

The first model which
• maintains ∇ ⋅ 𝑱 = 0 at all scales
• connects dynamics at micro and 

macro scales

Need other ways to study the statistics of plasma turbulence 

Experiments are also needed…
However, spectral analysis is not enough to characterize the turbulence state

magnetic
fluctuation

shear layer
reduction

turbulence 
spreading

induce

enhance

enhance

promote

Kobayashi, Masahiro, et al. Physical review letters 128.12 (2022): 125001.



Background: a method from the 
information theory
— Turbulence vs. noise

•   wide-band power spectrum   •   short autocorrelation time   •   random orbits

— Difference in nature: a spectral energy flux

— How to distinguish chaos from noise?

— complexity-entropy analysis
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noise chaos

— Jensen-Shannon complexity 𝐶𝐽𝑆: 
𝐶𝐽𝑆 = ณ𝐻

Shannon
entropy

× ณ𝑄
J−S

divergence

— a metric  of a system/signal’s predictability
     chaos         : high 𝐶𝐽𝑆; noise       : low 𝐶𝐽𝑆

[1]

— Application in MFE: the chaotic nature of 
the edge fluctuations in L-, H-, and I-mode 
are identified.[2]

1. Rosso, Osvaldo A., et al. Physical review letters 99.15 (2007): 154102.
2. Zhu, Ziyan, et al. Physics of Plasmas 24.4 (2017).



Background: recent experiment

— Complexity-entropy analysis: characterize the 
state of turbulence w/wo RMP.

— Experiments on KSTAR: pedestal temperature 
fluctuations collected from electron cyclotron 
emission imaging (ECEI)[1]

— An increase in the bicoherence and a reduction 
in complexity in the RMP ELM suppression 
phase.               Edge plasma turbulence 
becomes more “noisy” .

— Need to understand these phenomena
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a step forward from resistive interchange mode

1. Choi, Minjun J., et al. Physics of Plasmas 29.12 (2022).



Challenge: disparate geometries

—From interchange to a more relevant instability               ballooning mode

—A hard nut to crack: difference in geometries on which theories of the 
ballooning mode and RMP are based.
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𝒌 ⋅ 𝑩 = 0

Ballooning mode

Toroidicity effect

RMP

Resonant surfaces 
in a cylinder

Ballooning mode in a torus vs. resonant magnetic perturbations in a cylinder

Question: Is there a way to circumvent this problem?



Strategy: find the counterpart of the 
ballooning mode 
Theories of ballooning mode and RMP “reside” in different parallel universe.
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— Mode structure of the 
ballooning mode: a coupling of 
localized poloidal harmonics at 
different resonant surfaces

𝒌 ⋅ 𝑩 = 0

— Mode structure of the quasi-
mode: a wave-packet of radially-
localized interchange modes at 
different resonant surfaces

Takeaway: a quasi-mode in a cylinder resembles a ballooning mode in a torus

toroidal world cylindrical world



A Multi-scale Model: quasi-mode in a 
stochastic magnetic field
— Two-step scheme: 

➢ Step 1: study the quasi-mode in a stochastic magnetic field

➢ Step 2: generalize the results to the ballooning mode
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+

Large-scale 
quasi-mode

Background 
stochastic 

magnetic field

෨𝑱∥

෨𝑱⊥

෨𝑱𝒕𝒐𝒕

Accumulation of polarization charge

+

microturbulence



Model Development

— Quasi-mode in a stochastic magnetic field:
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continuity equation

vorticity equation

𝜕

𝜕𝑡
− 𝐷𝑇  ∇⊥

2 ( ᪄𝜌 + ƿ𝜌) = − ᪄𝑣𝑥 + ƿ𝑣𝑥 𝛼𝜌0

𝜌0

𝜕

𝜕𝑡
−  𝜈𝑇 ∇⊥

2 ∇⊥
2 ( ᪄𝜑 + ƿ𝜑) +

𝐵0
2

𝜂
𝒃𝟎 ⋅ ∇ + ƿ𝒃 ⋅ ∇⊥

2
( ᪄𝜑 + ƿ𝜑) − 𝑔𝐵0

𝜕( ᪄𝜌 + ƿ𝜌)

𝜕𝑦
= 0

turbulent viscosity
turbulent diffusivity

comes from the 
random convection of 
the quasi-mode due to 

microturbulence

1

ҧ𝑣𝑥 ถ
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1

𝜂
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𝜑 +
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= 0
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∇ ⋅ 𝑱 = 0

switched

෤𝜑, ෤𝜌, ෤𝑣𝑥: microturbulence



Model Development
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•Define a proper 
spatial averaging.

•Split the dynamics of 
small and large 
scales.

Scale 
separation

•Get the linear 
response of ෤𝑣𝑥 to ෩𝒃 
and ҧ𝑣.

•Get a non-vanishing 
෤𝑣𝑥

෩𝒃 correlation.

Solve small-
scale dynamics •Plug in the response 

and get the large-scale 
eigenmode equations.

•Calculate the corrected 
growth rate.

Solve large-
scale dynamics

•Calculate the scaling 
of turbulent viscosity 
and turbulent 
diffusivity generated 
by microturbulence.

Nonlinear 
Closure
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𝜕
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2 ෤𝜌 = − ෤𝑣𝑥𝛼𝜌0

The full set of equations of the model is：

𝐴 = ҧ𝐴 =
1

𝐿𝑦
න

−𝐿𝑦/2

𝐿𝑦/2
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𝜉 = 𝑥

𝜒 = 𝑦 − 𝑠𝑥𝑧

𝜁 = 𝑧

twisted 
coordinate 
system



Quantitative results

— The linear response of ෤𝑣𝑥 to ෩𝒃

෤𝑣𝑥 =
𝑆

𝜏𝐴
න 𝐺 𝜉, 𝜉′ 𝜕𝜁

෩𝒃 ⋅ ∇ ҧ𝑣𝑥 + ෩𝒃 ⋅ ∇ 𝜕𝜁 ҧ𝑣𝑥

∼𝑏𝑒𝑎𝑡(෩𝒃,ത𝑣𝑥)

𝑑𝜉′

— Correlation of ෤𝑣𝑥 with ෩𝒃.
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Quantitative results

— The revised eigenmode equation for quasi-mode is

— The correction to the growth rate of the quasi-mode is
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— New terms arises because of the change in spatial ordering 

turbulent damping

turbulent scattering

1. Rutherford, Paul Harding. The Physics of Fluids 16.11 (1973): 1903-1908.

magnetic braking effect[1]
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stochastic 
bending

linear 
bending

balancing

𝑜𝒌1
∼ 𝛿𝒌 𝑘𝑦/𝑘1𝑦

1/2 multi-scale 
feature



Quantitative results

— The sign of the growth rate is determined.

— The turbulent viscosity 𝜈𝑇  of quasi-mode is larger than that of resistive interchange mode!

AAPPS DPP 202313
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Again, new term comes from the broad radial structure of the quasi-mode



A Multi-scale Model: quasi-mode in a 
stochastic magnetic field

Results of this model can be summarized by a flowchart
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stochastic 
magnetic field microturbulence

chaosexternal 
noise

inhibit



Results: lessons we learned for 
ballooning mode
—microturbulence (small-scale convective cells)  is driven              ∇ ⋅ 𝑱 = 0 

—Non-trivial correlation ෩𝒃 ෤𝑣𝑥  develops
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increasing the number of triad interactions enhance nonlinear transfer

the increase in the bicoherence observed in Choi’s experiments

Not only ෨𝑏𝑥 ෤𝑣𝑥 , but also ෨𝑏𝑦 ෤𝑣𝑥  absent in prior work

broad mode structure

the microturbulence “locks on” to the externally prescribed ෩𝒃

the edge plasma turbulence becomes “noisy”

the reduction in the 𝐶𝐽𝑆 in the RMP ELM suppression phase



Future: suggested experiments
—𝐶𝐽𝑆 is somewhat abstract. Relate the reduction of the complexity to 

dynamical quantities? 

Suggested experiments:

i. Use Beam Emission Spectroscopy (BES) velocimetry to calculate the 
ratio of the turbulent heat flux to the total heat flux as a function of 
𝐼𝑅𝑀𝑃.

ii. Perform the complexity-entropy analysis for the data of velocity 
fluctuations collected from BES velocimetry during the RMP ELM 
suppression phase and the natural ELM-free phase.  

iii. A direct examination of the presence of the correlation ෤𝑣𝑥
෩𝒃 . 
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Directions for theoretical studies

— Incorporate zonal flow into our model.

velocity shear: 

magnetic shear:

— Study the 𝐾𝑢 > 1 regime.

Quasi-linear theory is implicitly used in the 

calculation → 𝐾𝑢 > 1.

Starting point → percolation theory
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Zonal flow
Drift wave 
turbulence

drive

suppress

𝑘𝑥𝑘𝜃 ≠ 0
𝑑𝑘𝑥

𝑑𝑡
= − 𝑣𝜃

′𝑘𝜃

𝑑𝑘𝑥

𝑑𝑧
= −𝑠𝑘𝜃

𝐾𝑢 ≈ 𝑙𝑎𝑐/𝑙𝑐
2

medium
particle 
motion

percolation 
(𝐾𝑢 > 1)

random deterministic

diffusion 
(𝐾𝑢 < 1)

fixed stochastic

𝑣𝑥𝑣𝜃 ≠ 0

— Effects of stochastic magnetic field on blob propagation and SOL broadening.

Hint: Theory of mean E×B shear in a stochastic magnetic field[1]

1. Guo, Weixin, et al. Plasma Physics and Controlled Fusion 64.12 (2022): 124001.



Results: lessons we learned for 
ballooning mode
—Stochastic magnetic field                ballooning mode

—Microturbulence               turbulent background
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1. Rutherford, Paul Harding. The Physics of Fluids 16.11 (1973): 1903-1908.

impede

1. Enhancing the effective plasma inertia (magnetic braking effect[1])

2. Reducing the effective drive

3. Promoting turbulence damping

newly discovered 

drive

𝜕𝑡 𝜕𝑡 + ෥𝒗 ⋅ ∇ 𝜕𝑡 − 𝜈𝑇∇⊥
2renormalization

𝜈𝑇
𝑏𝑎𝑙𝑙𝑜𝑜𝑛𝑖𝑛𝑔

> 𝜈𝑇
𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒

broad mode structure

electrostatic scattering               destabilizing
weaker

magnetic braking effect

opposite to conclusion for interchange mode



Thank you!



Strategy: basics of the quasi-mode

— Properties of the quasi-mode[1]

➢ Broad mode structure in the radial direction 
➢ Finite mode length in the main field direction 
➢ Finite, linear magnetic shear, 𝒃𝟎 = 0, 𝑠𝑥, 1

— Physical picture:
1. gravitational potential energy               

kinetic energy of plasma filaments. 
2. Alignment of filaments with the local 

magnetic field lines && finite magnetic field 
shear ⇒ infinite length ⇒ divergent 
rotational kinetic energy.

3. Mode length automatically adjusts to a 
finite value ⇒ resistive dissipation
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𝑔

— Quasi-mode: not a true eigenmode
       ⇒ a wave-packet ⇒ broad radial structure
       ⇒ eventually disperse
— Highly-degenerate interchange modes ⇒ 

Quasi-mode can maintain its shape until 
entering the nonlinear regime.

1. Roberts, K. V., and J. B. Taylor. The Physics of Fluids 8.2 (1965): 315-322.

interchange 
motion



Jensen-Shannon Complexity
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