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Motivation

Trend: Syntheses of good confinement & optimal power handing

Key question: Instability and turbulence in a stochastic magnetic field

Novelty

Model

Conclusions Future

Recent experimental results reported by Minjun Choi
et al.[3] indicate that the effect of stochasticity on
pedestal turbulence is to reduce its Jensen-Shannon
complexity and predictability—i.e., the distribution of
turbulence becomes more random compared with the
natural ELM free case.

Previous simulations of resistive ballooning
modes in a stochastic magnetic field by
Beyer et al.[2] shows the emergence of
small-scale structures and increased spatial
roughness of the turbulence field.

Hints from 
simulations & experiments

Our model is supposed to
• maintain ∇ ⋅ 𝑱 = 0 at all orders
• connect micro and macro scales
• be tractable      resistive interchange

The story is: dynamics of a low-
𝒌 resistive interchange mode and
turbulent relaxation in a high-𝒌
ambient and static background
stochastic magnetic field

However, things are not so simple…
Stochastic magnetic field induces a current density fluctuation along the
perturbed field line ෨𝑱∥, which is not divergence-free. So to keep ∇ ⋅ ෨𝑱 = 0, a
potential fluctuation ෤𝜑 must be driven to produce a ෨𝑱⊥. This idea is similar
to that in Kadomtsev and Pogutse’s paper[4].

Analogy C&D K&P

Goal 𝛾𝒌
1 𝑞𝑟 𝑁𝐿

Base state ത𝜑 ത𝑇

Stochastic 
Quantity

෩𝒃 ෩𝒃

Constraint ∇ ⋅ 𝑱 = 0 ∇ ⋅ 𝒒 = 0

Resulting 
fluctuations ෤𝜑 ෨𝑇

Intrinsic Multi-Scale Microturbulence
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• Consider the couplings between large-scale modes, as opposed to a
single mode case.

• Extend this analysis to a kinetic description of microinstabilities.
• Look at effects of stochastic magnetic field ෩𝒃 on twisted slicing

modes, i.e., include toroidicity (ongoing work).
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Broadly applicable findings:
1. Maintaining ∇ ⋅ 𝑱 = 0 at all orders reveals that microturbulence is driven at small scales by the beat of

small-scale magnetic perturbations ෩𝒃 and large-scale electrostatic potential ത𝜑.
2. The microturbulence in turn modifies the large-scale mode via an effective flow viscosity and thermal

diffusivity, as well as electrostatic scattering. Thus, dynamics has a disparate scale interaction.
3. The stochastic magnetic field produces a magnetic braking effect, which exerts a drag on large-scale

vorticity. This effect is similar in structure to the nonlinear 𝑱 × 𝑩 force identified by Rutherford[5], but
in our case, it is produced by magnetic perturbations.

4. A non-trivial correlation between the electrostatic turbulence and the ambient stochastic field—i.e.,
෨𝑏𝑟 ෤𝑣𝑟 ≠ 0 is shown. Thus, the velocity fluctuations ‘lock on’ to the ambient static magnetic

perturbations. This will necessarily affect the statistics of the turbulence.
Detailed calculations:
1. The net effect of stochastic magnetic fields is to reduce resistive interchange growth—i.e., a trend

towards stabilization. The increment is calculated.
2. Turbulent viscosity and turbulent thermal diffusivity driven by the microturbulence are calculated.
3. The width of magnetic islands when magnetic braking effect becomes significant is calculated, which

differs from Rutherford’s result by a factor of 𝑘𝜃
2/𝑘2𝜃

2 .
4. The correlation ෨𝑏𝑟 ෤𝑣𝑟 is calculated explicitly.

The actual system owns an intrinsically multi-scale nature and
contains three players: a large-scale single cell (large red
ellipse), a prescribed background stochastic magnetic field
(small blue arrows), and small-scale convective cells (small
orange ellipsis), i.e., the intrinsic multi-scale microturbulence.

Small-scale cells are adiabatically modulated by the beat of large-

scale cell and stochastic magnetic field, i.e.
𝜕 ෤𝜑

𝜕𝑡
+ 𝜆 ෤𝜑 = ෡𝐷 ෨𝑏𝑟 ത𝜑 (1)

where 𝜆 is the effective friction and ෡𝐷 denotes the drive of ෨𝑏𝑟 ത𝜑
beat. Since equation (1) is similar in form to Langevin equation, it
implies a fluctuation-dissipation balance and shows the dual
identities of ෩𝒃: on the one hand, it serves as an external noise to
excite ෤𝜑; on the other hand, microturbulence also generates a
turbulent background and the resultant turbulent viscosity damps
these small-scale cells (that’s where 𝜆 comes from). And in
equation (1), ෤𝜑 and ෨𝑏𝑟 are tightly related so it is no surprise to find
that the correlation ෨𝑏𝑟 ෤𝑣𝑟 is non-trivial in C&D’s model.

Equation (1) also indicates that macro and
micro scales are connected. Therefore, the
system incorporates multi-scale feedback
loops, which couple the dynamics of the
large-scale envelope and small-scale cells, as
shown below:


