Elastic Turbulence:

A Look at Some Simple Systems

P.H. Diamond U.C. San Diego

UAH Colloquium, November 2022

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Collaboration: Xiang Fan, Luis Chacon, Hui Li

Discussions: D.W. Hughes, S.M. Tobias,

A. Gruzinov, R. Pandit, D.R. Nelson,

F. Cattaneo

Outline

- What is Turbulence?
- What and Why of Elastic Fluids, and CHNS, in particular

CHNS ≡ Cahn-Hilliard Navier-Stokes

- Single Eddy Problem
- CHNS Turbulence
- Transport and Beyond
- Lessons

What is Turbulence?

Turbulence (after Kadomtsev)

"The Garden of Earthly Delights", Hieronymous Bosch

Model

• Navier-Stokes Equation:

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} - \nu \nabla^2 \vec{v} \right) = -\nabla P + \tilde{f}$$

$$\nabla \cdot \vec{v} = 0$$
Random forcing
(usually large scale)

- Finite domain, closed, periodic

$$- Re = v \cdot \nabla v / v \nabla^2 v \sim VL/v \quad ; \quad Re \gg 1$$

- Variants:
 - 2D, QG
 - Compressible flow
 - Pipe flow inhomogeneity
 - MHD, etc.

What is turbulence? (3D)

- Spatio-temporal "disorder"
- Broad range of space-time scales
- Power transfer / flux thru broad range of scales *
- Energy dissipation and irreversibility as $Re \rightarrow \infty^*$

And:

- Decay of large scales
- Irreversible mixing
- Intermittency / burstiness

Ma Yuan

Leonardo

Why broad range scales? What motivates cascade concept?

A) Planes, trains, automobiles...

<u>DRAG</u>

- Recall: $F_d \sim c_D \rho A V^2$
- $C_D = C_D(Re) \rightarrow \text{drag coefficient}$

$$C_D \sim Re^{(0)}$$
 as $Re \to \infty$

- The Point:
 - Energy dissipation is finite, and due to viscosity, yet does not depend explicitly on viscosity
 ANOMALY
 - 'Irreversibility persists as symmetry breaking factors vanish'

i.e.
$$\frac{dE}{dt} \sim F_d V \sim C_D \rho A V^3$$

 $\frac{dE}{dt} \sim \frac{V^3}{l_0} \equiv \epsilon \Rightarrow$ dissipation rate $l_0 \Rightarrow$ macro length scale

• Where does the energy go?

Steady state $\nu \langle (\nabla \vec{v})^2 \rangle = \langle \vec{f} \cdot \vec{v} \rangle = \epsilon$

• So $\epsilon = \nu \langle (\nabla v)^2 \rangle$ \leftarrow independent of ν

...

• $(\nabla v)_{rms} \sim \frac{1}{v^{1/2}} \rightarrow \underline{suggests} \rightarrow singular velocity gradients (small scale)$

- Flat C_D in $Re \rightarrow$ turbulence must access small scales as $Re \rightarrow \infty$
- Obviously consistent with broad spectrum, via nonlinear coupling

B) ... and balloons

- Study of 'test particles' in turbulence:
- Anecdotal:

Titus Lucretius Caro: 99-55 BC

"De rerum Nature" cf. section V, line 500

• Systematic:

L.F. Richardson: - probed atmospheric turbulence by study of balloon separation Noted: $\langle \delta l^2 \rangle \sim t^3 \rightarrow \underline{\text{super-diffusive}}$

- not ~ t, ala' diffusion, noise
- not exponential, ala' smooth chaotic flow

<u>Upshot:</u>

$$\delta V(l) = \left(\left(\vec{v} \left(\vec{r} + \vec{l} \right) - \vec{v} \left(\vec{r} \right) \right) \cdot \frac{\vec{l}}{|\vec{l}|} \right) \Rightarrow \text{ structure function } \Rightarrow \text{ velocity differential} \\ \text{ across scale}$$

Then: $\delta V \sim l^{\alpha}$

so, $\frac{dl}{dt} \sim l^{\alpha} \rightarrow \text{growth of separation}$ $\rightarrow \langle l^2 \rangle \sim t^{\frac{2}{1-\alpha}} \sim t^3$ $\Rightarrow \alpha = \frac{1}{3}$ <u>So</u> $\delta V(l) \sim l^{1/3}, \langle \delta l^2 \rangle \sim t^3$

 \rightarrow Points:

- large eddys have more energy, so rate of separation increases with scale
- Relative separation is excellent diagnostic of flow dynamics
- cf: tetrads: Siggia and Shraiman

K41 Model (Phenomenological)

• Cascade \rightarrow hierarchical fragmentation

- Broad range of scales, no gaps
- Described by structure function $-\langle \delta v(l)^2 \rangle \leftrightarrow$ energy,
- $\langle \delta V(l)^2 \rangle$, $\langle \delta V(l)^n \rangle$, ...

Related to energy distribution $\leftarrow \rightarrow$ greatest interest

 $\langle \delta v(l)^2 \rangle \leftrightarrow$ energy, of great interest

- higher moments more challenging

- Input:
- 2/3 law (empirical)
 - $S_2(l) \sim l^{2/3}$
- 4/5 law (Rigorous) TBD

$$\langle \delta V(l)^3 \rangle = -\frac{4}{5}\epsilon l$$

 \rightarrow Ideas:

Fig. 2.12. Basic cartoon explanation of the Richardson–Kolmogorov cascade. Energy transfer in Fourier–space (a), and real scale (b)

- Flux of energy in scale space from l_0 (input/integral scale) to l_d (dissipation) scale – set by ν
- Energy flux is <u>same</u> at all scales between l_0 , $l_d <->$ self-similarity

 $→ ε ~ V(l)^2 / τ(l) ~ V(l)^3 / l → V(l) ~ (εl)^{1/3}; 1 / τ(l) ~ (ε/l^2)^{1/3}$ $→ V(l)^2 ~ V_0^2 (l / l_0)^{2/3}$ (transfer rate increases as scale decreases) And

$$\rightarrow E(k) \sim \epsilon^{2/3} k^{-5/3} \qquad E = \int dk E(k)$$

 \rightarrow Where does it end?

- Dissipation scale
 - cut-off at $1/\tau(l) \sim \nu/l^2$ i.e. $Re(l) \rightarrow 1$
 - $\ l_d \sim \nu^{3/4} \, / \epsilon^{1/4}$
- Degrees of freedom

#DOFs ~
$$\left(\frac{l_0}{l_d}\right)^3 \sim Re^{9/4}$$

For $l_o \sim 1km$, $l_d \sim 1mm$ (PBL)

 $\rightarrow N \sim 10^{18}$

The Theoretical Problem

- "We don't want to *think* anything, man. We want to *know*."
 "Pulp Fiction" (Quentin Tarantino)
- What do we know?

- 4/5 Law (and not much else...)

$$\langle V(l)^3 \rangle = -\frac{4}{5}\epsilon l \rightarrow \text{asymptotic for finite } l, \nu \rightarrow 0$$

 $S_2 = \langle \delta V(l)^2 \rangle$
 $S_3 = \langle \delta V(l)^3 \rangle$

from:
$$\frac{\partial S_2}{\partial t} = -\frac{1}{3l^4} \frac{\partial}{\partial l} (l^4 S_3) - \frac{4}{3}\epsilon + \frac{2\nu}{l^4} \frac{\partial}{\partial l} \left(l^4 \frac{\partial S_2}{\partial l} \right)$$

(Karman-Howarth) flux in scale dissipation

• Stationarity, $\nu \rightarrow 0$

<u>4/5 Law</u>

- Asymptotically exact $\nu \rightarrow 0$, *l* finite

- Energy thru-put balance $\langle \delta V(l)^3 \rangle / l \leftrightarrow \epsilon$
- Notable:
 - Euler: $\partial_t v + v \cdot \nabla v + \nabla P / \rho = 0$; reversible; $t \to -t, v \to -v$

- N-S: $\partial_t v + v \cdot \nabla v + \nabla P / \rho = v \nabla^2 v$; time reversal broken by viscosity

 $-S_3(l):S_3(l) = -\frac{4}{5}\epsilon l;$ reversibility breaking maintained as $\nu \to 0$

Anomaly

•
$$S_3(l) = -\frac{4}{5}\epsilon l$$

- N.B.: A little history; philosophy:
 - − 'Anomaly' in turbulence \rightarrow Kolmogorov, 1941
 - Anomaly in QFT \rightarrow J. Schwinger, 1951 (regularization for vacuum polarization)
- Speaking of QFT, what of renormalized perturbation theory?
 - Renormalization gives some success to low order moments, identifies relevant scales
 - Useful in complex problems (i.e. plasmas) and problems where τ_{int} is not obvious
 - Rather few fundamental insights have emerged from R.P.T

Caveat Emptor

What and Why of Elastic Fluids?

UC San Diego

Elastic Fluid -> Oldroyd-B Family Models → Solution of Dumbells

Internal DoF i.e. polymers

$$\gamma \left(\frac{d\vec{r}_{1,2}}{dt} - \vec{v}(\vec{r}_{1,2},t) \right) = -\frac{\partial U}{\partial \vec{r}_{1,2}} + \vec{\xi} , \text{ where } U = \frac{k}{2} (\vec{r}_1 - \vec{r}_2)^2 + \cdots$$
stokes drag

$$\succ \operatorname{so} \frac{dR}{dt} = \vec{v}(\vec{R}, t) + \vec{\xi}/\gamma \text{ , and } \frac{dq}{dt} = \vec{q} \cdot \nabla \vec{v}(\vec{R}, t) - \frac{2}{\gamma} \frac{\partial U}{\partial \vec{q}} + \operatorname{noise}$$

Seek $f(\vec{q}, \vec{R}, t | \vec{v}, ...) \rightarrow$ distribution

$$\geq \partial_t f + \partial_{\vec{R}} \cdot \left[\vec{v} (\vec{R}, t) f \right] + \partial_{\vec{q}} \cdot \left[\vec{q} \cdot \nabla \vec{v} (\vec{R}, t) f - \frac{2}{\gamma} \frac{\partial U}{\partial \vec{q}} f \right]$$

$$= \partial_{\vec{R}} \cdot \mathbf{D}_0 \cdot \frac{\partial f}{\partial \vec{R}} + \partial_{\vec{q}} \cdot \mathbf{D}_q \cdot \frac{\partial f}{\partial \vec{q}}$$
Is F.P. valid?!

➤and moments:

 $Q_{ij}(\vec{R},t) = \int d^3q \ q_i q_j f(\vec{q},\vec{R},t) \rightarrow \text{electric energy field (tensor)}$ $\Rightarrow \text{so:}$ $\partial_t Q_{ij} + \vec{v} \cdot \nabla Q_{ij} = Q_{i\gamma} \partial_{\gamma} v_j + Q_{j\gamma} \partial_{\gamma} v_i$ $= \omega_z Q_{ij} + D_0 \nabla^2 Q_{ij} + 4 \frac{k_B T}{\gamma} \delta_{ij} \quad \text{and concentration}$ $\Rightarrow \text{Defines Deborah number:} |\nabla \vec{v}| / \omega_z$

Reaction on Dynamics

$$\geq \rho [\partial_t v_i + \vec{v} \cdot \nabla v_i] = -\nabla_i P + \nabla_i \cdot [c_p k Q_{ij}] + \eta \nabla^2 v_i + f_i$$
elastic stress

➤Classic systems; Oldroyd-B (1950).

- Extend to nonlinear springs (FENE), rods, rods + springs, networks, director fields, etc...
- Supports elastic <u>waves</u> and fluid dynamics, depending on Deborah number.
- \succ Oldroyd-B \leftrightarrow <u>active tensor</u> field

Constitutive Relations

Limit of "freezing-in": D>1 is criterion.

- *D* ~ Deborah Number ~ $|\nabla V|/\omega_Z$ ~ τ_{relax}/τ_{dyn}
- Limit for elasticity: $D \gg 1 \rightarrow$ limit for elasticity
- Why "Deborah"? \rightarrow

•••

Hebrew Prophetess Deborah:

"The moutains flowed before the Lord." (Judges)

- Revisit Heraclitus (1500 years later):
- \rightarrow "All things flow" if you can wait long enough

Relation to MHD?!

$$\begin{aligned} & \triangleright \text{Re-writing Oldroyd-B:} \qquad \mathbf{T} \equiv \text{stress} \\ & \frac{\partial}{\partial_t} \mathbf{T} + \vec{v} \cdot \nabla \mathbf{T} - \mathbf{T} \cdot \nabla \vec{v} - (\nabla \vec{v})^T \cdot \mathbf{T} = \frac{1}{\tau} (\mathbf{T} - \frac{\mu}{\tau} \mathbf{I}) \\ & \triangleright \text{MHD:} \mathbf{T}_m = \frac{\vec{B}\vec{B}}{4\pi} \\ & \partial_t \vec{B} + \vec{v} \cdot \nabla \vec{B} = \vec{B} \cdot \nabla \vec{v} + \eta \nabla^2 \vec{B} \\ & \triangleright \text{So} \\ & \frac{\partial}{\partial_t} \mathbf{T}_m + \vec{v} \cdot \nabla \mathbf{T}_m - \mathbf{T}_m \cdot \nabla \vec{v} - (\nabla \vec{v})^T \cdot \mathbf{T}_m = \eta [\vec{B} \nabla^2 \vec{B} + (\nabla^2 \vec{B}) \vec{B}] \\ & \triangleright \text{Im} \quad (\text{Oldroyd-B}) \Leftrightarrow \lim_{R_m \to \infty} (\text{MHD}) \\ & \text{c.f. Ogilvie and Proctor} \end{aligned}$$

Elastic Media -- What Is the CHNS System?

 \geq Elastic media – Fluid with internal DoFs \rightarrow "springiness"

The Cahn-Hilliard Navier-Stokes (CHNS) system describes <u>phase separation</u> for binary fluid (i.e. <u>Spinodal Decomposition</u>)

Elastic Media? -- What Is the CHNS System?

> How to describe the system: the concentration field

 $\gg \psi(\vec{r}, t) \stackrel{\text{\tiny def}}{=} [\rho_A(\vec{r}, t) - \rho_B(\vec{r}, t)] / \rho : \text{scalar field} \rightarrow \text{density contrast}$ $\gg \psi \in [-1, 1]$

 \succ CHNS equations (2D): $\omega \equiv \text{vorticity}$

$$\begin{aligned} \partial_t \psi + \vec{v} \cdot \nabla \psi &= D \nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi) \\ \partial_t \omega + \vec{v} \cdot \nabla \omega &= \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega \end{aligned}$$

MHD $\leftarrow \rightarrow$ CHNS

Why Should a Plasma Physicist Care?

- Useful to examine familiar themes in plasma turbulence from new vantage point
- Some key issues in plasma turbulence:
- 1. Electromagnetic Turbulence
 - CHNS vs 2D MHD: analogous, with interesting differences.
 - Both CHNS and 2D MHD are *elastic* systems
 - Most systems = 2D/Reduced MHD + many linear effects
 - ➢Physics of dual cascades and constrained relaxation → relative importance, selective decay...
 - ➢Physics of wave-eddy interaction effects on nonlinear transfer (i.e. Alfven effect ←→ Kraichnan)

Spinodal Decomposition

X

X

Why Care?

- 2. Zonal flow formation \rightarrow negative viscosity phenomena
 - ZF can be viewed as a "spinodal decomposition" of momentum.
 - What determines scale?

Why Care?

- 3. "Blobby Turbulence"
 - CHNS is a naturally blobby system of turbulence.
 - What is the role of structure in interaction?
 - How to understand blob coalescence and relation to cascades?
 - How to understand multiple cascades of blobs and energy?

FIG. 4. (Color) Two frames from BES showing 2-D density plots. There is a time difference of 6 μ s between frames. Red indicates high density and blue low density. A structure, marked with a dashed circle and shown in both frames, features poloidal and radial motion.

[J. A. Boedo et.al. 2003]

• CHNS exhibits all of the above, with many new twists

A Brief Derivation of the CHNS Model

- \succ Second order phase transition \rightarrow Landau Theory.
- **>**<u>Order parameter</u>: $\psi(\vec{r}, t) \stackrel{\text{\tiny def}}{=} [\rho_A(\vec{r}, t) \rho_B(\vec{r}, t)]/\rho$

A Brief Derivation of the CHNS Model

Continuity equation:
$$\frac{d\psi}{dt} + \nabla \cdot \vec{J} = 0$$
. Fick's Law: $\vec{J} = -D\nabla\mu$

> Chemical potential: $\mu = \frac{\delta F(\psi)}{\delta \psi} = -\psi + \psi^3 - \xi^2 \nabla^2 \psi$.

 \succ Combining above \rightarrow Cahn Hilliard equation:

$$\frac{d\psi}{dt} = D\nabla^2 \mu = D\nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi)$$

 $\mathbf{E} d_t = \partial_t + \vec{v} \cdot \nabla. \text{ Surface tension: force in Navier-Stokes equation:}$ $\partial_t \vec{v} + \vec{v} \cdot \nabla \vec{v} = -\frac{\nabla p}{\rho} - \psi \nabla \mu + \nu \nabla^2 \vec{v}$

> For incompressible fluid, $\nabla \cdot \vec{v} = 0$.

2D CHNS and 2D MHD

► 2D CHNS Equations:

$$\begin{array}{l} \partial_t \psi + \vec{v} \cdot \nabla \psi = D\nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi) \\ \partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega \end{array} \begin{array}{l} -\psi: \text{Negative diffusion term} \\ \psi^3: \text{Self nonlinear term} \\ -\xi^2 \nabla^2 \psi: \text{Hyper-diffusion} \\ \text{term} \end{array}$$

$\partial_t A + \vec{v} \cdot \nabla A = \eta \nabla^2 A$	A: Simple d	iffusion term		
$\partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{1}{\mu_0 \rho} \vec{B} \cdot \nabla \nabla^2 A + \nu \nabla^2 \omega$ With $\vec{v} = \hat{\vec{z}} \times \nabla \phi$, $\omega = \nabla^2 \phi$, $\vec{B} = \hat{\vec{z}} \times \nabla A$, $j = \hat{\vec{z}} \times \nabla A$			2D MHD	2D CHNS
		Magnetic Potential	A	ψ
		Magnetic Field	в	\mathbf{B}_ψ
	$\frac{1}{2}$ π^{2} /	Current	j	j_ψ
	-V A.	Diffusivity	η	D
	μ_0	Interaction strength	$\frac{1}{\mu_0}$	ξ^2

nonlinear term

Linear Wave

$$\succ \text{CHNS supports linear "elastic" wave:}$$
$$\omega(k) = \pm \sqrt{\frac{\xi^2}{\rho}} \left| \vec{k} \times \vec{B}_{\psi 0} \right| - \frac{1}{2} i(CD + \nu)k^2$$

Where $C \equiv [-1 - 6\psi_0 \nabla^2 \psi_0 / k^2 - 6(\nabla \psi_0)^2 / k^2 - 6\psi_0 \nabla \psi_0 \cdot i\mathbf{k} / k^2 + 3\psi_0^2 + \xi^2 k^2]$

- Akin to capillary wave at phase interface. Propagates <u>only</u> along the interface of the two fluids, where $|\vec{B}_{\psi}| = |\nabla \psi| \neq 0$.
- ➤Analogue of Alfven wave.
- Important differences:
 - $\succ \overline{B}_{\psi}$ in CHNS is large only in the interfacial regions.
 - ➢Elastic wave activity does not fill space.

What of a Single Eddy? (Homogenization)

Flux Expulsion

Simplest dynamical problem in MHD (Weiss '66, et. seq.)
 Closely related to "PV Homogenization"

➢ Field wound-up, "expelled" from eddy

➢ For large Rm, field concentrated in boundary layer of eddy

 \geq Ultimately, back-reaction asserts itself for sufficient B₀

How to Describe?

Flux conservation: B₀L~bl Wind up: b=nB₀ (field stretched)
 Rate balance: wind-up ~ dissipation

$$\frac{v}{L}B_0 \sim \frac{\eta}{l^2}b \ . \ \tau_{expulsion} \sim \left(\frac{L}{v_0}\right)Rm^{1/3}.$$

$$l \sim \delta_{BL} \sim L/Rm^{1/3} \ . \ b \sim Rm^{1/3}B_0 \ .$$

N.B. differs from Sweet-Parker!

What's the Physics?

Shear dispersion! (Moffatt, Kamkar '82)

$$\partial_t A + \vec{v} \cdot \nabla A = \eta \nabla^2 A$$
 (Shearing coordinates)
 $v_y = v_y(x) = v_{y0} + xv'_y + \cdots$
 $\frac{dk_x}{dt} = -k_y v'_y, \frac{dk_y}{dt} = 0$
 $\partial_t A + xv'_y \partial_y A - \eta (\partial_x^2 + \partial_y^2) A = 0$
 $A = A(t) \exp i(\vec{k}(t) \cdot \vec{x})$

(Shear enhanced dissipation annihilates interior field)

So
$$\tau_{mix} \cong \tau_{shear} Rm^{1/3} = (v'_y)^{-1} Rm^{1/3}$$

Single Eddy Mixing -- Cahn-Hilliard

- Structures are the key → need understand how a single eddy interacts with ψ field
- \succ Mixing of $\nabla \psi$ by a single eddy \rightarrow characteristic time scales?
- ➢ Evolution of structure?
- >Analogous to flux expulsion in MHD (Weiss, '66)

 $\nabla \psi \leftrightarrow \vec{B}$

Single Eddy Mixing -- Cahn-Hilliard

➤3 stages: (A) the "jelly roll" stage, (B) the topological evolution stage, and (C) the target pattern stage.

 $\succ \psi$ ultimately homogenized in slow time scale, but metastable target patterns formed and merge.

➤Additional mixing time emerges.

Note coarsening!

Single Eddy Mixing

>The bands merge on a time scale long relative to eddy turnover time.

- > The 3 stages are reflected in the elastic energy plot.
- >The target bands mergers are related to the dips in the target pattern stage.

>The band merger process is similar to the step merger in drift-ZF staircases.

Back Reaction – Vortex Disruption

- >(MHD only) (A. Gilbert et.al. '16; J. Mak et.al. '17)
- Demise of kinematic expulsion?
 - Magnetic *tension* grows to react on vorticity evolution!
- ≻Recall: $b \sim B_0(Rm^{1/3})$
 - B.L. field stretched!

$$\geqslant \text{and } \vec{B} \cdot \nabla \vec{B} = -\frac{|B|^2}{r_c} \hat{n} + \frac{d}{ds} \left(\frac{|B|^2}{2}\right) \hat{t}$$

$$\Rightarrow |\vec{B} \cdot \nabla \vec{B}| \cong b^2 / L_0$$

$$\frac{d}{ds} \sim L_0^{-1}$$
vortex scale

Back Reaction – Vortex Disruption

$$\succ \operatorname{So} \rho \frac{d\omega}{dt} = \hat{z} \cdot \left[\nabla \times (\vec{B} \cdot \nabla \vec{B}) \right]$$

$$\rightarrow \rho u \cdot \nabla \omega \sim b^2 / l L_0$$

$$v_{A0}^2 = B_0^2/4\pi\rho$$

small BL scale enters

Feedback
$$\rightarrow 1$$
 for: $Rm\left(\frac{v_{A0}}{u}\right)^2 \sim 1$

Remember this!

Critical value to disrupt vortex, end kinematics

➢ Related Alfven wave emission.

 \succ Note for $Rm \gg 1 \rightarrow$ strong field <u>not</u> required

≻Will re-appear...

Some Aspects of CHNS Turbulence

MHD Turbulence – Quick Primer

- ➤(Weak magnetization / 2D)
- Enstrophy conservation broken
- Alfvenic in B_{rms} field "magneto-elastic" (E. Fermi '49) $\epsilon = \frac{\langle \tilde{v}^2 \rangle^2}{l^2} \frac{l}{B_{rms}} \implies E(k) = (\epsilon B_{rms})^{1/2} k^{-3/2}$ Dual cascade:
 Forward in energy
 Inverse in $\langle A^2 \rangle \sim k^{-7/3}$ reduced transfer rate:
- >What is dominant (A. Pouquet)?
 - conventional wisdom focuses on energy
 - yet $\langle A^2 \rangle$ conservation freezing-in law!?
 - → Is the inverse cascade of $\langle A^2 \rangle$ the 'real' process, with energy dragged to small scale by fluid?

Ideal Quadratic Conserved Quantities

• 2D MHD

1. Energy

$$E = E^{K} + E^{B} = \int \left(\frac{v^{2}}{2} + \frac{B^{2}}{2\mu_{0}}\right) d^{2}x$$

2. Mean Square Magnetic Potential

$$H^A = \int A^2 \, d^2 x$$

3. Cross Helicity

$$H^C = \int \vec{v} \cdot \vec{B} d^2 x$$

• 2D CHNS

1. Energy

$$E = E^{K} + E^{B} = \int \left(\frac{v^{2}}{2} + \frac{\xi^{2}B_{\psi}^{2}}{2}\right) d^{2}x$$

2. Mean Square Concentration

$$H^{\psi} = \int \psi^2 \, d^2 x$$

3. Cross Helicity

$$H^C = \int \vec{v} \cdot \vec{B}_{\psi} \, d^2 x$$

Dual cascade expected!

UC San Diego

Scales, Ranges, Trends 1.000 Unforced 0.5000 0.000 -0.5000 1.000 t = 0t = 60t = 3501.000 Forced 0.5000 - 0.000 -0.5000 1.000 t = 350t = 60t = 0

 \succ Fluid forcing \rightarrow Fluid straining vs Blob coalescence

- Straining vs coalescence is fundamental struggle of CHNS turbulence
- Scale where turbulent straining ~ elastic restoring force (due surface tension):
 <u>Hinze Scale</u>

$$L_H \sim (\frac{\rho}{\xi})^{-1/3} \epsilon_{\Omega}^{-2/9}$$

Scales, Ranges, Trends

 \succ Elastic range: $L_H > l > L_d$: where elastic effects matter.

$$> L_H/L_d \sim (\frac{\rho}{\xi})^{-1/3} v^{-1/2} \epsilon_{\Omega}^{-1/18} \rightarrow$$
 Extent of the elastic range

 $> L_H > L_d$ required for large elastic range \rightarrow case of interest

Scales, Ranges, Trends

- Key elastic range physics: **Blob coalescence**
- Unforced case: $L(t) \sim t^{2/3}$. (Derivation: $\vec{v} \cdot \nabla \vec{v} \sim \frac{\xi^2}{\rho} \nabla^2 \psi \nabla \psi \Rightarrow \frac{\dot{L}^2}{L} \sim \frac{\sigma}{\rho} \frac{1}{L^2}$)

• Forced case: blob coalescence arrested at Hinze scale L_H .

- $L(t) \sim t^{2/3}$ recovered
- Blob growth arrest observed
- Blob growth saturation scale tracks Hinze scale (dashed lines)

• Blob coalescence suggests inverse cascade is fundamental here.

Cascades: Comparing the Systems

- Blob coalescence in the elastic range of CHNS is analogous to flux coalescence in 2D MHD.
- \succ Suggests *inverse cascade* of $\langle \psi^2 \rangle$ in CHNS.
- Supported by statistical mechanics studies (absolute equilibrium distributions).
- ➤Arrested by straining.

Cascades - the Story

➢So, <u>dual cascade</u>:

- Inverse cascade of $\langle \psi^2 \rangle$
- *Forward* cascade of *E*
- >Inverse cascade of $\langle \psi^2 \rangle$ is formal expression of blob coalescence process \rightarrow generate larger scale structures till limited by straining
- Forward cascade of E as usual, as elastic force breaks enstrophy conservation
- Forward cascade of energy is analogous to counterpart in 2D MHD

UC San Diego

Cascades

➢MHD: weak small scale forcing on A drives inverse cascade
 ➢CHNS: ψ is unforced → aggregates <u>naturally</u> ⇔ structure of free energy
 ➢Both fluxes <u>negative</u> → <u>inverse</u> cascades

Power Laws

> Both systems exhibit $k^{-7/3}$ spectra.

>Inverse cascade of $\langle \psi^2 \rangle$ exhibits same power law scaling, so long as $L_H \gg L_d$, maintaining elastic range: Robust process.

Power Laws

- ► Derivation of -7/3 power law:
- ➢ For MHD, key assumptions:

• Alfvenic equipartition
$$(\rho \langle v^2 \rangle \sim \frac{1}{\mu_0} \langle B^2 \rangle)$$

- Constant mean square magnetic potential dissipation rate ϵ_{HA} , so $\epsilon_{HA} \sim \frac{H^A}{\tau} \sim (H_k^A)^{\frac{3}{2}} k^{\frac{7}{2}}.$
- Similarly, assume the following for CHNS:
 - Elastic equipartition ($\rho \langle v^2 \rangle \sim \xi^2 \langle B_{\psi}^2 \rangle$)
 - Constant mean square magnetic potential dissipation rate $\epsilon_{H\psi}$, so

$$\epsilon_{H\psi} \sim \frac{H^{\psi}}{\tau} \sim (H_k^{\psi})^{\frac{3}{2}} k^{\frac{7}{2}}.$$

More Power Laws

- Finetic energy spectrum (Surprise!):
- ≥2D CHNS: $E_k^K \sim k^{-3}$;
- ≥2D MHD: $E_k^K \sim k^{-3/2}$.
- ≻The -3 power law:

- Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.
- Remarkable departure from expected -3/2 for MHD. Why?

▷ Why does CHNS ← → MHD correspondence hold well for $\langle \psi^2 \rangle_k \sim \langle A^2 \rangle_k \sim k^{-7/3}$, yet break down drastically for energy???

> <u>What physics</u> underpins this surprise??

Interface Packing Matters! – Pattern!

> Need to understand *differences*, as well as similarities, between

CHNS and MHD problems.

2D MHD:

➢ Fields pervade system.

2D CHNS:

> Elastic back-reaction is limited to regions of density contrast i.e. $|\vec{B}_{\psi}| = |\nabla \psi| \neq 0$.

As blobs coalesce, interfacial region diminished. 'Active region' of elasticity decays.

2D CHNS

2D MHD

 $\mathbf{20}$

 $\mathbf{25}$

Interface Packing Matters!

> Define the *interface packing fraction* P:

0.35 $P = \frac{\# \text{ of grid points where } |\vec{B}_{\psi}| > B_{\psi}^{rms}}{\# \text{ of total grid points}}$ ۹.30 0.250.20 $\triangleright P$ for CHNS decays; 0.15 $\triangleright P$ for MHD stationary! 0.10^{L}_{0} $\mathbf{5}$ 1015t $\gg \partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega$: small $P \rightarrow$ local back reaction is weak.

0.50

0.45

0.40

 \rightarrow Weak back reaction \rightarrow reduce to 2D hydro \rightarrow k-spectra

► Blob coalescence coarsens interface network

What Are the Lessons?

- >Avoid power law tunnel vision!
- <u>Real space</u> realization of the flow is necessary to understand key dynamics. Track interfaces and packing fraction P.
- > One player in dual cascade (i.e. $\langle \psi^2 \rangle$) can modify or constrain the dynamics of the other (i.e. *E*).
- > Against conventional wisdom, $\langle \psi^2 \rangle$ inverse cascade due to blob coalescence is the robust nonlinear transfer process in CHNS turbulence.
- ➢ Begs more attention to magnetic helicity in 3D MHD.

Conclusions

- Turbulence as a classical and classic problem in strongly nonlinear field theory
- Elastic turbulence as broadly relevant and (each) uniquely challenging problem
- Other incarnations: MHD, Polymer-Hydro, ...
- CHNS as a fundamental example of scale selection, regulated mixing and "dueling cascades"
- New take on interfaces in turbulence

Transport and Beyond Active Scalar Transport

- Two Stage Evolution
- Revisiting Quenching

Physics: Active Scalar Transport

- Magnetic diffusion, ψ transport are cases of active scalar transport
- (Focus: 2D MHD) (Cattaneo, Vainshtein '92, Gruzinov, P. D. '94, '95)

scalar mixing - the usual

$$\partial_{t}A + \nabla \phi \times \hat{z} \cdot \nabla A = \eta \nabla^{2}A$$

$$\partial_{t}\nabla^{2}\phi + \nabla \phi \times \hat{z} \cdot \nabla \nabla^{2}\phi = \nabla A \times \hat{z} \cdot \nabla \nabla^{2}A + \nu \nabla^{2}\nabla^{2}\phi$$
turbulent resistivity
back-reaction
Seek $\langle v_{x}A \rangle = -D_{T} \frac{\partial \langle A \rangle}{\partial x} - \eta \frac{\partial \langle A \rangle}{\partial x}$
Point: $D_{T} \neq \sum_{\vec{k}} |v_{\vec{k}}|^{2} \tau_{\vec{k}}^{K}$, often substantially less

- Why: <u>Memory</u>! \leftrightarrow Freezing-in
- Cross Phase

•

Conventional Wisdom

- [Cattaneo and Vainshtein 1991]: turbulent transport is suppressed even for a <u>weak</u> large scale magnetic field is present.
- Starting point: $\partial_t \langle A^2 \rangle = -2\eta \langle B^2 \rangle$
- Assumptions:
 - Energy equipartition: $\frac{1}{\mu_0 \rho} \langle B^2 \rangle \sim \langle v^2 \rangle$
 - Average B can be estimated by: $|\langle \mathbf{B} \rangle| \sim \sqrt{\langle A^2 \rangle} / L_0$
- Define Mach number as: $M^2 = \langle v_A \rangle^2 / \langle \tilde{v}^2 \rangle = \langle v^2 \rangle / v_A^2 = \langle v^2 \rangle / \frac{1}{\mu_0 \rho} \langle B^2 \rangle$
- Result for suppression stage: $\eta_T \sim \eta M^2$
- Fit together with kinematic stage result:
- Lack physics interpretation of η_T !

Origin of Memory?

- (a) flux advection vs flux coalescence
 - intrinsic to 2D MHD (and CHNS)
 - rooted in inverse cascade of $\langle A^2 \rangle$ dual cascades
- (b) tendency of (even weak) <u>mean</u> magnetic field to "Alfvenize" turbulence [cf: vortex disruption feedback threshold!]
- Re (a): Basic physics of 2D MHD

Forward transfer: fluid eddies chop up scalar A.

Memory Cont'd

• V.S.

Inverse transfer: current filaments and A-blobs attract and coagulate.

scalar advection vs. coalescence ("negative resistivity")

(-)

- Obvious analogy: straining vs coalescence; CHNS
- Upshot: closure calculation yields:

(+)

$$\Gamma_{A} = -\sum_{\vec{k}'} [\tau_{c}^{\phi} \langle v^{2} \rangle_{\vec{k}'} - \tau_{c}^{A} \langle B^{2} \rangle_{\vec{k}'}] \frac{\partial \langle A \rangle}{\partial x} + \cdots$$
flux of potential competition

N.B.: Coalescence

- \rightarrow Negative diffusion
- \rightarrow Bifurcation

Conventional Wisdom, Cont'd

• Then calculate $\langle B^2 \rangle$ in terms of $\langle v^2 \rangle$. From:

$$\partial_t A + \mathbf{v} \cdot \nabla A = -v_x \frac{\partial \langle A \rangle}{\partial x} + \eta \nabla^2 A$$

• Multiplying by A and sum over all modes:

$$\frac{1}{2}[\partial_t \langle A^2 \rangle + \langle \nabla \cdot \langle \mathbf{v} A^2 \rangle \rangle] = -\Gamma_A \frac{\partial \langle A \rangle}{\partial x} - \eta \langle B^2 \rangle$$

Dropped stationary case Dropped periodic boundary \rightarrow introduce nonlocality?!

- Therefore: $\langle B^2 \rangle = -\frac{\Gamma_A}{n} \frac{\partial \langle A \rangle}{\partial x} = \frac{\eta_T}{n} B_0^2$
- Define Mach number as: $M^2 \equiv \langle v^2 \rangle / v_{A0}^2 = \langle v^2 \rangle / (\frac{1}{\mu_0 \rho} B_0^2)$
- Result:

$$\eta_T = \frac{\sum_{\mathbf{k}} \tau_c \langle v^2 \rangle_{\mathbf{k}}}{1 + \mathrm{Rm}/M^2} = \frac{ul}{1 + \mathrm{Rm}/M^2}$$

• This theory is not able to describe $B_0 \rightarrow 0$, though may be extended (?!)

UC San Diego

Is this story "the truth, the whole truth and nothing but the truth'?

→ A Closer Look

Two Stage Evolution:

- 1. The <u>suppression stage</u>: the (large scale) magnetic field is sufficiently strong so that the diffusion is suppressed.
- 2. The <u>kinematic decay stage</u>: the magnetic field is dissipated so the diffusion rate returns to the kinematic rate.
- Suppression is due to the memory induced by the magnetic field.

New Observations

• With no imposed B_0 , in suppression stage:

Field Concentrated!

• v.s. same run, in kinematic stage (trivial):

New Observations Cont'd

- Nontrivial structure formed in real space during the suppression stage.
- *A* field is evidently composed of "<u>blobs</u>".
- The low A^2 regions are 1-dimensional.
- The high B^2 regions are strongly correlated with low A^2 regions, and also are 1-dimensional.
- We call these 1-dimensional high B^2 regions ``<u>barriers</u>'', because these are the regions where mixing is reduced, relative to η_K .
- → Story one of 'blobs and barriers'

Evolution of PDF of A

Probability
 Density
 Function (PDF)
 in two stage:

- Time evolution: horizontal "Y".
 - The PDF changes from double peak to single peak as the system evolves from the suppression stage to the kinematic stage.

2D CHNS and 2D MHD

• The A field in 2D MHD in suppression stage is strikingly similar to the ψ field in 2D CHNS (Cahn-Hilliard Navier-Stokes) system:

Unimodal Initial Condition

- One may question whether the bimodal PDF feature is purely due to the initial condition. The answer is <u>No</u>.
- Two non-zero peaks in PDF of A still arise, even if the initial condition is unimodal.

The problem of the mean field $\langle B \rangle$ \rightarrow What does mean mean?

- $\langle B \rangle$ depends on the averaging window.
- With no imposed external field,
 B is highly intermittent, therefore the (B) is not well defined.

UC San Diego

Revisiting Quenching

New Understanding

- Summary of important length scales: $l < L_{stir} < L_{env} < L_0$
 - System size *L*₀
 - Envelope size $L_{env} \rightarrow$ emergent (blob)
 - Stirring length scale L_{stir}
 - Turbulence length scale l, here we use Taylor microscale λ
 - Barrier width $W \rightarrow$ emergent
- Quench is not uniform. Transport coefficients differ in different regions.
- In the regions where magnetic fields are strong, Rm/M^2 is dominant. They are regions of <u>barriers</u>.
- In other regions, i.e. Inside blobs, Rm/M'^2 is what remains. $M'^2 \equiv \langle V^2 \rangle / \left(\frac{1}{\rho} \langle A^2 \rangle / L_{env}^2\right)$

New Understanding, cont'd

- From $\partial_t \langle A^2 \rangle = -\langle \mathbf{v}A \rangle \cdot \nabla \langle A \rangle \nabla \cdot \langle \mathbf{v}A^2 \rangle \eta \langle B^2 \rangle$
- Retain 2nd term on RHS. Average taken over an envelope/blob scale.
- Define diffusion (closure):

$$\begin{split} \langle \mathbf{v} A \rangle &= -\eta_{T1} \nabla \langle A \rangle \\ \langle \mathbf{v} A^2 \rangle &= -\eta_{T2} \nabla \langle A^2 \rangle \end{split}$$

- Plugging in: $\partial_t \langle A^2 \rangle = \eta_{T1} (\nabla \langle A \rangle)^2 + \nabla \eta_{T2} \cdot \nabla \langle A^2 \rangle \eta \langle B^2 \rangle$
- For simplicity: $\langle B^2 \rangle \sim \frac{\eta_T}{\eta} (\langle B \rangle^2 + \langle A^2 \rangle / L_{env}^2)$
- where L_{env} is the envelope size. Scale of $\nabla^2 \langle A^2 \rangle$.
- Define new strength parameter: $M'^2 \equiv \langle v^2 \rangle / (\frac{1}{\mu_0 \rho} \langle A^2 \rangle / L_{env}^2)$

• **Result:**
$$\eta_T = \frac{ul}{1 + \text{Rm}/M^2 + \text{Rm}/M'^2} = \frac{ul}{1 + \text{Rm}\frac{1}{\mu_0\rho}\langle \mathbf{B} \rangle^2 / \langle v^2 \rangle + \text{Rm}\frac{1}{\mu_0\rho}\langle A^2 \rangle / L_{env}^2 \langle v^2 \rangle}$$

$$\eta_T = V l / \left[1 + \frac{R_m}{M^2} + \frac{R_m}{M'^2} \right]$$

• Barriers: $\eta_T \approx V l / \left[1 + R_m \frac{\langle B \rangle^2}{\rho \langle \tilde{V}^2 \rangle} \right]$

• Blobs:

Weak effective field

$$\eta_T \approx V l / \left[1 + R_m \frac{\langle A^2 \rangle}{\rho L_{env}^2 \langle \tilde{V}^2 \rangle} \right]$$

• Quench stronger in barriers, ,non-uniform

UC San Diego

Barrier Formation

Formation of Barriers

- How do the barriers form? $\eta_T = \sum_{\bf k} \tau_c [\langle v^2 \rangle_{\bf k} - \frac{1}{\mu_0 \rho} \langle B^2 \rangle_{\bf k}]$
- From above, strong B regions can support negative incremental

$$\eta_T = \delta \Gamma_A / \delta(-\nabla A) < 0$$
, suggesting clustering

- $\langle \eta_T \rangle > 0$
- Positive feedback: a twist on a familiar theme

Formation of Barriers, Cont'd

- Negative resistivity leads to barrier formation.
- The S-curve reflects due to the dependence of Γ_A on B.
- When slope is negative \rightarrow negative (incremental) resistivity.

Describing the Barriers

- How to measure the barrier width W.
- Starting point: $W \sim \Delta A/B_b$
- Use $\sqrt{\langle A^2 \rangle}$ to calculate ΔA
- Define the barrier regions as:
- Define barrier packing fractic $P \equiv \frac{\# \text{ of grid points for barrier regions}}{\# \text{ of grid points for barrier regions}}$
- Use use the magnetic fields in the barrier regions to calculate the magnetic energy:
- Thus $\langle B_b^2 \rangle \sim \langle B^2 \rangle / P$
- So barrier width can be estimated by:

N.B. All magnetic energy in the barriers

$$B(x,y) > \sqrt{\langle B^2 \rangle} * 2$$

of total grid points

$$W^2 \equiv \langle A^2 \rangle / (\langle B^2 \rangle / P)$$

$$\sum_{\rm barriers} B_b^2 \sim \sum_{\rm system} B^2$$

Describing the Barriers

- Time evolution of *P* and *W*:
 - P, W collapse in decay
 - M' rises
- Sensitivity of *W*:

0.06

0.05

0.04

0.02

0.01

≥ 0.03

- A_0 or $1/\mu_0 \rho$ greater $\rightarrow W$ greater;
- f_0 greater, W smaller; (ala' Hinze)
- W not sensitive to η or ν .

 A_0

(a)

0.09 0.08 0.07 0.06 0.05 0.04

Staircase (inhomogeneous Mixing, Bistability)

- Staircases emerge spontaneously! <u>Barriers</u>
- Initial condition is the usual cos function (bimodal)
- The only major sensitive parameter (from runs above) is the forcing scale is k=32 (for all runs above k=5).
- Resembles the staircase in MFE.

Conclusions / Summary

- Magnetic fields suppress turbulent diffusion in 2D MHD by: formation of intermittent <u>transport barriers</u>.
- Magnetic structures: Barriers thin, 1D strong field regions Blobs – 2D, weak field regions

ul

 $\overline{1 + \operatorname{Rm}_{\mu_{00}}^{1} \langle \mathbf{B} \rangle^{2} / \langle v^{2} \rangle + \operatorname{Rm}_{\mu_{00}}^{1} \langle A^{2} \rangle / L_{env}^{2} \langle v^{2} \rangle}$

• Quench not uniform:

- Barriers form due to negative resistivity: $\eta_T = \sum_{\mathbf{k}} \tau_c [\langle v^2 \rangle_{\mathbf{k}} - \frac{1}{\mu_0 \rho} \langle B^2 \rangle_{\mathbf{k}}] \quad \text{flux coalescence}$
- Formation of "magnetic staircases" observed for some stirring scale

Future Works

- Extension of the transport study in MHD:
 - Numerical tests of the new η_T expression ?
 - What determines the barrier width and packing fraction ?
 - Why does layering appear when the forcing scale is small ?
 - What determines the step width, in the case of layering
 - The transport study may also be extended to 3D MHD ($\langle A \cdot B \rangle$ important instead of $\langle A^2 \rangle$)
- Other similar systems can also be studied in this spirit. e.g. Oldroyd-B model for polymer solutions. (drag reduction)
- Reduced Model of Magnetic Staircase

General Conclusions

- Dual (or multiple) cascades can interact with each other, and one can modify another.
- We also show how a length scale, e.g. the Hinze scale in 2D CHNS, emerges from the balance of kinetic energy and elastic energy in blobby turbulence. → blob scale
- We see that negative incremental diffusion (flux/blob coalescence) can lead to novel real space structure in a simple system.
- Avoid fixation on k-spectra/power laws. Real space structure encodes info re: interactions.

Reading

Fan, P.D., Chacon: • PRE Rap Comm 99, 041201 (2019)

- → Active Scalar Transport 2D MHD
- PoP 25, 055702 (2018)
 - → Plasma/MHD Connection
- PRE Rap Comm 96, 041101 (2017)
 - \rightarrow Single Eddy
- Phys Rev Fluids 1, 054403 (2016)

 \rightarrow Turbulence