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• What is Turbulence?

• What and Why of Elastic Fluids, and CHNS, in particular

CHNS ≡ Cahn-Hilliard Navier-Stokes

• Single Eddy Problem

• CHNS Turbulence

• Transport and Beyond

• Lessons

Outline



What is Turbulence?



Turbulence (after Kadomtsev)   
“The Garden of Earthly Delights”, Hieronymous Bosch



• Navier-Stokes Equation:

𝜌
𝜕 Ԧ𝑣

𝜕𝑡
+ Ԧ𝑣 ⋅ 𝛻 Ԧ𝑣 − 𝜈𝛻2 Ԧ𝑣 = −𝛻𝑃 + ሚ𝑓

𝛻 ⋅ Ԧ𝑣 = 0

– Finite domain, closed, periodic

– 𝑅𝑒 = 𝑣 ⋅ 𝛻𝑣 /𝜈𝛻2𝑣 ∼ 𝑉𝐿/𝜈 ;   𝑅𝑒 ≫ 1

• Variants:

– 2D, QG

– Compressible flow

– Pipe flow – inhomogeneity 

– MHD, etc.

Model

Random forcing

(usually large scale)



• Spatio-temporal “disorder”

• Broad range of space-time scales

• Power transfer / flux thru broad range of scales *

• Energy dissipation and irreversibility as 𝑅𝑒 → ∞ *

And:

• Decay of large scales

• Irreversible mixing

• Intermittency / burstiness

What is turbulence? (3D)

Leonardo

Ma Yuan



A) Planes, trains, automobiles…

DRAG

• Recall:  𝐹𝑑 ∼ 𝑐𝐷𝜌𝐴𝑉
2

• 𝐶𝐷 = 𝐶𝐷(𝑅𝑒) drag coefficient

Why broad range scales? 

What motivates cascade concept?

𝐶𝐷 ∼ 𝑅𝑒 0 as 𝑅𝑒 → ∞



• The Point:

- Energy dissipation is finite, and due to viscosity, yet does not depend explicitly    

on viscosity  ANOMALY

- ‘Irreversibility persists as symmetry breaking factors vanish’ 

i.e.  
𝑑𝐸

𝑑𝑡
∼ 𝐹𝑑 𝑉 ∼ 𝐶𝐷𝜌𝐴𝑉

3

𝑑𝐸

𝑑𝑡
∼

𝑉3

𝑙0
≡ 𝜖  dissipation rate

• Where does the energy go?

Steady state 𝜈 𝛻 Ԧ𝑣 2 = Ԧ𝑓 ⋅ Ԧ𝑣 = 𝜖

𝑙0 macro length scale



• So  𝜖 = 𝜈 𝛻v 2
 independent of 𝜈

• 𝛻𝑣 𝑟𝑚𝑠 ~
1

𝜈1/2
 suggests singular velocity gradients (small 

scale)

∴

• Flat 𝐶𝐷 in 𝑅𝑒  turbulence must access small scales as 𝑅𝑒 → ∞

• Obviously consistent with broad spectrum, via nonlinear coupling



B) … and balloons

• Study of ‘test particles’ in turbulence:

• Anecdotal:

Titus Lucretius Caro: 99-55 BC

“De rerum Nature” cf. section V, line 500

• Systematic:

L.F. Richardson:

Noted: 𝛿𝑙2 ∼ 𝑡3  super-diffusive

- not ~ t,  ala’ diffusion, noise

- not exponential, ala’ smooth chaotic flow

- probed atmospheric turbulence by study of balloon separation

𝛿𝑙

𝛿𝑙 𝑡



𝛿𝑉 𝑙 = Ԧ𝑣 Ԧ𝑟 + Ԧ𝑙 − Ԧ𝑣 Ԧ𝑟 ⋅
Ԧ𝑙

Ԧ𝑙
 structure function

Then: 𝛿𝑉 ∼ 𝑙𝛼

so,  
𝑑𝑙

𝑑𝑡
∼ 𝑙𝛼  growth of separation

 𝑙2 ∼ 𝑡
2

1−𝛼 ∼ 𝑡3

 𝛼 =
1

3

so 𝛿𝑉 𝑙 ∼ 𝑙1/3, 𝛿𝑙2 ∼ 𝑡3

 Points: 

– large eddys have more energy, so rate of separation increases with scale 

– Relative separation is excellent diagnostic of flow dynamics

cf: tetrads: Siggia and Shraiman

Upshot:

 velocity differential 

across scale



K41 Model (Phenomenological)

• Cascade  hierarchical fragmentation

• Broad range of scales, no gaps

• Described by structure function  

• 〈𝛿𝑉 𝑙 2〉, …. 𝛿𝑉 𝑙 𝑛 , …

Related to energy distribution

 greatest interest

𝑙0

𝑙1

𝑙2

- 𝛿𝑣 𝑙 2 ↔ energy, 

of great interest

- higher moments

more challenging



• Input:

• 2/3 law (empirical)

𝑆2 𝑙 ∼ 𝑙2/3

• 4/5 law (Rigorous) - TBD

𝛿𝑉 𝑙 3 = −
4

5
𝜖𝑙

 Ideas:

• Flux of energy in scale space from 𝑙0 (input/integral scale) to 𝑙𝑑 (dissipation) scale 

– set by 𝜈

• Energy flux is same at all scales between 𝑙0, 𝑙𝑑 <-> self-similarity

real scale (b)



So

 𝜖 ∼ 𝑉 𝑙 2/ 𝜏 𝑙 ∼ 𝑉 𝑙 3/ 𝑙  𝑉 𝑙 ∼ 𝜖𝑙 1/3 ;  1/ 𝜏 𝑙 ∼ 𝜖/𝑙2 1/3

𝑉 𝑙 2 ∼ 𝑉0
2 𝑙 / 𝑙0

2/3 (transfer rate increases as scale decreases)

And 

𝐸 𝑘 ∼ 𝜖2/3 𝑘−5/3 𝐸 = ∫ 𝑑𝑘𝐸(𝑘)

Where does it end?

𝑙1
𝑙2

𝑙3

𝑙𝑛

not

exception:

Rapid Distortion Theory



• Dissipation scale

– cut-off at 1/𝜏 𝑙 ∼ 𝜈/𝑙2 i.e. 𝑅𝑒 𝑙 → 1

– 𝑙𝑑 ∼ 𝜈3/4 /𝜖1/4

• Degrees of freedom

#𝐷𝑂𝐹𝑠 ∼
𝑙0

𝑙𝑑

3
∼ 𝑅𝑒9/4

For 𝑙𝑜 ∼ 1𝑘𝑚, 𝑙𝑑 ∼ 1𝑚𝑚 (PBL)

 𝑁 ∼ 1018



The Theoretical Problem

• “We don’t want to think anything, man. We want to know.” 

– “Pulp Fiction” (Quentin Tarantino)

• What do we know?

– 4/5 Law (and not much else...)

𝑉 𝑙 3 = −
4

5
𝜖𝑙  asymptotic for finite 𝑙, 𝜈 → 0

from: 
𝜕𝑆2

𝜕𝑡
= −

1

3𝑙4
𝜕

𝜕𝑙
𝑙4𝑆3 −

4

3
𝜖 +

2𝜈

𝑙4
𝜕

𝜕𝑙
𝑙4

𝜕𝑆2

𝜕𝑙

(Karman-Howarth)

• Stationarity, 𝜈 → 0

𝑆2 = 𝛿𝑉 𝑙 2

𝑆3 = 𝛿𝑉 𝑙 3

flux in scale dissipation



• 𝑆3 𝑙 = −
4

5
𝜖𝑙

• Energy thru-put balance  𝛿𝑉 𝑙 3 /𝑙 ↔ 𝜖

• Notable:

– Euler: 𝜕𝑡𝑣 + 𝑣 ⋅ 𝛻𝑣 + 𝛻𝑃/𝜌 = 0;       reversible; 𝑡 → −𝑡, 𝑣 → −𝑣

– N-S: 𝜕𝑡𝑣 + 𝑣 ⋅ 𝛻𝑣 + 𝛻𝑃/𝜌 = 𝜈𝛻2𝑣;   time reversal broken by viscosity

– 𝑆3(𝑙): 𝑆3 𝑙 = −
4

5
𝜖𝑙;   reversibility breaking maintained as 𝜈 → 0

Anomaly

4/5 Law

- Asymptotically exact 𝜈 → 0, 𝑙 finite

- Unique, rigorous result



• N.B.: A little history; philosophy:

– ‘Anomaly’ in turbulence  Kolmogorov, 1941

– Anomaly in QFT  J. Schwinger, 1951 (regularization for vacuum 

polarization)

• Speaking of QFT, what of renormalized perturbation theory?

– Renormalization gives some success to low order moments, identifies 

relevant scales

– Useful in complex problems (i.e. plasmas) and problems where 𝜏𝑖𝑛𝑡 is not 

obvious

– Rather few fundamental insights have emerged from R.P.T 

Caveat Emptor



What and Why of

Elastic Fluids?



Elastic Fluid -> Oldroyd-B Family Models

𝛾
𝑑 റ𝑟1,2

𝑑𝑡
− റ𝑣 റ𝑟1,2, 𝑡 = −

𝜕𝑈

𝜕 റ𝑟1,2
+ റ𝜉 , where 𝑈 =

𝑘

2
റ𝑟1 − റ𝑟2

2 +⋯

so
𝑑𝑅

𝑑𝑡
= റ𝑣 𝑅, 𝑡 + റ𝜉/𝛾 , and

𝑑𝑞

𝑑𝑡
= റ𝑞 ⋅ 𝛻 റ𝑣 𝑅, 𝑡 −

2

𝛾

𝜕𝑈

𝜕𝑞
+ noise

21

→ Solution
of Dumbells

H2O

റ𝑟1 റ𝑟2
← റ𝑞 →

𝑅 = റ𝑟1- റ𝑟2
റ𝑣(റ𝑟1, 𝑡) റ𝑣(റ𝑟2, 𝑡) Internal DoF

i.e. polymers

stokes drag entropic spring
noise



Seek 𝑓( റ𝑞, 𝑅, 𝑡| റ𝑣, … ) → distribution

𝜕𝑡𝑓 + 𝜕𝑅 ⋅ റ𝑣 𝑅, 𝑡 𝑓 + 𝜕𝑞 ⋅ റ𝑞 ⋅ 𝛻 റ𝑣 𝑅, 𝑡 𝑓 −
2

𝛾

𝜕𝑈

𝜕𝑞
𝑓

= 𝜕𝑅 ⋅ 𝐃0 ⋅
𝜕𝑓

𝜕𝑅
+ 𝜕𝑞 ⋅ 𝐃q ⋅

𝜕𝑓

𝜕𝑞

and moments:

𝑄𝑖𝑗 𝑅, 𝑡 = ∫ 𝑑3𝑞 𝑞𝑖𝑞𝑗𝑓( റ𝑞, 𝑅, 𝑡) → electric energy field (tensor)

so:

𝜕𝑡𝑄𝑖𝑗 + റ𝑣 ∙ 𝛻𝑄𝑖𝑗 = 𝑄𝑖𝛾𝜕𝛾𝑣𝑗 + 𝑄𝑗𝛾𝜕𝛾𝑣𝑖
−𝜔𝑧𝑄𝑖𝑗 + 𝐷0𝛻

2𝑄𝑖𝑗 + 4
𝑘𝐵𝑇

𝛾
𝛿𝑖𝑗

 Defines Deborah number: 𝛻 റ𝑣 /𝜔z

22

Is F.P. valid?!

strain

relaxation

and concentration
equation



Reaction on Dynamics

𝜌[𝜕𝑡𝑣𝑖 + റ𝑣 ∙ 𝛻𝑣𝑖] = −𝛻𝑖𝑃 + 𝛻𝑖 ⋅ [𝑐𝑝𝑘𝑄𝑖𝑗] + 𝜂𝛻2𝑣𝑖 + 𝑓𝑖

Classic systems; Oldroyd-B (1950).

Extend to nonlinear springs (FENE), rods, rods + springs, networks,
director fields, etc…

Supports elastic waves and fluid dynamics, depending on Deborah
number.

Oldroyd-B ↔ active tensor field

23

elastic stress



Constitutive Relations

J. C. Maxwell:

(stress) + 𝜏𝑅
𝑑(stress)

𝑑𝑡
= 𝜂

𝑑

𝑑𝑡
(strain)

If 𝜏𝑅/𝑇 = 𝐷 ≪ 1, stress = 𝜂
𝑑

𝑑𝑡
(strain)

𝜎 = −𝜂𝛻 റ𝑣

If 𝜏𝑅/𝑇 = 𝐷 ≫ 1, stress ≅
𝜂

𝜏𝑅
(strain)

~ E (strain)

Limit of “freezing-in”: D>1 is criterion.

24

relaxation viscosity

𝑇 ≡ dynamic
time scale



• 𝐷 ~  Deborah Number  ~  𝛻𝑉 /𝜔𝑍 ~  𝜏𝑟𝑒𝑙𝑎𝑥/𝜏𝑑𝑦𝑛

• Limit for elasticity:  𝐷 ≫ 1 limit for elasticity

• Why “Deborah”? 

Hebrew Prophetess Deborah: 

“The moutains flowed before the Lord.” (Judges)

∴

• Revisit Heraclitus (1500 years later): 

 “All things flow” – if you can wait long enough



Relation to MHD?!

Re-writing Oldroyd-B:
𝜕

𝜕𝑡
𝐓 + റ𝑣 ∙ 𝛻𝐓 − 𝐓 ⋅ 𝛻 റ𝑣 − 𝛻 റ𝑣 𝑇 ⋅ 𝐓 =

1

𝜏
(𝐓 −

𝜇

𝜏
𝐈)

MHD: 𝐓𝑚 =
𝐵𝐵

4𝜋

𝜕𝑡𝐵 + റ𝑣 ∙ 𝛻𝐵 = 𝐵 ∙ 𝛻 റ𝑣 + 𝜂𝛻2𝐵

So
𝜕

𝜕𝑡
𝐓𝑚 + റ𝑣 ∙ 𝛻𝐓𝑚 − 𝐓𝑚 ⋅ 𝛻 റ𝑣 − 𝛻 റ𝑣 𝑇 ⋅ 𝐓𝑚 = 𝜂[𝐵𝛻2𝐵 + (𝛻2𝐵)𝐵]

 lim
𝐷→∞

(Oldroyd-B) ⟺ lim
𝑅𝑚→∞

(MHD)

26

𝐓 ≡ stress

c.f. Ogilvie and Proctor



Elastic Media -- What Is the CHNS System?

Elastic media – Fluid with internal DoFs “springiness”

The Cahn-Hilliard Navier-Stokes (CHNS) system describes phase separation
for binary fluid (i.e. Spinodal Decomposition)

27

AB

Miscible phase 
 Immiscible phase

[Fan et.al. Phys. Rev. Fluids 2016] [Kim et.al. 2012]



Elastic Media? -- What Is the CHNS System?

How to describe the system: the concentration field

𝜓 റ𝑟, 𝑡 ≝ [𝜌𝐴 റ𝑟, 𝑡 − 𝜌𝐵 റ𝑟, 𝑡 ]/𝜌 : scalar field → density contrast

𝜓 ∈ [−1,1]

CHNS equations (2D):

𝜕𝑡𝜓 + റ𝑣 ∙ 𝛻𝜓 = 𝐷𝛻2(−𝜓 + 𝜓3 − 𝜉2𝛻2𝜓)

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
𝜉2

𝜌
𝐵𝜓 ∙ 𝛻𝛻

2𝜓 + 𝜈𝛻2𝜔

28

𝜔 ≡ vorticity



Why Should a Plasma Physicist Care?

Useful to examine familiar themes in plasma turbulence from new 
vantage point 

Some key issues in plasma turbulence:

1. Electromagnetic Turbulence
• CHNS vs 2D MHD: analogous, with interesting differences.

• Both CHNS and 2D MHD are elastic systems

• Most systems = 2D/Reduced MHD + many linear effects 

Physics of dual cascades and constrained relaxation relative 
importance, selective decay…

Physics of wave-eddy interaction effects on nonlinear transfer (i.e. Alfven 
effect Kraichnan) 

29

MHD CHNS



Why Care?

2. Zonal flow formation  negative 
viscosity phenomena
• ZF can be viewed as a “spinodal

decomposition” of momentum.

• What determines scale?

30

[Porter 1981]

Spinodal Decomposition

Arrows:
𝜓 for CHNS;
flow for ZF.

http://astronomy.nju.edu.cn/~lixd/GA/AT4/AT411/HTML/AT41102.htm

Zonal Flow



[J. A. Boedo et.al. 2003]

Why Care?

3. “Blobby Turbulence”
• CHNS is a naturally blobby system of

turbulence.

• What is the role of structure in
interaction?

• How to understand blob coalescence and 
relation to cascades?

• How to understand multiple cascades of
blobs and energy?

31

• CHNS exhibits all of the above, with many new twists 



A Brief Derivation of the CHNS Model

Second order phase transition  Landau Theory.

Order parameter: 𝜓 റ𝑟, 𝑡 ≝ [𝜌𝐴 റ𝑟, 𝑡 − 𝜌𝐵 റ𝑟, 𝑡 ]/𝜌

Free energy:

F 𝜓 = න𝑑റ𝑟(
1

2
𝐶1𝜓

2 +
1

4
𝐶2𝜓

4 +
𝜉2

2
|𝛻𝜓|2)

𝐶1(𝑇), 𝐶2(𝑇).

Isothermal 𝑇 < 𝑇𝐶. Set 𝐶2 = −𝐶1 = 1:

F 𝜓 = න𝑑റ𝑟(−
1

2
𝜓2 +

1

4
𝜓4 +

𝜉2

2
|𝛻𝜓|2)

32

Phase Transition Gradient Penalty



A Brief Derivation of the CHNS Model

Continuity equation: 
𝑑𝜓

𝑑𝑡
+ 𝛻 ∙ Ԧ𝐽 = 0. Fick’s Law: Ԧ𝐽 = −𝐷𝛻𝜇.

Chemical potential: 𝜇 =
𝛿𝐹 𝜓

𝛿𝜓
= −𝜓 + 𝜓3 − 𝜉2𝛻2𝜓.

Combining above  Cahn Hilliard equation:

𝑑𝜓

𝑑𝑡
= 𝐷𝛻2𝜇 = 𝐷𝛻2(−𝜓 + 𝜓3 − 𝜉2𝛻2𝜓)

𝑑𝑡 = 𝜕𝑡 + റ𝑣 ∙ 𝛻. Surface tension: force in Navier-Stokes equation:

𝜕𝑡 റ𝑣 + റ𝑣 ∙ 𝛻 റ𝑣 = −
𝛻𝑝

𝜌
− 𝜓𝛻𝜇 + 𝜈𝛻2 റ𝑣

For incompressible fluid, 𝛻 ∙ റ𝑣 = 0.

33



2D CHNS and 2D MHD

2D CHNS Equations:

𝜕𝑡𝜓 + റ𝑣 ∙ 𝛻𝜓 = 𝐷𝛻2(−𝜓 + 𝜓3 − 𝜉2𝛻2𝜓)

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
𝜉2

𝜌
𝐵𝜓 ∙ 𝛻𝛻

2𝜓 + 𝜈𝛻2𝜔

With റ𝑣= መറ𝑧 × 𝛻𝜙, 𝜔 = 𝛻2𝜙, 𝐵𝜓 = መറ𝑧 × 𝛻𝜓, 𝑗𝜓 = 𝜉2𝛻2𝜓.

2D MHD Equations:

𝜕𝑡𝐴 + റ𝑣 ∙ 𝛻𝐴 = 𝜂𝛻2𝐴

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
1

𝜇0𝜌
𝐵 ∙ 𝛻𝛻2𝐴 + 𝜈𝛻2𝜔

With റ𝑣= መറ𝑧 × 𝛻𝜙, 𝜔 = 𝛻2𝜙, 𝐵 = መറ𝑧 × 𝛻𝐴, 𝑗 =
1

𝜇0
𝛻2𝐴.

34

−𝜓: Negative diffusion term

𝜓3: Self nonlinear term

−𝜉2𝛻2𝜓 : Hyper-diffusion
term

𝐴: Simple diffusion term



Linear Wave

CHNS supports linear “elastic” wave:

𝜔 𝑘 = ±
𝜉2

𝜌
𝑘 × 𝐵𝜓0 −

1

2
𝑖 𝐶𝐷 + 𝜈 𝑘2

Where

Akin to capillary wave at phase interface. Propagates only along the

interface of the two fluids, where |𝐵𝜓| = |𝛻𝜓| ≠ 0.

Analogue of Alfven wave.

Important differences: 

𝐵𝜓 in CHNS is large only in the interfacial regions.

Elastic wave activity does not fill space.

35

Air

Water

Capillary Wave:



What of a Single Eddy?

(Homogenization)



Flux Expulsion

Simplest dynamical problem in MHD (Weiss ‘66, et. seq.)

Closely related to “PV Homogenization”

Field wound-up, “expelled” from eddy

For large Rm, field concentrated in boundary layer of eddy

Ultimately, back-reaction asserts itself for sufficient B0

37

B0

Rm~vL/𝜂 ≫ 1



How to Describe?

Flux conservation: B0L~bl Wind up: b=nB0 (field stretched)

Rate balance: wind-up ~ dissipation
𝑣

𝐿
𝐵0 ∼

𝜂

𝑙2
𝑏 . 𝜏𝑒𝑥𝑝𝑢𝑙𝑠𝑖𝑜𝑛 ∼

𝐿

𝑣0
𝑅𝑚1/3.

𝑙 ∼ 𝛿𝐵𝐿 ∼ 𝐿/𝑅𝑚1/3 . 𝑏 ∼ 𝑅𝑚1/3𝐵0 .

38

B0

L

b

𝑙

after n turns:
nl=L

N.B. differs from
Sweet-Parker!



What’s the Physics?

Shear dispersion! (Moffatt, Kamkar ‘82)

𝜕𝑡𝐴 + റ𝑣 ∙ 𝛻𝐴 = 𝜂𝛻2𝐴 (Shearing coordinates)

𝑣𝑦 = 𝑣𝑦 𝑥 = 𝑣𝑦0 + 𝑥𝑣𝑦
′ +⋯

𝑑𝑘𝑥

𝑑𝑡
= −𝑘𝑦𝑣𝑦

′ ,
𝑑𝑘𝑦

𝑑𝑡
= 0

𝜕𝑡𝐴 + 𝑥𝑣𝑦
′𝜕𝑦𝐴 − 𝜂 𝜕𝑥

2 + 𝜕𝑦
2 𝐴 = 0

𝐴 = 𝐴 𝑡 exp 𝑖(𝑘 𝑡 ⋅ റ𝑥)

(Shear enhanced dissipation annihilates interior field)

So 𝜏𝑚𝑖𝑥 ≅ 𝜏𝑠ℎ𝑒𝑎𝑟𝑅𝑚
1/3=(𝑣𝑦

′−1)𝑅𝑚1/3
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Single Eddy Mixing -- Cahn-Hilliard

Structures are the key need understand how a single eddy
interacts with 𝜓 field

Mixing of 𝛻𝜓 by a single eddy characteristic time scales?

Evolution of structure?

Analogous to flux expulsion in MHD (Weiss, ‘66)

40

?
𝛻𝜓 ↔ 𝐵

Transport / Relaxation



Single Eddy Mixing -- Cahn-Hilliard

3 stages: (A) the ”jelly roll” stage, (B) the topological evolution stage, and
(C) the target pattern stage.
𝜓 ultimately homogenized in slow time scale, but metastable target 

patterns formed and merge.

Additional mixing time emerges. 41

(a) t=10

(b) t=70

(c) t=75

(d) t=80

(e) t=85

(f) t=400

(g) t=1500

(h) t=4000

A: Jelly roll B: reconnection C: Target

[Fan et.al. Phys. Rev. E
Rap. Comm. 2017]

Note coarsening!



[Ashourvan et.al. 2016]

Single Eddy Mixing

The bands merge on a time scale long relative to eddy turnover time.

The 3 stages are reflected in the elastic energy plot.

The target bands mergers are related to the dips in the target pattern stage.

The band merger process is similar to the step merger in drift-ZF staircases. 
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Episodic relaxation-coarsening Cahn-Hilliard dynamics



Back Reaction – Vortex Disruption

(MHD only) (A. Gilbert et.al. ‘16; J. Mak et.al. ‘17)

Demise of kinematic expulsion?
• Magnetic tension grows to react on vorticity evolution!

Recall: 𝑏 ∼ 𝐵0(𝑅𝑚
1/3)

• B.L. field stretched!

and 𝐵 ∙ 𝛻𝐵 = −
𝐵 2

𝑟𝑐
ො𝑛 +

𝑑

𝑑𝑠
(
𝐵 2

2
) Ƹ𝑡

|𝐵 ∙ 𝛻𝐵| ≅ 𝑏2/𝐿0
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𝑟𝑐 ∼ 𝐿0
𝑑

𝑑𝑠
∼ 𝐿0

−1 vortex scale



Back Reaction – Vortex Disruption

So 𝜌
𝑑𝜔

𝑑𝑡
= Ƹ𝑧 ⋅ [𝛻 × (𝐵 ∙ 𝛻𝐵)]

→ 𝜌𝑢 ⋅ 𝛻𝜔 ∼ 𝑏2/𝑙𝐿0

Feedback → 1 for: 𝑅𝑚
𝑣𝐴0

𝑢

2
∼ 1

Critical value to disrupt vortex, end kinematics

Related Alfven wave emission.

Note for 𝑅𝑚 ≫ 1 → strong field not required

Will re-appear…
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small BL scale enters

Remember this!

𝑣𝐴0
2 = 𝐵0

2/4𝜋𝜌



Some Aspects of 

CHNS Turbulence



MHD Turbulence – Quick Primer

(Weak magnetization / 2D)

Enstrophy conservation broken

Alfvenic in Brms field – “magneto-elastic” (E. Fermi ‘49)

𝜖 =
𝑣2 2

𝑙2
𝑙

𝐵𝑟𝑚𝑠
⟹ 𝐸 𝑘 = 𝜖𝐵𝑟𝑚𝑠

1/2𝑘−3/2

Dual cascade:

What is dominant (A. Pouquet)?
• conventional wisdom focuses on energy
• yet 𝐴2 conservation – freezing-in law!?
 Is the inverse cascade of 〈𝐴2〉 the ‘real’ process, with energy dragged to  

small scale by fluid?

46

Forward in energy

Inverse in 𝐴2 ∼ 𝑘−7/3
reduced transfer rate:

Kraichnan



Ideal Quadratic Conserved Quantities

47

• 2D CHNS

1. Energy

𝐸 = 𝐸𝐾 + 𝐸𝐵 = න(
𝑣2

2
+
𝜉2𝐵𝜓

2

2
)𝑑2𝑥

2. Mean Square Concentration

𝐻𝜓 = න𝜓2 𝑑2𝑥

3. Cross Helicity

𝐻𝐶 = න റ𝑣 ∙ 𝐵𝜓 𝑑
2𝑥

• 2D MHD

1. Energy

𝐸 = 𝐸𝐾 + 𝐸𝐵 = න(
𝑣2

2
+
𝐵2

2𝜇0
)𝑑2𝑥

2. Mean Square Magnetic Potential

𝐻𝐴 = න𝐴2 𝑑2𝑥

3. Cross Helicity

𝐻𝐶 = න റ𝑣 ∙ 𝐵𝑑2𝑥

Dual cascade expected!



Scales, Ranges, Trends

Fluid forcing Fluid straining vs Blob coalescence

Straining vs coalescence is fundamental struggle of CHNS turbulence

Scale where turbulent straining ~ elastic restoring force (due surface tension):
Hinze Scale

𝐿𝐻~(
𝜌

𝜉
)−1/3𝜖Ω

−2/9

48

How big is a raindrop?
• Turbulent straining 

vs capillarity.
• 𝜌𝑣2 vs 𝜎/𝑙.
[Hinze 1955]



Scales, Ranges, Trends

Elastic range: 𝐿𝐻 > 𝑙 > 𝐿𝑑: where elastic effects matter.

𝐿𝐻/𝐿𝑑~(
𝜌

𝜉
)−1/3𝜈−1/2𝜖Ω

−1/18
 Extent of the elastic range

𝐿𝐻 ≫ 𝐿𝑑 required for large elastic range case of interest
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𝐻𝜓 Spectrum

𝐻𝑘
𝜓

𝑘𝑘𝑖𝑛 𝑘𝐻 𝑘𝑑

Elastic Range
Hydro-

dynamic 
Range

(𝐻𝑘
𝜓
= 𝜓2

𝑘)



• Key elastic range physics: Blob coalescence

• Unforced case: 𝐿 𝑡 ~𝑡2/3.

(Derivation: റ𝑣 ∙ 𝛻 റ𝑣~
𝜉2

𝜌
𝛻2𝜓𝛻𝜓 ⇒

ሶ𝐿2

𝐿
~

𝜎

𝜌

1

𝐿2
)

• Forced case: blob coalescence arrested at Hinze scale 𝐿𝐻.

• Blob coalescence suggests inverse cascade is fundamental here.

Scales, Ranges, Trends
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• 𝐿 𝑡 ~𝑡2/3 recovered

• Blob growth arrest observed

• Blob growth saturation scale 

tracks Hinze scale (dashed lines) 



Cascades: Comparing the Systems

Blob coalescence in the elastic range of CHNS is analogous to flux 
coalescence in 2D MHD.

Suggests inverse cascade of 〈𝜓2〉 in CHNS.

Supported by statistical mechanics studies (absolute equilibrium 
distributions).

Arrested by straining.

51

MHD CHNS



Cascades  - the Story

So, dual cascade:

• Inverse cascade of 𝜓2

• Forward cascade of 𝐸

Inverse cascade of 𝜓2 is formal expression of blob coalescence 
process generate larger scale structures till limited by straining 

Forward cascade of 𝐸 as usual, as elastic force breaks enstrophy 
conservation 

Forward cascade of energy is analogous to counterpart in 2D MHD
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Cascades

Spectral flux of 𝐴2 : Spectral flux of 𝜓2 :

MHD: weak small scale forcing on 𝐴 drives inverse cascade

CHNS: 𝜓 is unforced aggregates naturally ⟺ structure of free energy

Both fluxes negative inverse cascades

53

MHD

CHNS



Power Laws
 𝐴2 spectrum: 𝜓2 spectrum:

Both systems exhibit 𝑘−7/3 spectra.

Inverse cascade of 𝜓2 exhibits same power law scaling, so 
long as 𝐿𝐻 ≫ 𝐿𝑑, maintaining elastic range: Robust process.

54

CHNSMHD
𝑓𝐴



Power Laws

Derivation of -7/3 power law:

For MHD, key assumptions:

• Alfvenic equipartition (𝜌⟨𝑣2⟩ ∼
1

𝜇0
⟨𝐵2⟩ )

• Constant mean square magnetic potential dissipation rate 𝜖𝐻𝐴, so

𝜖𝐻𝐴~
𝐻𝐴

𝜏
~(𝐻𝑘

𝐴)
3

2𝑘
7

2.

Similarly, assume the following for CHNS:

• Elastic equipartition (𝜌⟨𝑣2⟩ ∼ 𝜉2⟨𝐵𝜓
2 ⟩)

• Constant mean square magnetic potential dissipation rate 𝜖𝐻𝜓, so

𝜖𝐻𝜓~
𝐻𝜓

𝜏
~(𝐻𝑘

𝜓
)
3

2𝑘
7

2.
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𝑓𝜙

CHNS
More Power Laws

Kinetic energy spectrum (Surprise!):

2D CHNS: 𝐸𝑘
𝐾~𝑘−3;

2D MHD: 𝐸𝑘
𝐾~𝑘−3/2.

The -3 power law:

• Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.

• Remarkable departure from expected -3/2 for MHD. Why? 

Why does CHNSMHD correspondence hold well for 
𝜓2

𝑘~ 𝐴2 𝑘~𝑘
−7/3, yet break down drastically for energy???

What physics underpins this surprise??
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!



Interface Packing Matters! – Pattern!

Need to understand differences, as well as similarities, between 

CHNS and MHD problems. 
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MHD CHNS

2D CHNS:
Elastic back-reaction is limited to regions of 

density contrast i.e. |𝐵𝜓| = |𝛻𝜓| ≠ 0.

As blobs coalesce, interfacial region 
diminished. ‘Active region’ of elasticity decays.

2D MHD:
 Fields pervade system.



Interface Packing Matters!

Define the interface packing fraction 𝑃:

𝑃 =
# of grid points where |𝐵𝜓|>𝐵𝜓

𝑟𝑚𝑠

# of total grid points

𝑃 for CHNS decays;

𝑃 for MHD stationary!

𝜕𝑡𝜔 + റ𝑣 ∙ 𝛻𝜔 =
𝜉2

𝜌
𝐵𝜓 ∙ 𝛻𝛻

2𝜓 + 𝜈𝛻2𝜔: small 𝑃 local back reaction is

weak.

Weak back reaction reduce to 2D hydro k-spectra

Blob coalescence coarsens interface network
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What Are the Lessons?

Avoid power law tunnel vision!

Real space realization of the flow is necessary to understand key 
dynamics. Track interfaces and packing fraction 𝑃.

One player in dual cascade (i.e. 𝜓2 ) can modify or constrain the 
dynamics of the other (i.e. 𝐸).

Against conventional wisdom, 𝜓2 inverse cascade due to blob 
coalescence is the robust nonlinear transfer process in CHNS 
turbulence.

Begs more attention to magnetic helicity in 3D MHD.
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Conclusions

• Turbulence as a classical – and classic – problem in strongly 
nonlinear field theory

• Elastic turbulence as broadly relevant and (each) uniquely 
challenging problem

• Other incarnations: MHD, Polymer-Hydro, …

• CHNS as a fundamental example of scale selection, regulated 
mixing and “dueling cascades”

• New take on interfaces in turbulence



Transport and Beyond

- Active Scalar Transport

- Two Stage Evolution

- Revisiting Quenching



Physics: Active Scalar Transport

• Magnetic diffusion, 𝜓 transport are cases of active scalar transport

• (Focus: 2D MHD) (Cattaneo, Vainshtein ’92, Gruzinov, P. D. ’94, ’95)

𝜕𝑡𝐴 + 𝛻𝜙 × Ƹ𝑧 ∙ 𝛻𝐴 = 𝜂𝛻2𝐴

𝜕𝑡𝛻
2𝜙 + 𝛻𝜙 × Ƹ𝑧 ∙ 𝛻𝛻2𝜙 = 𝛻𝐴 × Ƹ𝑧 ∙ 𝛻𝛻2𝐴 + 𝜈𝛻2𝛻2𝜙

• Seek 𝑣𝑥𝐴 = −𝐷𝑇
𝜕 𝐴

𝜕𝑥
− 𝜂

𝜕 𝐴

𝜕𝑥

• Point: 𝐷𝑇 ≠ σ
𝑘
|𝑣𝑘|

2 𝜏
𝑘
𝐾 , often substantially less

• Why: Memory! ↔ Freezing-in

• Cross Phase

scalar mixing – the usual

back-reactionturbulent resistivity



Conventional Wisdom

• [Cattaneo and Vainshtein 1991]: turbulent 
transport is suppressed even for a weak large 
scale magnetic field is present.

• Starting point: 

• Assumptions: 
• Energy equipartition:

• Average B can be estimated by:

• Define Mach number as:

• Result for suppression stage:

• Fit together with kinematic stage result: 

• Lack physics interpretation of 𝜂𝑇 !

𝑀2 = 𝑣𝐴
2/ 𝑣2 = 𝑣2 /𝑣𝐴

2 = 𝑣2 /
1

𝜇0𝜌
𝐵2



Origin of Memory?

• (a) flux advection vs flux coalescence
• intrinsic to 2D MHD (and CHNS)

• rooted in inverse cascade of 𝐴2 - dual cascades

• (b) tendency of (even weak) mean magnetic field to “Alfvenize”
turbulence [cf: vortex disruption feedback threshold!]

• Re (a): Basic physics of 2D MHD



Memory Cont’d

• v.s.

• Obvious analogy: straining vs coalescence; CHNS

• Upshot: closure calculation yields:

Γ𝐴 = −σ
𝑘′
[𝜏𝑐
𝜙
𝑣2 𝑘′ − 𝜏𝑐

𝐴 𝐵2 𝑘′]
𝜕 𝐴

𝜕𝑥
+⋯

flux of potential competition

scalar advection vs. coalescence (“negative resistivity”)
(+) (-)

N.B.:
Coalescence 
 Negative diffusion 
 Bifurcation



Conventional Wisdom, Cont’d

• Then calculate 〈𝐵2〉 in terms of 〈𝑣2〉. From:

• Multiplying by 𝐴 and sum over all modes:

• Therefore: 

• Define Mach number as:

• Result:  

• This theory is not able to describe 𝐵0 → 0, though 
may be extended (?!)

Dropped stationary case Dropped periodic boundary  introduce nonlocality?!



Is this story “the truth, the whole truth and 

nothing but the truth’?

 A Closer Look



Two Stage Evolution:

• 1. The suppression stage: 
the (large scale) magnetic
field is sufficiently strong so 
that the diffusion is 
suppressed.

• 2. The kinematic decay stage: 
the magnetic field is 
dissipated so the diffusion 
rate returns to the kinematic 
rate. 

• Suppression is due to the 
memory induced by the 
magnetic field.

suppression
stage

kinematic
stage



New Observations

• With no imposed 𝐵0, in suppression stage:

• v.s. same run, in kinematic stage (trivial):

Field 
Concentrated!



New Observations Cont’d

• Nontrivial structure formed in real space during the
suppression stage.

• 𝐴 field is evidently composed of “blobs”.

• The low 𝐴2 regions are 1-dimensional. 

• The high 𝐵2 regions are strongly correlated with low 
𝐴2 regions, and also are 1-dimensional.

• We call these 1-dimensional high 𝐵2 regions 
``barriers'', because these are the regions where 
mixing is reduced, relative to 𝜂𝐾.

 Story one of ‘blobs and barriers’



Evolution of PDF of A

• Probability
Density
Function (PDF)
in two stage:

• Time evolution:
horizontal “Y”.

Δ𝐴

suppression
stage

kinematic
stage

• The PDF changes from double 
peak to single peak as the system 
evolves from the suppression 
stage to the kinematic stage.



2D CHNS and 2D MHD

• The 𝐴 field in 2D MHD in suppression stage is
strikingly similar to the 𝜓 field in 2D CHNS (Cahn-
Hilliard Navier-Stokes) system:

𝜓 field in 2D CHNS 𝐴 field in 2D MHD
v.s.



Unimodal Initial Condition

• One may question whether the bimodal PDF feature is 
purely due to the initial condition. The answer is No.

• Two non-zero peaks in PDF of A still arise, even if the 
initial condition is unimodal.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)



The problem of the mean field 〈𝑩〉
What does mean mean?

• 〈𝐵〉 depends on the averaging 
window.

• With no imposed external field, 
B is highly intermittent, therefore 
the 〈𝐵〉 is not well defined.

𝑥

𝐴

| 𝐵 | ∼ 𝐴2 /𝐿0✓ 𝐵 not well defined

v.s.

Reality

𝑥

𝐴



Revisiting Quenching



New Understanding
• Summary of important length scales:

• System size 𝐿0
• Envelope size 𝐿𝑒𝑛𝑣 emergent (blob)

• Stirring length scale 𝐿𝑠𝑡𝑖𝑟
• Turbulence length scale 𝑙, here we use Taylor microscale 𝜆

• Barrier width 𝑊 emergent

• Quench is not uniform. Transport coefficients differ in 
different regions.

• In the regions where magnetic fields are strong, 
𝑅𝑚/𝑀2 is dominant. They are regions of barriers.

• In other regions, i.e. Inside blobs, 𝑅𝑚/𝑀′2 is what 

remains. 𝑀′2 ≡ 𝑉2 /
1

𝜌
𝐴2 /𝐿𝑒𝑛𝑣

2



New Understanding, cont’d

• From

• Retain 2nd term on RHS. Average taken over an 
envelope/blob scale.

• Define diffusion (closure):

• Plugging in:

• For simplicity: 

• where 𝐿𝑒𝑛𝑣 is the envelope size. Scale of 𝛻2〈𝐴2〉.

• Define new strength parameter:

• Result:  



𝜂𝑇 = 𝑉 𝑙 / 1 +
𝑅𝑚
𝑀2

+
𝑅𝑚
𝑀′2

• Barriers:

𝜂𝑇 ≈ 𝑉 𝑙 / 1 + 𝑅𝑚
𝐵 2

𝜌 ෨𝑉2

• Blobs:

𝜂𝑇 ≈ 𝑉 𝑙 / 1 + 𝑅𝑚
𝐴2

𝜌𝐿𝑒𝑛𝑣
2 ෨𝑉2

• Quench stronger in barriers, ,non-uniform

Strong field

Weak effective field



Barrier Formation



Formation of Barriers

• How do the barriers form?

• From above, strong B regions can support negative incremental 

𝜂𝑇 = 𝛿Γ𝐴/𝛿 −𝛻𝐴 < 0, suggesting clustering

• 𝜂𝑇 > 0

• Positive feedback:  a twist on a familiar theme

B is strong in a specific region diffusion of A is negative

∇A increasesB in that region increases

flux coalescence



Formation of Barriers,  Cont’d

• Negative resistivity leads to barrier formation.

• The S-curve reflects due to the dependence of Γ𝐴 on B.

• When slope is negative negative (incremental) resistivity.

Γ𝐴

- 𝐵

unstable
negative

Barriers 

Bistability of Γ𝐴 vs 𝛻𝐴

 a familiar theme

Landscape 
unknown

Quenched 𝜂𝑇

Kinematic

𝜂𝐾



Describing the Barriers

• How to measure the barrier width 𝑊.

• Starting point: 

• Use 〈𝐴2〉 to calculate Δ𝐴

• Define the barrier regions as: 

• Define barrier packing fraction:

• Use use the magnetic fields in the barrier regions to 
calculate the magnetic energy:

• Thus

• So barrier width can be estimated by:

N.B. All magnetic energy in the barriers

arbitrary threshold



Describing the Barriers

• Time evolution of 𝑃 and 𝑊:

- P, W collapse in decay

- 𝑀′ rises

• Sensitivity of 𝑊:
• 𝐴0 or 1/𝜇0𝜌 greater 𝑊 greater;

• 𝑓0 greater, 𝑊 smaller; (ala’ Hinze)

• 𝑊 not sensitive to 𝜂 or 𝜈.

(a) (b) (c) (d) (e)



Staircase (inhomogeneous Mixing, Bistability)

• Staircases emerge spontaneously! - Barriers

• Initial condition is the usual cos function (bimodal)

• The only major sensitive parameter (from runs above) 
is the forcing scale is k=32 (for all runs above k=5).

• Resembles the staircase in MFE.

(1) (2) (3) (4)



• Magnetic fields suppress turbulent diffusion in 2D 
MHD by: formation of intermittent transport barriers.

• Magnetic structures:

• Quench not uniform:

• Barriers form due to negative resistivity:

• Formation of “magnetic staircases” observed for some 
stirring scale

Conclusions / Summary

Barriers – thin, 1D strong field regions
Blobs – 2D, weak field regions

barriers, strong B blobs, weak B, 𝛻2〈𝐴2〉 remains

Γ𝐴

- 𝐵

flux coalescence



Future Works

• Extension of the transport study in MHD:
• Numerical tests of the new 𝜂𝑇 expression ?

• What determines the barrier width and packing fraction ?

• Why does layering appear when the forcing scale is small ?

• What determines the step width, in the case of layering 

• The transport study may also be extended to 3D MHD ( 𝑨 ⋅ 𝑩
important instead of 𝐴2 ) 

• Other similar systems can also be studied in this spirit. e.g. 
Oldroyd-B model for polymer solutions. (drag reduction)

• Reduced Model of Magnetic Staircase



General Conclusions

• Dual (or multiple) cascades can interact with each other, and 
one can modify another.

• We also show how a length scale, e.g. the Hinze scale in 2D 
CHNS, emerges from the balance of kinetic energy and elastic 
energy in blobby turbulence.  blob scale

• We see that negative incremental diffusion (flux/blob 
coalescence) can lead to novel real space structure in a simple 
system.

• Avoid fixation on k-spectra/power laws. Real space structure 
encodes info re: interactions.
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