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Nuclear fusion: option for generating large
amounts of carbon-free energy — “30 years in the
future and always will be... “

Challenge: ignition -- reaction release more energy
than the input energy

Lawson criterion:

n;7eT; > 3x10*'m3skeV.

t W
- confinement Tp ~ —

- turbulent transport

Turbulence: instabilities and collective oscillations

- low frequency modes dominate the
transport (w < Q;)

Key problem: Confinement, especially scaling
NB: Not the only problem



A Simpler Problem:
= Drag in Turbulent Pipe Flow



» Essence of confinement problem:
— given device, sources; what profile is achieved?
- 15 =W/Py, , How optimize W, stored energy

* Related problem: Pipe flow = drag <+ momentum flux

AP - pressure drop -
QQ () g Turbulent
S
I v~
APma? = pV,22mal Laminar
- friction velocity V, & u -
Balance: momentum transport to wall Re
(Reynolds stress) vs AP 1= M
(1/2)pu?

= Flow velocity profile Friction factor



(Core)

u
inertial sublayer - ~ logarithmic (~ universal)
<« viscous sublayer (linear) . ,
0 — » Problem: physics of ~ universal
logarithmic profile?
Wall * Universality - scale invariance

* Prandtl Mixing Length Theory (1932)

ou V. Spatial counterpart
— = 2 = — . _—~— —
Wall stress = pV, pv‘gau/ax or: — ~— of KA1
eddy viscosity N _ _
Scale of velocity gradient?

— Absence of characteristic scale =

vy ~ Vx { x = mixing length, distance from wall
u ~ V,In(x/xg) Analogy with kinetic theory ...

Vr =V - X, Viscous layer 2> x, = v/V,



Some key elements:

Momentum flux driven process < contrast fixed profile
Turbulent diffusion model of transport - eddy viscosity

Mixing length — scale selection

~ X = macroscopic, eddys span system x,<x<a

> ~ flat profile — strong mixing
Self-similarity = x < no scale, within [x,, a]

Reduce drag by creation of buffer layer i.e. steeper gradient than

inertial sublayer (due polymer) — enhanced momentum confinement

[N.B. : Analogue of H-mode]



Without vs With Polymers
Comparison - NYFD 1969



Turbulence in Tokamaks
= A Primer



-+ Re = VL/vill defined, not representative of dynamics

Primer on Turbulence in Tokamaks | 2
+ Strongly magnetized _)\ T&Foz'cb:‘ “¥

— Quasi 2D cells, Low Rossby #

% — Localized by k-B=0 (resonance) — pinned cells
/-

= c B ~ %4
* VJ_=+EEXZ, L

CciL

« VT,, VT;, Vn driven

Bo
» Akin to thermal convection with: g - magnetic curvature _?_ a

* Resembles ‘wave turbulence’, not high Re Navier-Stokes turbulence

2> K~Vi./A~12>Kubo#~1

-+ Broad dynamic range, due electron and ion scales, i.e. a, p;, pe



Primer on Turbulence in Tokamaks Il

« Characteristic scale ~ few p; = "mixing

length”
N « Characteristic velocity vy ~ p.c;

» Transport scaling: Dgg ~ p V4 ~ p. Dg - Gyro-Bohm

Key: Dy ~ pcs ~T/B - Bohm

2 scales: « i.e. Bigger is better! = sets profile scale via heat

balance (Why ITER is huge...)

p = gyro-radius

a = cross-section
p. = p/a > key ratio * Reality: D ~ p¥ Dg, a <1 = 'Gyro-Bohm breaking’
pe K1

2 Scales, p. < 1 =» key contrast to pipe flow




THE Question < Scale Selection
« Expectation (from pipe flow):

—l~a

— D ~ Dg
* Hope (mode scales)

— l~p;

— D ~ Dgp ~ p.Dp
 Reality: D ~p¥Dg, a<l1

Why? What physics competition sets a?



Scale Selection



Zonal Flow Jets Natural to Planets, Tokamaks

« Zonal Flows Ubiquitous for: R,=Rossby#=V/LR <1

~ 2D fluids / plasmas R, <1
Rotation €2, Magnetization B,,, Stratification
Ex: MFE devices, giant planets, stars...

»E T

“r = Solar Tachocline
=>» Sheared Flow

14



Shear Flows - Significance?

How is transport affected by shear flows ?
=>» shear decorrelation!

Back to sandpile model:

Closed end
2D pile +
sheared flow of ?
grains l
Shearing flow
et
decorrelates
Toppling sequence o
Open End

(b) time ————

FIG. 11. Time evolution of the overtuming sites (like Fig. 4). The ava-
lanches do not appear continous in time because only every 50th time step is
shown. (a) The shear-free case shows avalanches of all lengths over the
entire radius. (b) The case with sheared flow shows the coherent avalanches
being decorrelated in the shear zone in the middle of the pile.

FIG. 10. A cartoon of the sandpile with a shear flow zone. The whole pile is
flowing to the right at the top and to the left at the bottom connected by a
variable sized region of sheared flow.

Avalanche coherence destroyed by shear flow



* Implications:
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FIG. 14. The slopes of a sandpile with a shear region in the middle, includ-
g all the shear effects (diamonds) and just the transport decorrelation and
the linear effect (circles).
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FIG. 11. Time evolution of the overtuming sites (like Fig. 4). The ava-
lanches do not appear continous in time because only every 50th time step is
shown. (a) The shear-free case shows avalanches of all lengths over the
entire radius. (b) The case with sheared flow shows the coherent avalanches
being decorrelated in the shear zone in the middle of the pile.



How, Why Do Flows Form?

= Models and Potential Vorticity



Flows

* GFD - The Fluid Dynamics of Potential Vorticity (R. Salmon)

 Ditto for confined plasmas... (PD)

 Whatis PV ?

— Consider freezing-in:

5
X2

/ % =V(%,)—V(@)=1-VVW [l*frozenin’toflowV ]
X1

— Flow « Vorticity @ =V x V

Coriolis / Lorentz



PV cont’d

* Then, for P = P(p):

0:(@ +20) =V x [V x (& + 2Q)]

“frozen in”

- non-triviabfrozen in # passive !

» Passive Scalar y
X

d
a? =0 /
%1 /

dl

> S8p=0; SY=vy-d



PV cont’'d

(v -dl)=0

- —

but Ldi=dl vV
dat I

i(@’+2ﬂ> _ (Z)’+2Q> T so

. di [(5 + Zﬁ) -@] = (0 | statement of PV conservation
t p

s PV =q= +Tm)- Vy  { Good analogy with conserved charge }



PV Conservation < Trade-offs

(@ +20Q)
p

z
- displace latitude > @ changes \IJ_

q= a4

« displace in{ density - @ changes
thickness

etc.



PV cont’'d

« Conservation & Symmetry ? - ala’ Noether

Particle re-labeling; x(s,7) s-os'=s+4s

[PV conserved when particles can be re-labeled, without changing the

thermodynamic state]

* Related: Kelvin's Theorem (p = const. P = P(p))
d I e
—|Jda-(d+20)]=0

—> total circulation conserved (parcel + planetary)



From Kelvin's Theorem to the f Plane Model (Charney)

- Kelvin’s Theorem for rotating system

w— w+ 282 %v-dlz/da‘(w—i—%‘Z)EC
7N\ —_— :

relative planetary C=0

- Ro=V/(20L) K« 1 — V-V, px2/(2Q) geostrophic balance

— 2D dynamics

- Displacement on beta plane

: d 20 ., dA
C=0 — Ew:—jsm%ﬁ
do
=-20_ =4V,
w=V3p B=20sin,/R

So...




Charney Equation, cont’d

- Charney equation i(w +By) =0
dt
n.b. topography
- Locally Conserved PV ¢ = w + By B
parcel 7 ™ planetary g=w/H+ By
- Latitudinal displacement — change in relative
vorticity
- Linear consequence — Rossby Wave

w = —Bky/k* w = 0 > zonal flow
o k., = 0 =2 azimuthal symmetr
observe: w,, = 2Bk.k,/(k*)* x y y

|—> Rossby wave intimately connected to momentum transport

. . . . => Reynolds stress (I, V)
- Latitudinal PV Flux — circulation Y



PV Dynamics — Plasmas ?

» Isn’t this about plasmas, too?

20 > ;2
— = V'l/) n
. q=(a)+29)-7 now p - ny(r)+7
\71/} - 2
d wz+Q; |1 .
So dt [W] B ala’ Geostrophic:
_ c
4 gL dn V=—gVexz
= ¥z & ne dt 0 B
c 72
i <@ A fe _leld “z =B,
W|th Vthl K k" < Vthe o o P 0

Hasegawa-Mima Eqn.

lelp _ 2p2leld leld _ i
- psVi - )+V*ay p =0 | = PV conservation

> | (

dat




PV and Models - Plasmas

Hasegawa-Mima, prototype:

i( —piV2p +1 )=0
7 (P —psV7¢ +1nne(r)) =

tip of iceberg of zoology of systems

captures essence

in tokamak, zonal flows have: k; =0 and kg =0
a4 p2p
—V9=0

= generation of flow = (V.V2¢) = vorticity flux



Physics of Zonal Flows



- How do Zonal Flow Form?
Simple Example: Zonally Averaged Mid-Latitude Circulation

» classic GFD example: Rossby waves + Zonal flow
(c.f. Vallis '07, Held '01)

» Key Physics:
o Rossby Wave:
energy radiation

t 1 _ Bk
: TR

4 >
kxky

i < Vgy = 2f8 )’ (DyDy) = Xy ~lkekey |y

“ VgyVUphy < 0 - Backward wave!

Rossby waves N
break & dissipate Momentum
divergence

Momentum
convergence

Stirring =

|2

Rossby waves Momentum
break & dissipate dl»;?vgence

oral velocity

momentum = Momentum convergence

CONVEIgEnce at stirring location




» ..."the central result that a rapidly rotating flow, when stirred
in a localized region, will converge angular momentum into
this region.” (l. Held, '01)

» Outgoing waves = incoming wave momentum flux

viscous damping ;

&
> <\ zonal

shear layer

i< / formation

viscous damping i

» Local Flow Direction (northern hemisphere):
» eastward in source region
» westward in sink region
» setby 3 >0

» Some similarity to spinodal decomposition phenomena
- Both ‘negative diffusion’ phenomena <-> Cahn-Hillard Equation



Wave-Flows in Plasmas

MFE perspective on Wave Transport in DW Turbulence
* localized source/instability drive intrinsic to drift wave structure

— couple to damping < outgoing wave

i Emission .— Absorption
=) 1% — TV VR

x>0 = v, >0

. * -V _ = —2p2 karv* < 0 N - 0
Fluctuations = =0 & A+ pR) x v};: :
i . 2 L <0 = >0
Pinned to non-resonant radial structure (VsV} = = % 16, F Kk ky <0 v. Ko

» outgoing wave energy flux — incoming wave momentum flux
— counter flow spin-up!
v, 42\,

» zonal flow layers form at excitation regions




Plasma Zonal Flows |

 What is a Zonal Flow? — Description?
— n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)

— toroidally, poloidally symmetric ExB shear flow

* Why are Z.F.’s important?

— Zonal flows are secondary (nonlinearly driven):
* modes of minimal inertia (Hasegawa et. al.; Sagdeey, et. al. ‘78)
* modes of minimal damping (Rosenbluth, Hinton ‘98)
* drive zero transport (n = 0)

— natural predators to feed off and retain energy released by

gradient-driven microturbulence
l.e. ZF's soak up turbulence energy




Plasma Zonal Flows 11

 Fundamental Idea:

— Potential vorticity transport + 1 direction of translation symmetry
— Zonal flow in magnetized plasma / QG fluid

— Kaelvin’s theorem is ultimate foundation

« Charge Balance — polarization charge flux — Reynolds force

polarization length scale J_ ion GC electron density

~ SO To »T, mmp p*(v,Vig)»0 4mmp PV transport
polarization flux — \What sets cross-phase?
— If 1 direction of symmetry (or near symmetry):

~p*(3,:V2¢)=-0,(:%;) (Taylor, 1915)
-0 < rEvLE> mm) Reynolds force mmp Flow Recall (w;) evolution!




Zonal Flows Shear Eddys |

» Coherent shearing: (Kelvin, G.I. Taylor, Dupree’66, BDT90)

— radial scattering + (V,)’ — hybrid decorrelation

> >
—_ krzDJ— — (k§<VE>!2 DJ_ /3)1/3 — 1/Tc O O ﬂ A-

=» shearing restricts mixing scale! “ ¢ € ¢

i
. . Time
» Other shearing effects (linear): Response shift
and dispersion - |

— spatial resonance dispersion: o—ky, = o—ky, —k,(V;,)'(r—1,)
— differential response rotation — especially for kinetic curvature

effects




Quasi-Particle Model — Eddy Population Evolution

» Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)
Coherent interaction approach (L. Chen et. al.)

o dk,/dt =—(@+kV) or; V, =(V,)+T, )

Mean L (0 '
shearing K =k kYT / . A {\ “ MM

Zonal <67cr2> =Dt

Random -

shearing D, = Zk;‘Vbﬁ’q
q

2
Thyg — Wave ray chaos (not shear RPA)

) . underlies D, — induced diffusion
* Mean Field Wave Kinetics
— Induces wave packet dispersion
N 7, +7).vN-2 k)N Noov
EJF( otV _5(“” 0 E)'g_%é ~CIN} — Applicable to ZFs and GAMs

P) o . 0
- 5<N>_ ok D ok

(N)=y,(N)—-(C{N}) | «— Zonal shearing

- Evolves population in response to shearing




Closing the Feedback Loop
-> Predator-Prey Analogue



Energetics

Energetics: Books must Balance for Reynolds Stress-Driven Flows!

Fluctuation Energy Evolution — Z.F. shearing

_ 2
jdkm(Q<N> -2 p, i<N>J = 2 ey =—[dkv, D, O-(N) v, ==K L
ot ok * ok, or ok, (1+k£2p2)
Point: For d(Q)/dk, <0, Z.F. shearing damps wave energy
Fate of the Energy: Reynolds work on Zonal Flow !
Modulational 8,67, +30(7,7,))iar = 357,
Instability — k, k,0N N.B.: Wave decorrelation essential:
5<VrVa> ETEEpEe) Equivalent to PV transport
Bottorm Line: P (cf. Gurcan et. al. 2010)

— Z.F. growth due to shearing of waves
— “Reynolds work” and “flow shearing” as relabeling — books balance

— Z.F. damping emerges as critical; MNR ‘97




Feedback Loops

+ Closing the loop of shearing and Reynolds work Collisional Nonlinear
flow damping Q’PRESS flow damping

» Spectral ‘Predator-Prey’ Model

Zonal flows

SUPPRESS * *DRIV
\

Inhomoge- Drift wave
neity turbulence
DRIVE

Prey — Drift waves, <N>

2 B i i _ _Aa)k 2
& (N)= 2Dy () = i) =52 ()

Predator — Zonal flow, |@|?

0 2 8<N> 2 2 2 2
5|¢q|—rq{—akr}l¢ql Vol —rulle, 114,

- Self-regulating system - “ecology”

- Mixing scale regulated




Feedback Loops 11

Recovering the ‘dual cascade’:

. o ) = Analogous — forward potential
— Prey —» <N>~<Q> = induced diffusion to high k,
enstrophy cascade; PV transport

= growth of n=0, m=0 Z.F. by turbulent Reynolds work
— Predator > | ¢, |’~ <VEzﬂ> { g y y
= Analogous — inverse energy cascade

System Status

State No flow Flow (ar = 0) Flow (a2 # 0)
Mean Field Predator-Prey Model ” Vo +arya-!
N (drift wave L x JATAVE
Ao o a+ Awaya~!
s 2 . turbulence level) -
(PD et al 94, DI H 05) s Yy  Aow y — Aoyga™!
V= (mean square 0 - — —_—
flow) o a” o + Awara™
a _ 2 2 Drive/excitation Linear growth Linear growth Linear growth
6_N - yN—aV N —-AwN mechanism Nonlinear
¢ damping
a 5 5 ’ ) ) of flow
— Ve =aNV* - de — J/NL (V )V Regulation/inhibition Self-interaction Random shearing, Random shearing,
mechanism of turbulence self-interaction self-interaction
t hani f turbul 1f-i i 1f-i i
) _ -1 _ -1
Branching ratio v 0 v =~ Awpga y =~ Awyge
N V4 yd +aya!

Threshold (without noise) y > 0 y > Awyga™! y > Awyga™!




Scale Selection I

- the ExB Staircase

= Spatial Structure due
Closed Feedback Loops



Dynamics in Real Space

« Conventional Wisdom | Homogenization ?!

Prandtl, Batchelor, Rhines: (2D fluid)

PV homogenized: #
Shear + Diffusion Vg -0

Mechanism: - Shear dispersion © ~ 7,,; (Re)'/® = 1, Re

- Forward Enstrophy Cascade, ‘PV Mixing’

Introduce Bi-stable Mixing | Layers

1.00
0.75
| [10.50
0.25
0.00
-0.25

0.4
0.2
= 0.0

=0:2 —0.50

—0.75

—0.4-0.20.0 0.2 0.4 —0.4-0.20.0 0.2 0.4
T x

—0.4

Cahn-Hilliard + Eddy Flow <-> bistability (Fan, P.D., Chacon,

PRE Rap. Com. ‘17)
-> target pattern



Fate of Gradient?

localized
inhomogeneous
mixing

) OR

OR - “‘staircase’

‘l_L - layers, steps, corrugations

pattern of - shear layers < - relation to corrugations?
inhomogeneous

mixing ?! _I_ ”
1

Zonal flows at corrugations ?




Spatial Structure: ExB staircase formation

* ExB flows often observed to self-organize structured pattern

in magnetized plasmas

e "'ExB staircase’ is observed to form

GYSELA|

“ExB staircase” \ _
of shear flows ‘ p\‘—A—', | | \
f \

El s

Turbulence drive: R,

LH o0 120

Normalised radius: r P,

Atmospheric Jets

[ﬁhm Dunkerton et al. 2008)

also: GK5D, Kyoto-Dalian-SWIP group,
gKPSP, ... several GF codes

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. "10)

flux driven, full f simulation

Quasi-regular pattern of shear layers
and profile corrugations (steps)

Region of the extent A > A,
interspersed by temp. corrugation/ExB jets

- ExB staircases

so-named after the analogy to PV staircases
and atmospheric jets

Step spacing = avalanche distribution
outer-scale

scale selection problem




ExB Staircase, cont'd

e Important feature: co-existence of shear flows and avalanches/spreading

p. = 1256
v, =005

Turbulence drive: R/,

~

-

[evse)

: ExB shear rate yg

100 120 140
Normalized radius: r/p,

160

- Seem mutually exclusive ?

- strong ExB shear prohibits transport

- mesoscale scattering smooths out corrugations

- Can co-exist by separating regions into:

1. avalanches of the size A > A,

2. localized strong corrugations + jets

¢ How understand the formation of ExB staircase??

- What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale ?

e Some similarity to phase ordering in fluids — spinodal decomposition



Model - Bistable Mixing



Basic Equations < Hasegawa-Wakatani (life beyond CHM)

d _, 2 2072
—Vidp+x1Vi(p—n) =uViViep
dt

4 V2 (p —n) = DyV?
dt”"‘)(ue ii(p—n) oVin

o, 4Tpx2.7 n=meO)+a VR =(VIp(0))+Vid

« PV g=n-V2¢p conserved!,topu, D,

* u#*0 - () #0  negative dissipation = drift instability (Sagdeev, et. al.)

. mechanism’
W< W — (T)>0
shear

« ZF > k=0 ne qu/ PV exchange

. 17 273
ZF - (7,,V<¢$) — Reynolds force 72y 7

Corrugation — (¥fi) — particle flux c.f singh, PD. 2021



‘Bistable’ Mixing — A Simple Mechanism

* Mean field model with 2 mixing scales (after BLY 1998)

* So, for H-W:
o Xn) X
* Density: —< = ( @: )+ DvaT.lzl) simple mixing + 2 length scale
0 -> staircase
«  Vorticity: _<,,>_ [ - )0<">] \0;;0
X“
O u)
THea } }
, , . a0 AT
«  Enstrophy(intensity): ()i —g(Dg%) + \[d<"@‘ ”>] > | includes crude turbulence
. o, L ! spreading model
. D’X ~ Vlmix — &, e + el
} lo l, = excitation scale (drive)
mix = 3 WRVER lr 2 Rhines scale (emergent)
(1 + 5 [0x(n — wF/2) wum VS Aw - can be generalized
» Scale cross-over - ‘transport bifurcation’ T
* ly/lg <1 - strong mixing (eddys) two scales!

* Iy/lg > 1 — weak mixing (waves) -> sharpening feedback

* Is this ~ equivalent to ‘two-fluid’ mixing length model (E.A. Spiegel)



How, Why ?

* PV is mixed - natural for ‘mixing length model’ exploits conserved phase space density
 Potential Enstrophy is natural formulation — (§f?2) for intensity = conserved
« Beyond BLY = 2 mean fields (n), (V?¢) + & — fluctuation potential enstrophy
- exchange and couplings
* Reynolds work and particle flux couple mean and fluctuations
* Nonlinear damping < forward enstrophy cascade
* D,, x — turbulent transport coefficients are fundamental

e Glorified ‘k — € model’



How, Why ? Cont'd

Laix > ps — simplifies inversion (V2¢ - V)

Dissipative DW ~ adiabatic regime: k{V3,./v > w
D, = 9%/a ~ €l?*/a — (v, 7) phase fixed by a!
Major simplification — solid, where applicable

x ~ D, (non-resonant diffusion)

<ﬁr|72¢) = _Xax<‘72¢> + Hresid[vn]

(V2¢) = shear x on

(%,G%) —» —1%e'?d,e  spreading, entrainment, SOFT



How, Why ? Cont'd

D,,, x regulate P.E. exchange between mean, fluctuations = key role in model

lo ly

- [1+ [3x(: w)] ] C+(12/1Rj"

Physics: “Rossby Wave Elasticity’

Mixing Length: L,y

|eD~~— (07) e~ (B7) 55 2 for Ao < o,

F +(Aw)?
- waves enhance memory
2> w, ~V(qg) — nonlinearIp, vs (q) — S-curve
Soft point: k — suppression exponent

Kk = 1 doesn't always work

Rigorous bound, from fundamental equations?



Some Results



Staircase Model — Formation and Merger (QG-HM)

Energy

ﬂuctuation§§

mergers

PV transport

- PV mixing events

- € - Q

] Qy} top T, } bottom
Note later staircase mergers induce strong PV flux episodes!
(Malkov, PD.; PR Fluids 2018) 51



Staircase are Dynamic Patterns

oShear pattern detaches and delocalizes
from its initial position of formation.

oMesoscale shear lattice moves in the
up-gradient direction. Shear layers
condense and disappear at x=0.

oShear lattice propagation takes place
over much longer times. From t~O(10)
to t~(10%).

oBarriers in density profile move
upward in an “Escalator-like” motion.

0.008F
0.006¢
0.004
0.002¢
0.000
—0.002}
—0.004 L

-)| Macroscopic Profile Re-structuring

(Ashourvan, P.D. 2016)

52



FAQ re: Staircase Structure?

* Number of steps? - domain L - Scale Selection ?!

« Scan#stepsvs Vnatt=0  (n.b. mean gradient)

— a maximum # steps (and minimal step size) vs Vn |@

Ns

— rise: increase in free energy as ’'n 1

— drop: diffusive dissipation limits N;

5.0 52
-vn (t=0)

» Height of steps?

°

— minimal height at maximal #

o

= system has a V'n ‘sweet spot’ for many,

Height of steps

small steps and zonal layers

0.00
44 50 52
-Vn (t=0)



Spreading/Entrainment

- Spreading/entrainment effect on P.E. is unconstrained, beyond V - T, structure
Contrast: D,, x Follow standard k — e model CRUDE !
* How robust is staircase to effects of entrainment, avalanching... ?

« D, » Bl?e'/?

Number of steps
10 T T

o o
L)
oo
5r (X}
[

Entrainment has significant
il ° ] effect on S.C. structure

10 e o o000

005 0.0 050 1 s 0 Large § — wash out S.C.

B (Turbulence Spreading)

* Important!



Mergers Happen !

D50 055 060 065 070 075 080 050 055 060 065 070 075 080
X
X

* ‘Type-II' merger (c.f. Balmforth, in ‘Interfaces’)
* ‘Type-I' (motion) mergers also observed
=>» Staircase coarsens....
=> Obvious TBD:
— Interplay/Competition of Spreading and Mergers?

— Scan coarsening time vs 8, merger rate vs increments in 8



Macro-Barriers via Condensation

(a) Fast merger of micro-scale SC. Formation
of meso-SC.

(b) Meso-SC coalesce to barriers

(¢) Barriers propagate along gradient,
condense at boundaries

(d) Macro-scale stationary profile

"2-10 1 2 3 4 5

a (Ashourvan, PD. 2016)

— N W Hh W

=)

=> LH transition? 4502 04 06 08 10

X



Conclusion and

Current Research



Conclusions

Shear Flows - externally and self-generated - effective at

regulating transport via scale and rate selection

Potential Vorticity and its conservation are powerful formulations for

GFD and Magnetized Plasma dynamics

Zonal Flows are self-generated flows of minimum inertia, damping

and transport and thus are of great interest

Turbulence, zonal models (and profile corrugations) are a multi-

state self-regulating system



Conclusions, cont’d

* Inhomogeneous mixing produces layered domains or

staircases = scale selection

« Staircase can be recovered via bi-stable mixing model for

(n),(V2¢), e > emergent length [Rhines scale] is crucial

« Edge Barriers recovered from hierarchical mergers and

staircase condensation



Ongoing Research

» Staircase-avalanche co-existence

<

« Staircase “resilience”

* Heterogeneous staircase - profile, (E,.) variation
« Development of coarsening

« Transitions, especially barriers

- Self-organized, ~ marginal cells of pinned turbulence —

=» Rosenbluth ‘87




