# **Turbulence Spreading and**

# **Explicit Nonlocality\***

\* Submitted to PPCF

#### Qinghao Yan<sup>(1,2,3)</sup> and P.H. Diamond<sup>(2,3)</sup>

(1) Tsinghua University, Beijing

(2) SWIP, Chengdu

(3) UC San Diego

#### KITP Transport Barrier Working Group

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

#### **Outline**

- Prologue What is this about and Why are we doing it?
- Analysis Exploiting PV Evolution

- Dupree with a difference (Schematics)

– PV Inversion

- Results Intensity Equation
  - Explicit Nonlocality Surprise!
  - Simulation Comparisons
- Next Step



# **Turbulence Spreading**

What? – Entrainment

٠

٠



• Key component of all  $k - \epsilon$  type models of inhomogeneous turbulence

{ <sup>'nibbling'</sup> √ 'engulfment' X

• Intimately connected to avalanching

c.f. X. Garbet, et. al. '94

P.D., Hahm, '95

- Turbulence Spreading vs Avalanching
  - Both: (non-Brownian) radial propagation of excitation
  - Avalanching:
    - via overturning and mixing of neighboring cells
    - Coupling via  $\nabla \langle P \rangle$
    - $\partial_t \delta P \sim \partial_x (\alpha \delta P^2) \rightarrow \text{Burgers}$



- Turbulence spreading (t.s. Joint reflection symmetry)
  - via spatial scattering due nonlinear coupling
  - Couple via turbulence intensity field
  - Usually  $\partial_t I \sim \partial_x (D_0 I \partial_x I) \rightarrow k \epsilon$



• Bottom Line:



- ~ impossible to have one without other

- t.s. can persist in strong driven, non-marginal regimes
- Which effect more dramatic is variable  $\rightarrow$  specifics?

- Discussion sociological (or sociopathic)...

Rieview: Hahm, P.O.; J. Kor. Ahyo. Soc. 2018.

#### **Model Status Quo**

• Turbulence Intensity Evolution / Spreading almost always treated via  $k - \epsilon$  style:

$$\frac{\partial I}{\partial t} = \frac{\partial}{\partial r} \chi(I) \frac{\partial I}{\partial r} + \gamma(r)I - \alpha I^{1+\sigma}$$

## Nonlocality

- Key question: Flux-Gradient relation? Local?
- I(x,t),  $Q(x,t) \leftrightarrow \nabla P(x,t)$ ?
- Local vs "Nonlocal" dynamics

i.e. 
$$Q = -\kappa \nabla P$$
 vs  $Q = -\int dr' \kappa (r - r') \nabla P(r')$ 

$$\partial_t I = \gamma I - I^2$$
 vs  $\partial_t I = \int dr' \, \gamma(r - r') I(r')$ 

- Is the nonlocality <u>explicit</u> or is it due fast, local front? <u>Physics</u>?
- <u>Scale</u> of nonlocality? i.e.  $\kappa(r r'), \gamma(r r')$ ?

# Nonlocality, cont'd

- Status Quo:
  - Dynamics are non-local, albeit only weakly so
  - Scale uncertain, physics controversial
  - No clue on explicit vs implicit



# Analysis

# [N.B. Necessarily Schematic]

#### Model

• Darmet (Pellat)  $\rightarrow$  Trapped Ion DW  $\omega < \omega_{bi}$ 

$$\partial_t \bar{f} + \Omega_{\rm D} E \,\partial_\alpha \bar{f} - \left[ J_0 \phi, \bar{f} \right] = 0$$

 $\delta_b$ 

- Trapped ions ~ 2D (simple!)
- Precession(kinetics) resonance:  $\Omega_D E \partial_\alpha$  vs  $\partial_t$
- Poisson + Boltzmann Response

Polarization:  $\delta_b^2 \nabla^2 \phi$ 

• Scales: 
$$\rho_i < \delta_b < l_r \le l_s < L_T$$
  
mode spectral

#### **Moment Equations**

$$\left(\partial_t + \tilde{V} \cdot \nabla + \tilde{V}_Z \cdot \nabla\right) \left[C_i \nabla^2 \tilde{\phi}\right]$$

curvature 🔍

$$=\frac{3}{2}\Omega_D\partial_\alpha \tilde{T}_i - C_e\left(\omega - \omega_E + \frac{\omega_{*n}^i}{\tau}\right)\tilde{\phi} - C_i\tilde{V}_r\partial_\chi(\nabla^2\bar{\phi}_Z)$$

~ ala' HM, with PV conservation broken by curvature; but only linearly

 $\partial_t (C_i \nabla^2 \bar{\phi}_Z) = C_i \delta_b^2 \partial_\chi^2 \langle \tilde{V}_\chi \tilde{V}_\alpha \rangle + \text{Friction}$ 

~ N.B. Akin 2D fluid, not CHM, as usual for Z.F.

 $\rightarrow$  ~ PV Conservation, with production via curvature  $\rightarrow$  generic

### Where are we going?

· Seek intensity field, for spreading and flux

$$\partial_t \langle \tilde{\phi}_1 \tilde{\phi}_2 \rangle + \nu(1,2) \langle \tilde{u}_1 \tilde{u}_2 \rangle = \gamma(1,2) + \cdots$$

• But <u>PV</u> mixed, i.e.  $\tilde{u} = C_e \tilde{\phi} - C_i \nabla^2 \tilde{\phi}$ 

$$(\partial_t + \tilde{v} \cdot \nabla + v_Z \cdot \nabla)\tilde{u} = -\frac{3}{2}\Omega_D \partial_y \tilde{T}_i + C_i \tilde{v}_r \partial_r (\nabla^2 \langle \phi_Z \rangle)$$

• So, form  $\partial_t \langle \tilde{u}(1)\tilde{u}(2) \rangle \rightarrow \mathsf{PV}$  correlation

and then use:  $\tilde{\phi} = \int G(x, x')\tilde{u}(x')dx'$  etc.

#### **PV Correlation**

• Evolution (neglect ZF, hereafter)

$$\partial_t \langle \tilde{u}(1)\tilde{u}(2) \rangle + \partial_{r_1} \langle \tilde{v}_{r_1}\tilde{u}_1\tilde{u}_2 \rangle + \partial_{y_1} \langle \tilde{v}_{y_1}\tilde{u}_1\tilde{u}_2 \rangle + (1 \leftrightarrow 2)$$

$$= -\frac{3}{2}\Omega_D \langle \tilde{u}_2 \partial_{y_1} \tilde{T}(1) \rangle + C_i \partial_r (\nabla^2 \langle \phi_Z \rangle) \langle \tilde{u}_2 \tilde{v}_{r_1} \rangle + (1 \leftrightarrow 2)$$

```
(recall Ashourvan, P.D. 2016)
```

- Close by "2pt" quasi-linear calculation (Dupree, '72)
- As intensity field of interest (i.e. envelope), expect take  $r_{-} \rightarrow 0$ , calculate  $\langle \tilde{u}(1)\tilde{u}(2)\rangle = F(r_{+}, y_{-})$ . Departs Dupree '72

#### PV Correlation, cont'd

 $\partial_t \langle \tilde{u}_1 \tilde{u}_2 \rangle + T_r(1,2) + T_{y_-}(1,2)$ 

$$= -\frac{3}{2}\Omega_D(\langle \tilde{u}_2 \partial_{y_1} \tilde{T}(1) \rangle) + C_i \partial_r (\nabla^2 \langle \phi_Z \rangle) \langle \tilde{v}_r(1) \tilde{u}_2 \rangle + (1 \leftrightarrow 2)$$

$$T_r(1,2) = -\left(\partial_{r_1} D_{r_1,r_1} \partial_{r_1} + \partial_{r_1} D_{r_1,r_2} \partial_{r_2}\right) \langle \tilde{u}(1)\tilde{u}(2) \rangle + (1 \leftrightarrow 2)$$

 $\rightarrow$  radial scattering, focus on centroid  $r_+$  evolution

$$T_{y_{-}}(1,2) = -\frac{1}{4} \partial_{y_{-}} \left( D_{y_{1},y_{1}} + D_{y_{2},y_{2}} - D_{y_{1},y_{2}} - D_{y_{2},y_{1}} \right) \partial_{y_{-}} \langle \tilde{u}(1)\tilde{u}(2) \rangle$$

N.B. Can average over  $y_+$  !

#### **From PV to Potential**

• To derive potential correlation function evolution,

$$\int dx_1' \int dx_2' \ G(x_1, x_1') G(x_2, x_2') \ * [PV \ eqn.]$$

$$G(x, x') = \frac{\sqrt{A}}{2} \exp\left[-\sqrt{A}|x - x'|\right]$$

$$A = \frac{C_e}{C_i} \, \delta_b^{-2} = \frac{\tau}{\sqrt{2\epsilon}} \, \delta_b^{-2}$$

→ Banana width is scale of inversion, scale of "nonlocality"

- Ultimate spectral equation will involve G(x, x') with PV correlation evolution
- Banana  $\leftrightarrow$  scale  $\rightarrow$  quite modest nonlocality

#### From PV to Potential, cont'd

Potential

Spreading, convolved

$$\partial_t \langle \tilde{\phi}^2 \rangle = \frac{\sqrt{A}}{2} \int e^{-\sqrt{A}|r-r'|} \partial_{r'} \left[ 2D_0 \langle \tilde{\phi}^2 \rangle \partial_{r'} \left( \langle \tilde{\phi}^2 \rangle - \frac{\delta_b^2}{2} \partial_{r'}^2 \langle \tilde{\phi}^2 \rangle \right) \right]$$

$$+\frac{1}{2} \partial_{y_{-}} D_{y_{-},y_{-}} \partial_{y_{-}} \langle \tilde{\phi}^{2} \rangle - 3\Omega_{D} \frac{\sqrt{A}}{2} \int e^{-\sqrt{A}|r-r'|} \langle \tilde{v}_{r} \tilde{T} \rangle dr'$$

•  $\delta_b \rightarrow 0$  Relative diffusion in y de-localized growth  $\rightarrow$  small scale decay

$$\partial_t \langle \tilde{\phi}^2 \rangle = \partial_r D_{r,r} \partial_r \langle \tilde{\phi}^2 \rangle - 3 \Omega_D \langle \tilde{v}_r \tilde{T} \rangle + \frac{1}{2} \partial_{y_-} D_{y_-,y_-} \partial_{y_-} \langle \tilde{\phi}^2 \rangle$$

• Heuristics (usual)

$$\partial_t \, \varepsilon \, = \partial_x \, [(D_0 \varepsilon) \, \partial_x \varepsilon \,] \, - \gamma_{NL} \, \varepsilon^2 \ + \gamma \varepsilon$$

#### From PV to Potential, cont'd

• The <u>Answer</u>, of sorts:

- Ingredients:
  - <u>Non-local Growth</u>:  $G * \{\gamma_L(r)\langle \tilde{\phi}^2 \rangle\}$

$$- \underline{\text{Non-local Nonlinear Diffusion}}: G * \left\{ \frac{\partial}{\partial r} \left[ 2D_0 \langle \tilde{\phi}^2 \rangle \frac{\partial}{\partial r} \left( \langle \tilde{\phi}^2 \rangle - \frac{\delta_b^2}{2} \frac{\partial^2}{\partial r^2} \langle \tilde{\phi}^2 \rangle \right) \right] \right\}$$



#### **Results – Model**

• Intensity Eqn. ↔ Delocalized nonlinear Fisher Eqn. (Hahm, P.D., Gurcan, ...)

$$\partial_t \langle \tilde{\phi}^2 \rangle = G * [\text{NL Diffusion}] + G * \{ \gamma_L(r) \langle \tilde{\phi}^2 \rangle \} - \frac{D_0}{l_r^2} \langle \tilde{\phi}^2 \rangle^2$$
  
Nonlocal Growth

- What's <u>New</u> and <u>Important</u>?
  - Nonlocal Growth !
  - Explicit Nonlocality

- PV inversion is origin of explicit non-locality
- Range:  $\delta_b$  (modest)

### Results, cont'd

- Heuristics of Waltz, Candy ('05) on utility of non-local growth model vindicated
- N.B. Here: Physics, Scale determined
- Non-local growth is <u>dominant</u> effect
- NLG accelerates:
  - Front propagation
  - Penetration of stable region from unstable reservoir (connects stable, unstable)
- Speed fits Fisher, with  $\delta_{b*}$  correction

## **Bigger Picture / Conclusion**

- Yet another example of utility of PV ...
- Nonlocality is <u>explicit</u>
- Nonlocality exists, but is modest
  - $\rightarrow$  Appears conventional wisdom of 'weakly non-local' dynamics on target
  - → But now have Physics mechanism and scale / range
  - $\rightarrow$  N.B. : Weakly non-local  $\neq$  Q.L. !

Intensity evolution is crucial constituent for calculating fluxes

# **Ongoing and Future Plans**

- Dispense with  $\langle \phi \phi \rangle$ , calculate flux evolution, i.e.  $\partial_t \langle \tilde{v}_r \tilde{T} \rangle$  ...
  - ➔ jams

Ongoing

- Nonlocality scale of  $\delta_b$  suggests that explicit nonlocality <u>much</u> stronger for energetic particles
  - → EPM spreading fertile territory !?
  - → Models for burning plasma ?!