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Why? - Heat, Momentum Transport meet �𝑩𝑩𝟐𝟐

• Electron thermal transport is usual focus

• But    𝐸𝐸𝑟𝑟 = 𝛻𝛻𝑃𝑃𝑖𝑖
𝑛𝑛𝑛𝑛

− 1
𝑐𝑐
𝑣𝑣 × 〈𝐵𝐵〉

 Ion heat and parallel momentum transport?

• Relevance:

– Intrinsic rotation  pedestal torque with RMP?

– L-H threshold with RMP

– Island induced ITB

– Density limits

𝑣𝑣𝐸𝐸 ′ heat, particles
⊥, ∥ flows



Conventional Wisdom I
• Finn, Guzdar, Chernikov ‘92 (FGC)  canonical “ref.(1)”

– 𝑛𝑛𝑖𝑖 , 𝑉𝑉∥ evolution in stochastic fields - motivated by rotation damping due EML - (TEXT)

– Mean field eqns:

𝜕𝜕𝑡𝑡 𝑉𝑉∥ + 𝜕𝜕𝑟𝑟 �𝑉𝑉𝑟𝑟 �𝑉𝑉∥ = − 1
𝜌𝜌
𝜕𝜕𝑥𝑥 �𝑏𝑏𝑟𝑟 �𝑃𝑃  kinetic stress

𝜕𝜕𝑡𝑡 𝑃𝑃 + 𝜕𝜕𝑟𝑟 �𝑉𝑉𝑟𝑟 �𝑃𝑃 = −𝜌𝜌 𝑐𝑐𝑆𝑆2 𝜕𝜕𝑟𝑟 �𝑏𝑏𝑟𝑟 �𝑉𝑉∥

– QL for ‘acoustic wave response’ for �𝑃𝑃𝑖𝑖 , �𝑉𝑉∥

 viscous relaxation time 𝜏𝜏𝑙𝑙 ∼ 𝑐𝑐𝑠𝑠 𝐷𝐷𝑀𝑀 / 𝑙𝑙2 −1

𝐷𝐷𝑀𝑀 = ∑𝑘𝑘 𝑏𝑏𝑘𝑘 2𝜋𝜋 𝛿𝛿 𝑘𝑘∥ ,  ala’  RSTZ ’66

i.e.  ‘acoustic’ propagation along stochastic field



Conventional Wisdom I, Cont’d

• Nit 

– Why bother with acoustics ?  static problem

𝐵𝐵 ⋅ 𝛻𝛻 �𝑉𝑉∥ + �𝐵𝐵 ⋅ 𝛻𝛻 𝑉𝑉∥ = 0 and linear response  kinetic stress

𝑃𝑃 similarly

• Issue: Structure of fluxes?  Non-Diffusive !

�𝑏𝑏𝑟𝑟 �𝑃𝑃 = −𝐷𝐷𝑀𝑀
𝜕𝜕
𝜕𝜕𝑟𝑟

𝑃𝑃 , �𝑏𝑏𝑟𝑟 �𝑉𝑉∥ = −𝐷𝐷𝑀𝑀
𝜕𝜕
𝜕𝜕𝑟𝑟

𝑉𝑉∥

 Residual Stress,      Convection / Pinch

drives 𝑉𝑉∥ Pinch for 𝑃𝑃 ─  driven by 𝑉𝑉∥ ′

kinetic stress



More Conventional Wisdom II: Kinetic Stress and Rotation

𝜕𝜕𝑡𝑡 𝑉𝑉∥ + 𝜕𝜕𝑟𝑟 �𝑉𝑉𝑟𝑟 �𝑉𝑉∥ = −
𝑐𝑐𝑠𝑠2

𝜌𝜌
𝜕𝜕𝑥𝑥 𝑏𝑏𝑟𝑟𝑃𝑃

• W.X. Ding, et. al. PRL ’13 – MST Rotation Studies

– Linked plasma flows in RFP to kinetic stress, via direct measurement

– Mean flow profile tracks profile of  𝛻𝛻 ⋅ (kinetic stress)

“kinetic stress”

 Rare and compelling insight into the

fluctuation ↔ rotation connection!

i.e. microscopic ↔ macroscopic link

N.B.  RFP is exceptionally good example of 

stochasticity in fusion plasmas

*



What ? – the Issue

• How calculate the kinetic stress ?

• In QL approach, ala’ FGC, seek:

𝛿𝛿𝑃𝑃 ~ �𝑏𝑏𝛿𝛿𝑃𝑃/𝛿𝛿𝑏𝑏 ⇒ �𝑏𝑏𝛿𝛿𝑃𝑃 ~ 𝑏𝑏2

But What is in 𝛿𝛿𝑃𝑃/𝛿𝛿𝑏𝑏 ?

• In any relevant case, especially prior to LH transition, turbulence will co-

exist with stochastic field

So

• Need calculate kinetic stress in presence of turbulence



What ? Cont’d
• Two ‘dual’ analyses:

– Reynolds stress, etc. in background 〈𝑏𝑏2〉 Chen et. al., this meeting

– Kinetic stress, pinch in �𝑉𝑉⊥2 background  here

• Expect significant departure from FGC, and from standard quasilinear theory

• Implicit:  Statistics �𝑏𝑏, �𝑉𝑉⊥ assumed independent

�𝑏𝑏 → RMP induced

�𝑉𝑉 → drift waves

TBC later  see Mingyun Cao, this meeting

• In spirit of resonance broadening, but juicier…



The Physics

• 𝑐𝑐𝑠𝑠 �𝑏𝑏𝑟𝑟 𝜕𝜕 𝑃𝑃 /𝜕𝜕𝜕𝜕 𝛿𝛿𝑃𝑃 – localized slug of pressure

Tweaking field line produces localized pressure perturbation

• How is pressure balanced along field line? – two possibilities

i) Build parallel pressure gradient

𝛻𝛻∥𝛿𝛿𝑃𝑃 ~ − �𝑏𝑏𝑟𝑟 𝜕𝜕𝑟𝑟 𝑃𝑃  FGC

or

ii) Drive parallel flow, damped by turbulent mixing/viscosity due 〈 �𝑉𝑉⊥2〉

−𝜈𝜈𝑇𝑇𝛻𝛻⊥2𝛿𝛿 �𝑉𝑉∥ ~ − 𝑏𝑏𝑟𝑟 𝜕𝜕𝑟𝑟 𝑃𝑃

𝛿𝛿𝑃𝑃

𝑖𝑖∥

𝛿𝛿𝑃𝑃

𝛻𝛻∥𝛿𝛿𝑃𝑃

= 𝜈𝜈𝑇𝑇 𝛻𝛻⊥2𝛿𝛿𝑉𝑉∥

or ?

Critical comparison:

𝑐𝑐𝑆𝑆𝑘𝑘∥ vs 𝑘𝑘⊥2𝐷𝐷𝑇𝑇

vs.

𝑃𝑃(𝜕𝜕)

𝜈𝜈𝑇𝑇 is to be calculated

𝛿𝛿𝑃𝑃



The Crank

• Start from 𝜕𝜕𝑡𝑡𝑉𝑉∥ , 𝜕𝜕𝑡𝑡𝑃𝑃 equations

• Seek �𝑏𝑏𝑟𝑟 �𝑃𝑃 , 〈�𝑏𝑏𝑟𝑟 �𝑉𝑉∥〉

• Follow ‘quasilinear’ approach, BUT

• Posit an ambient ensemble of drift waves, so �𝑉𝑉⊥2 specified

Assume �𝑉𝑉⊥2 , �𝑏𝑏𝑟𝑟2 quasi-Gaussian and statistically independent

• Calculate responses 𝛿𝛿𝑃𝑃 = 𝛿𝛿𝑃𝑃/𝛿𝛿𝑏𝑏𝑟𝑟 �𝑏𝑏𝑟𝑟 and 𝛿𝛿𝑉𝑉∥ = 𝛿𝛿𝑉𝑉∥/𝛿𝛿𝑏𝑏𝑟𝑟 �𝑏𝑏𝑟𝑟 (to close fluxes),    

by integration over perturbed trajectories, ala’ Dupree ‘66

• 𝛿𝛿𝑃𝑃/𝛿𝛿𝑏𝑏𝑟𝑟 is statistically averaged, nonlinear response



The Answer: Note turbulence-induced gradient couplings !

�𝑏𝑏𝑟𝑟 𝛿𝛿𝑃𝑃 = −�
𝑘𝑘

𝑏𝑏𝑟𝑟,𝑘𝑘
2 1

𝑘𝑘⊥2𝐷𝐷𝑇𝑇 2 + 𝑘𝑘∥2𝑐𝑐𝑠𝑠2
𝜌𝜌𝑐𝑐𝑠𝑠2𝑘𝑘⊥2𝐷𝐷𝑇𝑇

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑉𝑉∥ − 𝑖𝑖𝑘𝑘∥𝑐𝑐𝑠𝑠2
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑃𝑃

�𝑏𝑏𝑟𝑟𝛿𝛿𝑉𝑉∥ = −�
𝑘𝑘

𝑏𝑏𝑟𝑟,𝑘𝑘
2 1

𝑘𝑘⊥2𝐷𝐷𝑇𝑇 2 + 𝑘𝑘∥2𝑐𝑐𝑠𝑠2
𝑐𝑐𝑠𝑠2𝑘𝑘⊥2𝐷𝐷𝑇𝑇

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃 − 𝑖𝑖𝑘𝑘∥𝑐𝑐𝑠𝑠𝑏𝑏𝑟𝑟,𝑘𝑘𝑐𝑐𝑠𝑠

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑉𝑉∥

𝐷𝐷𝑇𝑇 ≡ �〈 �𝑉𝑉𝑟𝑟 �𝑉𝑉𝑟𝑟〉𝑑𝑑𝑑𝑑

─  (kinetic stress)

─ (convection)

─                               electrostatic turbulent diffusivity 

─  Response Function:  1 / 𝑘𝑘∥2𝑐𝑐𝑆𝑆2 + 𝑘𝑘⊥2𝐷𝐷𝑇𝑇 2

─  Order of limits important to recover QL results



The Physics, cont’d
• Limits

𝑘𝑘∥𝑐𝑐𝑠𝑠 > 𝑘𝑘⊥2𝐷𝐷𝑇𝑇  weak e.s. turbulence   -- narrow regime validity
n.b. role of anisotropy ! – contrast micro-instability c.f. Lu Wang

�𝑏𝑏𝑟𝑟𝛿𝛿𝑃𝑃 ≈ −𝐷𝐷𝑀𝑀 𝜕𝜕〈𝑃𝑃〉/𝜕𝜕𝜕𝜕,  �𝑏𝑏𝑟𝑟𝛿𝛿𝑉𝑉∥ ≈ −𝐷𝐷𝑀𝑀𝜕𝜕〈𝑉𝑉∥〉/𝜕𝜕𝜕𝜕

Recovers FGC.  Relevance limited

• 𝑘𝑘⊥2𝐷𝐷𝑇𝑇 > 𝑘𝑘∥𝑐𝑐𝑆𝑆  robust electrostatic turbulence (as for pre-transition)

�𝑏𝑏𝑟𝑟𝛿𝛿𝑃𝑃 ≈ −𝐷𝐷𝑠𝑠𝑡𝑡 𝜕𝜕〈𝑉𝑉∥〉/𝜕𝜕𝜕𝜕 , �𝑏𝑏𝑟𝑟𝛿𝛿𝑉𝑉∥ ≈ −𝐷𝐷𝑠𝑠𝑡𝑡𝜕𝜕〈𝑃𝑃〉/𝜕𝜕𝜕𝜕

 Viscosity!  Thermal diffusivity

𝐷𝐷𝑆𝑆𝑇𝑇 = �
𝑘𝑘

𝑐𝑐𝑠𝑠2 𝑏𝑏𝑟𝑟,𝑘𝑘
2/ 𝑘𝑘⊥2𝐷𝐷𝑇𝑇

• Structure of    correlator    change !
fluxes

*



The Physics, Cont’d

• Stochastic viscosity/diffusivity is hybrid

𝐷𝐷𝑇𝑇 = �
𝑘𝑘

𝑐𝑐𝑠𝑠2 𝑏𝑏𝑟𝑟,𝑘𝑘
2/ 𝑘𝑘⊥2𝐷𝐷𝑇𝑇

• Pure ‘stochastic field’ analysis irrelevant to any state with finite ambient 

electrostatic turbulence,  c.f.  𝑘𝑘∥𝑐𝑐𝑆𝑆 vs  𝑘𝑘⊥2𝐷𝐷𝑇𝑇

• Easily extended to sheared magnetic geometry, etc

i.e.   key:      𝑤𝑤𝑘𝑘 vs     𝑋𝑋𝑠𝑠 = 1/𝑘𝑘∥′𝑐𝑐𝑆𝑆𝜏𝜏𝑐𝑐𝑘𝑘
𝑤𝑤𝑘𝑘 > 𝑋𝑋𝑠𝑠  weak scattering

𝑤𝑤𝑘𝑘 < 𝑋𝑋𝑠𝑠  strong scattering
Spatial spectral width Acoustic point (analogous 𝑋𝑋𝑖𝑖)

Magnetic scattering, 

with 𝜏𝜏𝑐𝑐𝑘𝑘 set 

by electrostatics 



Comments re: Theory
• Yes, resonance broadening, but no – not ‘the usual’

 structure of flux modified – residual stress to viscosity

• Infrared behavior of wave number spectrum important !

– Low k cut-off 𝑏𝑏𝑟𝑟𝑘𝑘
2 ?

– Not resolved trivially, by geometry

– Similar: Taylor, McNamara ‘72  cut-off and ‘locality’ ?!

– ExB shear, even if sub-BDT, can set cut-off   ZF generation will enter.…

N.B.:

– For ZF case, comparison is 𝑘𝑘⊥2𝐷𝐷𝑇𝑇 vs  𝑘𝑘∥𝑉𝑉𝐴𝐴 W.T. regime relatively more robust

– See Samantha Chen, next talk

𝑘𝑘⊥

𝑏𝑏𝑘𝑘⊥
2



Conclusions

• Pure stochastic models of limited utility for momentum, ion heat, etc.

• Need analyze stochastic field effects in presence of turbulence

• In practice, kinetic stress is stochastic field - induced

viscous stress  significant drag on rotation

• 𝐷𝐷𝑆𝑆𝑇𝑇 = 𝑐𝑐𝑠𝑠2 ∑𝑘𝑘 𝑏𝑏𝑟𝑟,𝑘𝑘
2/ 𝑘𝑘⊥2𝐷𝐷𝑇𝑇  (hybrid) stochastic field viscosity

• See Beyer, et. al. (2000) for hints from simulations



Open Issue

• Development of Correlation?  (see Mingyun Cao)

– are �𝑏𝑏, turbulence uncorrelated ?      as assumed…

– No interaction develops �𝑏𝑏 �𝜙𝜙 ≠ 0  electrostatics ‘lock on’ to �𝑏𝑏

– ala’ Kadomtsev – Pogutse, impose 𝛻𝛻 ⋅ 𝐽𝐽 = 0 to all orders

– novel small scale convection cell, related to �𝑏𝑏 structure

Ongoing …



Open Issue, Cont’d

• Elucidate kinetic stress contribution to intrinsic torque, with RMP. 

Determine flux-gradient relation

• Beyond diffusion – Fractional kinetics with Pdf( �𝑉𝑉, �𝑏𝑏) ?            

How formulate?
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