Layering or Homogenization - A Matter of Time ?!

P.H. Diamond

U.C. San Diego AAPPS-DPP (菊池祭) 2021

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

"Key Physics of Staircase Formation via Simple Examples"

 \rightarrow N.B. All herein assembled from <u>single eddy</u> and static superposition there of

→ c.f. X. Fan, P.D., Chacon, Phys Rev E (Rap. Comm) 2017F. Ramirez, P.D., ongoing

Staircase and Layering

 Old story in fluid dynamics, c.f. 1972 O.M. Phillips "Turbulence in a strongly stratified fluid – is it unstable?"

. . .

- \rightarrow transport bifurcation from modulation
- Popular in M.F.E. especially for color picture from 3D Gyrokinetic

Simulations (see this meeting)

Suggested ideas:

- Zonal flow eigenmode
- ExB shear feedback, predator-prey
- · Jams (Kosuja, PD, Guran)

Staircase and Layering, cont'd

- <u>But</u>... basic, minimal physics questions unanswered
- Clue: Staircase formation, dynamics captured in ultra-simple mixing model with 2 scales

```
Balmforth et. al. '98 (BLY)
Kinetic Energy
Density
<u>Ozmidov</u> Scale
```

Ashourvan, P.D., 2016 (AD) Guo et. al. 2018 Potential Enstrophy Density Flow Shear Rhines Scale

• N.B. Non-trivial element is <u>emergent</u> scale Ozmidov, Rhines

Some Questions

How does staircase beat homogenization?

(i.e. Prandtl – Batchelor Theorem)

• Does the staircase beat homogenization?

 \rightarrow Or does mixing win, eventually ... ?

- Is the staircase a meta-stable state?
- What is the minimal set of scales to recover layering?

What of a Single Eddy?

Flux Expulsion

Simplest dynamical problem in MHD (Weiss '66, et. seq.)

Closely related to "PV Homogenization" - 2D Fluid

➢ Field wound-up, "expelled" from eddy

➢ For large Rm, field concentrated in boundary layer of eddy

➤Ultimately, back-reaction asserts itself for sufficient B₀

➤End state: Mixing

Simple Description:

after n turns: nl=L

 \rightarrow Flux conservation: B₀L \sim bl Wind up: b=nB₀ (field stretched)

► Rate balance: wind-up ~ dissipation

 $(L/V_0)R_m$

 L^2/η - diffusion

$$\frac{v}{L}B_0 \sim \frac{\eta}{l^2}b \, \cdot \, \tau_{expulsion} \sim \left(\frac{L}{v_0}\right)Rm^{1/3}.$$

$$l \sim \delta_{BL} \sim L/Rm^{1/3} \, \cdot \, b \sim Rm^{1/3}B_0 \, \cdot$$
Sweet-Parker!
$$\frac{L/V_0 - \text{eddy rotation}}{(L/V_0)R_m^{1/3} - \text{expulsion}}$$

What's the Physics? – Shearing + Dissipation!

Shear dispersion! (Moffatt, Kamkar '82, Dupree '66)

$$\partial_t A + \vec{v} \cdot \nabla A = \eta \nabla^2 A$$
then $v_y = v_y(x) = v_{y0} + xv'_y + \cdots$ (shearing coordinates)

$$\frac{dk_x}{dt} = -k_y v'_y, \frac{dk_y}{dt} = 0 \quad (k \text{ tilts})$$

$$\geqslant \partial_t A + xv'_y \partial_y A - \eta (\partial_x^2 + \partial_y^2) A = 0$$

$$A = A(t) \exp i(\vec{k}(t) \cdot \vec{x}); A = A(0) \exp \left[-\frac{k_y^2 V_y'^2 \eta t^3}{3}\right]$$

$$\geqslant \tau_{mix} \cong \tau_{shear} Rm^{1/3} = (v'_y)^{-1} Rm^{1/3}$$
N.B.: Shear promotes mixing!

Prove it ! (Prandtl, Batchelor)

 $\begin{aligned} \partial_t A + \vec{v} \cdot \nabla A &= \nabla \cdot (\eta \nabla A) \\ t \to \infty \\ \int_{A_n} \vec{v} \cdot \nabla A d^2 x &= \int_{A_n} d^2 x \nabla \cdot \eta \cdot \nabla A \\ \text{LHS} &= \int_{A_n} d^2 x \nabla \cdot [\vec{v}A] = \int dl \, \hat{n}_{C_n} \cdot (\vec{v}A) = 0 \end{aligned}$

 $\hat{n} \cdot \vec{v} = 0$, by definition

 $A \rightarrow \text{const}$ within C_0 as $t \rightarrow \infty$, nested streamlines

RHS =
$$\int_{C_n} dl \eta \, \hat{n} \cdot \nabla A = \int_{C_n} dl \eta \, \hat{n} \cdot \nabla \phi_n \, \delta A / \delta \phi_n$$
, any n

Prove it, cont'd

So RHS =
$$\eta \frac{\delta A}{\delta \phi_n} \int dl \, \hat{n} \cdot \nabla \phi_n$$

RHS = 0, for all n $\rightarrow \frac{\delta A}{\delta \phi} = 0$

- \rightarrow So A mixed, homogenized
 - $\nabla A \rightarrow \vec{B}$ expelled to boundary

 \rightarrow N.B.:

- Critical elements: conservative dissipation

nested closed streamlines

- Proof not reveal time scale ! 4----

A <u>Very</u> Small Upgrade:

Passive Cahn-Hilliard Advection

A Brief Derivation of the CHNS Model

Second order phase transition \rightarrow Landau Theory. Crder parameter: $\psi(\vec{r},t) \stackrel{\text{def}}{=} [\rho_A(\vec{r},t) - \rho_B(\vec{r},t)]/\rho$

A Brief Derivation of the CHNS Model

Continuity equation:
$$\frac{d\psi}{dt} + \nabla \cdot \vec{J} = 0$$
. Fick's Law: $\vec{J} = -D\nabla\mu$.
Chemical potential: $\mu = \frac{\delta F(\psi)}{\delta \psi} = -\psi + \psi^3 - \xi^2 \nabla^2 \psi$.
Conservative

 \succ Combining above \rightarrow Cahn Hilliard equation:

$$\frac{d\psi}{dt} = D\nabla^2 \mu = D\nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi)$$

 $\mathbf{\hat{v}}d_t = \partial_t + \vec{v} \cdot \nabla. \text{ Surface tension: force in Navier-Stokes equation:} \\ \partial_t \vec{v} + \vec{v} \cdot \nabla \vec{v} = -\frac{\nabla p}{\rho} - \psi \nabla \mu + \nu \nabla^2 \vec{v}$

For incompressible fluid, $\nabla \cdot \vec{v} = 0$.

Passive C-H Advection

• $\partial_t \psi + \vec{v} \cdot \nabla \psi = \nabla \cdot D\nabla \delta F(\psi) / \delta \psi = D\nabla^2 (-\psi + \psi^3 - \varepsilon^2 \nabla^2 \psi)$

single eddy, sheared flow, prescribed, ala' expulsion

'anti-diffusion' phase separation hyper-diffusion (regularization)

- $P_e = VL/D \gg 1$, $C_h = \varepsilon/L \ll 1$
- two free energy minima + anti-diffusion
- no feedback of ψ on flow, No 'turbulence'
- minimal upgrade of scalar problem...

Set Up

Single Eddy Mixing -- Cahn-Hilliard

> 3 stages: (A) the "jelly roll" stage, (B) the topological evolution stage, and (C) the target pattern stage. > ψ ultimately homogenized in slow time scale, but metastable target patterns formed and merge.

ightarrow clear distinction between reconnection and target phase

Single Eddy Mixing, cont'd

- Layered state persists exponentially long time
- Layer mergers episodic, related to dips in elastic energy
 time
- Long the mergers occur in axisymmetric, azimuthally homogenized state
- → Staircase here is meta-stable state

End State – Full Mixing

- end state homogenized
- exponentially long time scale

- Dirichlet B.C.
- → Meta-Stable staircase ultimately <u>decays</u>

Prove it II

 $F = \varepsilon^2 \nabla^2 \psi$

• From before:

$$\begin{split} 0 &= \int_{C_n} dl \ D \ \hat{n} \cdot \nabla [-\psi + \psi^3 - \varepsilon^2 \nabla^2 \psi] \\ &= \int_{C_n} D \hat{n} \cdot \nabla \psi \ [-1 + 3\psi^2] \ - \int dl \ D \hat{n} \cdot \nabla F \\ &= \int_{C_n} dl \ D \hat{n} \cdot \nabla \phi_n \left\{ [-1 + 3\psi^2] \frac{\delta \psi}{\delta \phi_n} - \frac{\delta F}{\delta \phi_n} \right\} \\ \text{as } F &= F(\psi) \\ &= \int_{C_n} dl \ D \ \hat{n} \cdot \nabla \phi_n \ \left[-1 + 3\psi^2 - \frac{\delta F}{\delta \psi} \right] \ \delta \psi / \delta \phi_n \end{split}$$

So
$$\frac{\delta\psi}{\delta\phi_n} = 0$$
, all $n \rightarrow \underline{\text{homogenization again}}$. Time scales?

Partial Summary

- Passive CH Flow
 - Conservative, anti-diffusion, 2 free energy minima

→ Simple system

- Generates axisymmetric layered target
- 2 time scales for ~ homogenization
- Layered state meta-stable, long time scale coarsening
- Ultimately homogenized...

Cellular Array

Homogenized Vortex as Transport Barrier !?

• PV Homogenization

- Boundary
 - Strong PV gradient

2 scales: *L*,
$$L/Re^{1/3}$$

 C_0

 C_0 - bounded closed

streamline

 $\tau \sim \tau_{rot} R e^{1/3}$

- Layer width ~ $L / Re^{1/3}$
- Strong memory ("Rossby wave elasticity) $\omega \approx k_x \nabla q/k^2$
- Eddy boundary is transport barrier
 - → Layering in array of cells ?!

Consider Cellular Lattice

- Marginally overlapping cells (G.I. Taylor, Moffat, <u>Rosenbluth</u>, Shraiman, ...)
 - Stationary cell pattern
 - Two time rates: V_0/l_0 , D_0/l_0^2
 - $-P_e = V_0 l_0 / D_0 \gg 1$
- Effective diffusivity? Transport

Isichenko '92

- Key Physics
 - irreversibility localized to inter-cell boundary
 - global transport hybrid \int

fast rotation in cell <u>slow</u> diffusion in BL

Estimating *D_{eff}* - Key Physics

- $D_{eff} \approx f_{active} \left[(\Delta x)^2 / \Delta t \right]$ fraction of space <u>active</u> in transport
- Boundary Layer
- $\delta^2 \sim D_0 \Delta t \sim D_0 l_0 / V_0$
- $\delta \sim (D_0 l_0 / V_0)^{1/2}$

N.B. Not simple addition of processes

• $D_{eff} \sim \left(\frac{\delta}{l_0}\right) \left(\frac{l_0^2 V_0}{l_0}\right) \sim (D_0 D_{cell})^{1/2} \sim D_0 (P_e)^{1/2}$ intermediate result

What does the Profiles Look Likes?

- Have $D_{eff} \sim D_0 \, [Pe]^{1/2}$ but, $\begin{cases} 2 \text{ time scales} \\ \text{averaging} \end{cases}$
- Consider concentration of injected scalar

c.f. "Steep transitions in the density exist between each cell."

Confirms that staircase arises in stationary array of passive eddys

What of Interest?

- Relevant to key question of "near marginal stability"
 - $V_0 l_0$ as turbulence
 - D_0 as neoclassical, ambient
- Contrived Not so clear! tracks conventional picture
 - Fixed cells pinning at $\vec{k} \cdot \vec{B}_0 = 0$ surfaces
 - $-\Delta r/L_{\perp} \ll 1 \text{small }
 ho_*$

- <u>barely</u> overlapping cells \leftrightarrow near marginality

N.B. $D_{eff} \sim (D_0 D_{cell})^{1/2}$, not sum

- Layering as natural outcome in quasi-marginal state with 2 time scales

A Variation → <u>Transverse Shear Flow</u>

• To explore key role of time scale separation, add transverse shear

i.e.
$$\phi = \sin\left(\frac{\pi x}{d}\right) \sin\left(\frac{\pi \beta y}{d}\right) + \alpha \phi_{shear} \quad \phi_{shear} = -\cos\left(\frac{mx}{2}\right)$$

• 2 Peclet numbers

$$P_e = V_0 l_0 / D_0 \rightarrow d / D_0$$

$$P_{es} = V' / \left(\frac{D_0}{l_0^2}\right) \rightarrow \alpha m^2 d^2 / D_0$$

• Shear dispersion time scale:

$$\frac{1}{\tau_{SD}} = \left(\frac{D_0 V'^2}{l_0^2}\right)^{1/3} \Rightarrow \text{ effective mixing time}$$

Transverse Shear Flow, cont'd

- $\frac{1}{\tau_{SD}} > \frac{D_0}{l_0^2} \Rightarrow V' > \frac{D_0}{l_0^2}$ shear dispersion gives effective mixing rate faster than diffusion
- Then supercritical shear → irreversible mixing outside inter-cell boundary layer
- Conjecture here that shear flow actually <u>weakens</u> staircase, by reducing slowfast time scale ratio !
- → Tests 'two scale' notion

Shear cont'd – System with Drive

Flows

Concentration Profile (y-avg.)

Supports conjecture !

 $\alpha = 4$

- Staircase for V' = 0
- For $Pe_{sh} \gg 1$ corrugation decays
- Net particle confinement degrades

Partial Conclusions II

- Staircase appears in stationary passive cellular array with diffusion at $Pe \gg 1$
- Simple consequence of two time scales, well separated, and their interplay in transport. Expulsion → transport barrier
- Relevant to "marginally overlapping cells", "near marginality"
- Enhanced shear mixing reduces $\tau_{slow}/\tau_{fast} \rightarrow$ degrades corrugation, staircase

Ongoing

- Noisey deposition
- Irregular cells
- Finite τ_c , statistical distribution

. . .

General Conclusions

- Two <u>very</u> simple system {
 Passive CH
 Cell Arrav
- Two different stationary <u>passive</u> scalar cell problems manifest staircase
- Two disparate time scales interact in each case

→

• Layering is ubiquitous and to be expected in multi-scale problems!

Shameful Advertising

- For more on layering and staircases, from a broad perspective, see:
- <u>https://online.kitp.ucsb.edu/online/staircase21/</u>

Kavli Inst. Program Staircase 21

Supported by:

US DOE Award # DE-FG02-04ER54738