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“Key Physics of Staircase Formation via Simple Examples”

- N.B. All herein assembled from single eddy and static

superposition there of

- c.f. X. Fan, P.D., Chacon, Phys Rev E (Rap. Comm) 2017

F. Ramirez, P.D., ongoing



Staircase and Layering

« OlId story in fluid dynamics, c.f. 1972 O.M. Phillips “Turbulence in a strongly

-~

stratified fluid — is it unstable?”

-> transport bifurcation from modulation

» Popular in M.F.E. — especially for color picture from 3D Gyrokinetic

Simulations (see this meeting)

Suggested ideas:

@

« Zonal flow eigenmode

ExB shear rate yg !

» ExB shear feedback, predator-prey
« Jams  (Kosuge, PO, G witan)

Turbulence drive: RIL,

100 120 140 160
Normalized radius: r/p,



Staircase and Layering, cont’d

« But... basic, minimal physics questions unanswered

* Clue: Staircase formation, dynamics captured in ultra-simple mixing model

with 2 scales
/‘

Balmforth et. al. ‘98 (BLY) Ashourvan, P.D., 2016 (AD)
Kinetic Energy Guo et. al. 2018
Density Potential Enstrophy
Ozmidov Scale Density

Flow Shear

Rhines Scale

* N.B. Non-trivial element is emergent scale Ozmidov, Rhines



Some Questions

* How does staircase beat homogenization?
(i.e. Prandtl — Batchelor Theorem)

* Does the staircase beat homogenization?
- Or does mixing win, eventually ... ?

* |s the staircase a meta-stable state?

« What is the minimal set of scales to recover layering?



Part I:

What of a Single Eddy?



Flux Expulsion

»Simplest dynamical problem in MHD (Weiss ‘66, et. seq.)

» Closely related to “PV Homoge

» Field wound-up, “expelled” from eddy

nization
By ‘
\
AT \
-
~ i
Rm~vL/n > 1

” - 2D Fluid

n.b. sheared flow

» For large Rm, field concentrated in boundary layer of eddy

» Ultimately, back-reaction asserts itself for sufficient B,

» End state: Mixing

Bo

By




Simple Description:

B, b
after n turns:
) nl=L
L . il

»Flux conservation: B,L~bl Wind up: b=nB, (field stretched)

» Rate balance: wind-up ~ dissipation

v n L _
ZBO ~ l_zb - Texpulsion ™~ (U_o) Rm1/3. N.B. differs from

- I
[ ~ SBL ~ L/Rm1/3 b~ le/SBO - Sweet-Parker!

L/V, - eddy rotation
—> Time scales: (L/VO)R,ln/3 ~ expulsion
L# /n - diffusion

<




What's the Physics? — Shearing + Dissipation!

» Shear dispersion! (Moffatt, Kamkar '82, Dupree '66)
0,A+v-VA=nV?A

then v, = v,(x) = vyy + xvy, + -+ (shearing coordinates)
dhx _ g SRy _ | .
= kyvy , pral 0 (ktilts)

> 0, A + xvy,0,A — (37 +95)A =0
A=A() expi(k(t)-%); A = A(0) EXp[ Vy = ]

1/3_
> Tmix = TshearRm _( y )Rm

N.B.: Shear promotes mixing!



Prove it ! (Prandtl, Batchelor)

0, A+T-VA=V-@VA) Lo
t > oo .'I \

\ Cy |
fAnﬁ - VAd?x = fAn d*xV -n-VA N ///

> A - t
LHS = [, d*xV-[vA] = [dlf, - (¥A) = 0 Withi;‘g;sast L
nested streamlines

i - v = 0, by definition

RHS = [ dlna-VA= [, dinf-V,54/8¢,, anyn



Prove it, cont’d

So RHS=77857A [dlA- Vo,

Y

I
RHS =0, foralln = i 0

- So A mixed, ,@mogeniz@.
VA — B expelled to boundary
->N.B.:
- Critical elements: conservative dissipation

nested closed streamlines

- Proof not reveal time scale ! 44—



A Very Small Upgrade:

Passive Cahn-Hilliard Advection




A Brief Derivation of the CHNS Model

»Second order phase transition = Landau Theory.

> Order parameter: (7, t) & [pa(7,t) — pg (T, t)]/p
»Free energy:

62
Fw0=fdﬂ—Q¢”+(mﬁ+~—Ww)

| !
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04t
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binary mixture

T>Tc

-1.5\ -10 -05

Phase Transition Gradient Penalty o2k
> Cl (T), CZ (T) . 02

—04Ff

»lsothermal T < T..Set C, = —C; = 1:

2
F(y) = jdﬂ——¢2+ ¢4+54mm>

4
1.5
T<Tc
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A Brief Derivation of the CHNS Model

» Continuity equation: ﬂ +V f = 0. Fick’s Law:f = —-DVu.
> Chemical potential: 4 = 665;)/)) —) + 3 — E2T 4. Conservative

»Combining above = Cahn Hilliard equation:

W = DV2u = DV3(—p + - £272)

»d; = 0, + v - V. Surface tension: force in Navier-Stokes equation:

IR Vp 5
atv+v-l7v:—7—1/)\7u+vl7 %

> For incompressible fluid, V - v = 0.

14



Passive C-H Advection

0 +7-Vip =V -DVSF() /5P = DV2(—yp + 3 — £2V?)

e

. el
single eddy, sheared flow, ‘anti-diffusion’ phase hyper-diffusion
prescribed, ala’ expulsion separation (regularization)

|

P,=VL/D>»1, C, =¢/L K1

two free energy minima + anti-diffusion

——

no feedback of ¥ on flow, No ‘turbulence’
— —D

minimal upgrade of scalar problem...
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Single Eddy Mixing -- Cahn-Hilliard

» 3 stages: (A) the “jelly roll” stage, (B) the topological evolution stage, and (C) the target pattern stage.

» 1 ultimately homogenized in slow time scale, but metastable target patterns formed and merge.

A: Jelly : B: reconnection :
roll P | -
|
0.2 0000 | o4 ~ 8 o4 “| 0
> 0.0 Q gggg —0.4-0.20.0 0.2 0.4 —0.4-0.20.0 0.2 0.4 0782
70'4—0.4»0.2040 0.2 0.4 70‘006' 0.4} (b) t:70 0.8 (f) t:400 —0.4-0.20.0 0.2 0.4 o
(@t=10 . (h) t=4000
1
I ) —0.4-0.20.0 0.2 0.4 e ~0.4-0.20.0 0.2 0~4 I —0.40.20.0 0.2 04 —1.00
1 (c) t=75 (e)t=85 |  (g)t=1500
» Additional mixing time emerges. Note coarsening!

Tmix ~ To /Pe_l/SC,f/5 &> shear + hyper-diffusion

- clear distinction between reconnection and target phase



Single Eddy Mixing, cont’'d

T
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« Layered state Eer3|sts exponentially long time

» Layer mergers episodic, related to dips in elastic energy
Yime
- Longtie mergers occur in axisymmetric, azimuthally homogenized state

=» Staircase here is meta-stable state




End State - Full Mixing

0.8

T * end state homogenized

0.2 _ _

0.0 « exponentially long time scale
—0.2

—-0.4

—0.6

—0.8

—0.4-0.20.0 0.2 0.4
x

* Dirichlet B.C.

+ => Meta-Stable staircase ultimately decays



Prove it |l

* From before:

0= fcn dlD 7 - V[—y + 3 — 2V 2y]

F = &?V%y
:anDﬁ-th [—1+3y?] — [dLDA-VF
A~ O6F
= J,, AL DA - Ve, {[-1+ 392 2 — 1]
as F =FQ)
= [, diD RV, |=1+39* — 52| 59/5¢,

So ;Tw = 0, all n > homogenization again. Time scales?
n




Partial Summary

Passive CH Flow

— Conservative, anti-diffusion, 2 free energy minima
= Simple system

Generates axisymmetric layered target

2 time scales for ~ homogenization

Layered state meta-stable, long time scale coarsening

Ultimately homogenized...



Part Il:

Cellular Array



Homogenized Vortex as Transport Barrier !?

* PV Homogenization

Co Co Co - bounded closed
) @ streamline
« Boundary 1/3

T~ T,rotRe

— Strong PV gradient

2 scales: L, L/Re'/3

— Layer width ~ L / Re'/3
— Strong memory (“Rossby wave elasticity) w = k,Vq/k?

« Eddy boundary is transport barrier

=» Layering in array of cells ?!



Consider Cellular Lattice

« Marginally overlapping cells (G.l. Taylor, Moffat, Rosenbluth, Shraiman, ...

— Stationary cell pattern

— Two time rates: V,/l,, Dy/13
N Isichenko ‘92
— P =Vylo/Dy > 1 ‘ @

N =S

S =N

D @ O ‘

N \ A . A i

. R 8\ 4

NN N\ —r?Y NN Nt
D

» Effective diffusivity? Transport

 Key Physics

— irreversibility localized to inter-cell boundary

— global transport hybrid fast rotation in cell
slow diffusion in BL



Estimating D.¢s - Key Physics

Deff % factive [(Ax)z/At]

/ Lo

fraction of space active

in transport
< L >
Boundary Layer |
6 — boundary layer width
8% ~ DyAt ~ Dyly/Vy lo — cell size
N.B. Not simple !

- 1/2
& ~ (Dolo/Vo) » addition of processes

8\ (V. : .
Defr ~ ( ) (0—0) ~ (DoDeer)Y? ~ Dy(P,)*/? intermediate result

Z lo



What does the Profiles Look Likes?

1/2 2 time scales
* Have Dy ~ Do [Pe] but, averaging

« Consider concentration of injected scalar

injection

n

o)
Je

» Layering/Staircase !

/" <3 > Simple consequence of two rates __
, oy <:| - See Rosenbluth, et. al. ‘87, Shraiman ‘87

0 d 2d 3d

c.f. “Steep transitions in the for detailed analysis
density exist between each cell.”

» Confirms that staircase arises in stationary array of passive eddya



What of Interest?

» Relevant to key question of “near marginal stability”
— Vyl,y as turbulence
— D, as neoclassical, ambient

» Contrived — Not so clear! — tracks conventional picture
— Fixed cells — pinning at k- B, = 0 surfaces

— Ar/L; & 1-small p,

— |barely overlapping cells |« near marginality

NB Deff ~ (DODcell)l/Z’ nO’[ sum
» Layering as natural outcome in quasi-marginal state with 2 time scales

- Consider irregular staircases (c.f. Guo, et. al. ‘18) == Tpcn  GHass Z



A Variation 2 Transverse Shear Flow

» To explore key role of time scale separation, add transverse shear

i.e. ¢ = sin ( - ) sm( gy) + & snear Pshear = — COS (%)
« 2 Peclet numbers
Pe - VOlO/DO - d/DO
P=V"/ (%) - am?d?/D,
0

» Shear dispersion time scale:

1 DoV'? 1/3 . . .
:( : ) = effective mixing time
TSD Lo



Transverse Shear Flow, cont’d

1 0

D D . . . . . .
—> l—f => V'> 2 shear dispersion gives effective mixing rate faster than
SD 0 0

diffusion

» Then supercritical shear = irreversible mixing outside inter-cell boundary layer

>

« Conjecture here that shear flow actually weakens staircase, by reducing slow-

fast time scale ratio !

=» Tests ‘two scale’ notion



Shear cont’d - System with Drive

Flows

Concentration Profile (y-avg.) a=4

10 Wshear(m = 2)

“I N - Staircase for V' =0
-' For Peg, » 1 corrugation decays
- Net particle confinementggg_@g_qg_

(n)y

0.4

0.2

i

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Supports conjecture !



Partial Conclusions Il

Staircase appears in stationary passive cellular array with diffusion

at Pe > 1

Simple consequence of two time scales, well separated, and their

interplay in transport. Expulsion = transport barrier

Relevant to “marginally overlapping cells”, “near marginality”

Enhanced shear mixing reduces 7, /7rqs¢ 2 degrades

corrugation, staircase



Ongoing

* Noisey deposition
* |rregular cells

* Finite 7., statistical distribution



General Conclusions

Passive CH
Cell Array

» Two different stationary passive scalar cell problems manifest

« Two very simple system {

staircase
« Two disparate time scales interact in each case

>

« Layering is ubiquitous and to be expected in multi-scale problems!

]




Shameful Advertising

« For more on layering and staircases, from a broad

perspective, see:

* https://online.kitp.ucsb.edu/online/staircase21/

Kavli Inst. Program Staircase 21
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