# How Flux Jams and Layering, Re-visited

P.H. Diamond<sup>(1)</sup> and Y. Kosuga<sup>(2)</sup>

(1) U.C. San Diego(2) Kyushu University

Dewar Session AAPPS-DPP (菊池祭) 2024 This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

# Isaac Newton Institute, 2024 Jan. → June

"Anti-Diffusion: From Sub-Celluar to Astrophysical Scales"

Focus on: Layering, Staircases etc.

- Bob Dewar participated as long stay member
- See INI program web-pages for Dewar Memorial Session
- This talk  $\rightarrow$  developing idea from INI

# **Origins of Layering and Staircases**

- <u>Bistable Mixing</u>  $\leftarrow \rightarrow$  2 Mixing Lengths
  - emergent scale (Rhines, Ozmidov etc.)
  - nonlinear flux-gradient curve
  - MFE barriers, ZF etc.
- <u>Phase Separation</u>  $\leftarrow \rightarrow$  ala' spinodal decomposition
  - cf Pandit '23 plenary CHNS

#### - jamming as trigger

- MFE: heat flux jams Kosuga, P.D., Gurcan PRL 2013
- Homogenization
  - Cells, etc. which don't overlap
  - sharpening, inhomogeneous mixing

# Focus: Jamming as Layering Trigger. How to Jam?

- MIPS: "Mobility-Induced Phase Separation"
  - <u>M. Cates</u>, J. Tailleur 2013, 2015 et. seq.
  - also M. Cates, Inaugural Lecture, Lucasian Professorship
- Active Fluids
- "Self-propelled particles tend to accumulate where they move more slowly. This creates positive feedback, which can lead to MIPS between dense and dilute phases."

#### How to MIPS?

• C + T: Speed  $V(\rho)$ , Density  $\rho$ 

s/t 
$$\frac{dV/d\rho}{V} < -\frac{1}{\rho}$$
 i.e. speed should decrease as density rises

• Reminiscent of Lighthill + Whitham criterion for <u>Backward Shock</u> in kinematic wave (Traffic):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} [\rho V(\rho)] = 0, \qquad V > 0$$

$$\frac{\partial \rho}{\partial t} + c(\rho) \frac{\partial \rho}{\partial x} = 0 \qquad c(\rho) = \delta(\rho V(\rho)) / \delta \rho < 0$$

$$\frac{dV/d\rho}{V} < -\frac{1}{\rho}$$

# 2 Types of Shocks – Sign of $\delta\Gamma(\rho)/\delta\rho$

- Forward (usual)
  - $-\,dC_s(\rho)/d\rho>0$
  - $-\,\delta\Gamma\,/\delta\rho>0$



- Backward
  - traffic bottleneck/jam
  - $\rightarrow$  Jams, MIPS  $\delta\Gamma / \delta\rho < 0$



 Whitham: "Individual cars can move faster than the waves, so that a driver enters such a local density increase from behind; he must decelerate rapidly though the shock..."

# **Approaches to Jams**



#### **Heat Flux Jams**

• Conventional Picture (PD, Hahm '95, after Hwa, Kardar)

```
\partial_t \delta T + \partial_x Q(\delta T) = \tilde{s}Q(\delta T) = c \delta T^2 - D_0 \partial_x \delta TQ_T(\delta T)
```

satisfies Q invariant under  $\delta T \leftrightarrow -\delta T$ ,  $x \leftrightarrow -x$ , but no jams!

• 
$$Q_T(\delta T) = \frac{c\delta T^2}{1+\sigma(\delta T)^{2\alpha}}$$
 will work for  $\alpha > 1$ 

- "perturbative bistability"  $\rightarrow$  in  $\delta T$ , not  $\langle T \rangle$ '
- no time delay necessary, no need evolve Q explicitly
- reminiscent of Hinton '91

#### Heat Flux Jams, cont'd

• For  $\delta Q/\delta(\delta T) < 0$ 

$$\frac{\delta Q}{\delta(\delta T)} = \frac{c\delta T}{1 + \sigma(\delta T)^{2\alpha}} \left[ \frac{1 - (\alpha - 1)\sigma\delta T^{2\alpha}}{1 + \sigma(\delta T)^{2\alpha}} \right]$$

• will have  $\delta Q/\delta(\delta T) < 0$  for:

 $-\alpha > 1$ 

$$-\delta T > \delta T_{crit} = (1\sigma/(\alpha-1))^{1/2\alpha} \rightarrow$$
 Jamming threshold

• Realizes MIPS in heat flux, for critical avalanche size

### Heat Flux Jams, cont'd

- 'Perturbative bistability' arguably <u>simplest</u> jam mechanism
- Tracks intuition from experience with transport barriers

New twist: $\delta T_{crit}$ 

• Consequence of breaking of rescaling invariance of  $Q(\delta T) - 2$  branches



Branch Crossing  $\leftarrow \rightarrow$  Jam Formation

# **Jamming Locations?**

•  $\sigma = \sigma(x) \rightarrow$  i.e. shearing profile !?



- So  $\delta T_{crit}$  defined by peaks in  $\tilde{\sigma} \rightarrow$  jamming locations
- $\tilde{\sigma}/\sigma_0$ ,  $\tilde{\sigma}(x)$  profile  $\leftarrow \rightarrow$  staircase ?!

### Next: Jam feedback ?!

- shearing field → jam location
- Jams nucleate barriers
- barriers  $\leftarrow \rightarrow$  gradient  $\rightarrow$  shear -

Does jam array ultimately lock on to  $\tilde{\sigma}(x)$  i.e. ZF modulation pattern?

# Thank You !