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Wake-Classic Example of Turbulence Spreading

laminar

Similarity Theory
Mixing Length Theory }
W~(Fd/pU2)1/3X1/3,
Fy~CppU?A;

wake
turbulence

Cp independent of viscosity at high Re

—>  Physics: Entrainment of laminar region by expanding turbulent region.
Key is turbulent mixing. => Wake expands

—>  Townsend ’49:

— Distinction between momentum transport — eddy viscosity—and fluctuation
energy transport
— Failure of eddy viscosity to parametrize spreading

* 2 .
<Vp:erZ > —> spreading flux FOM See Ting Long for measurement
>

— Jet Velocity: V =



Spreading in MFE Theory

—> Numerous gyrokinetic simulations L. €.
N.B. Basic studies absent ... 0, =y&(1 — &)+0,D(§)0,&+Dy0,%¢
—> Diagnosis primarily by: - color VG y~0(¢)

- tracking of “Front”

=> Theory = Nonlinear Intensity diffusion models
—- Reaction-Diffusion Equations - especially Fisher + NL diffusion
=> Continuum DP Models - Later......

Recently:
—> Renewed interest in context of 1, broadening problem, cf. P.D., Z. Li, Xu Chu

=>  Simulations measure correlation of spreading (V. #p) with A, broadening, cf. N. Li +
=> Intermittency effects T. Wu, P. D. + 2023, A. Sladkomedova 2024
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Especially blobs, voids



Spreading Studies - Numerical Experiments

—> 2D Box, Localized Stirring Zone
—» “beach”

= stirring zone

b ) b ) b )
V4 Y4 Y 4
a 1" 1" L'} L' — “beach”
—> | Comparison of:

Selective Decay, Vortices

2D Fld How to Measure Spreading?
2D MHD with weak B, perp. Al_fvenization_, Vortex
— Bursting, Zeldovich number
mm) Forced Hasegawa-Mima with Zonal Flow Waves + Eddies + ZF

Multiple regimes and Mechanisms
N.B. Clear distinction between “spreading” and “avalanching”



Numerics: 2D Dedalus simulation

- Dedalus Framework

Box Characteristics:
analogous to BOUT++

- Grid Size: 512x512
- Doubly Periodic boundary condition, beach regulates expansion

Forcing Characteristics:

Superposition of Sinusoidal Forcing, vorticity

Spectrum: Constant E(k), ensuring uniform energy distribution across wave numbers.
Correlation Length: Approximately 1/10 of the box scale, some room for dual cascade.
Localized through a Heaviside step function.

Phase of forcing randomized every typical eddy turnover time



Summary: 2D Fluid + 2D MHD Studies (R.X., P.D. submitted ‘24)

« Spreading mediated by dipole vortices

2 components
— Free flyer vortices

— Turbulent gas/patch
 Wrr ~ t (ballistic) — expansion of turbulent layer by dipoles
« FOM - Enstrophy distribution
* No clear ‘front’ - fractalization

« Weak transverse B-field can disrupt vortices, terminate ballistic spreading
» Zeldovich # is good FOM Z = R,,V;o/Vuay » Z > 1 for disruption

« Disrupted vortices = Alfven waves



Forced Hasegawa — Mima + Zonal Flows




H-M + Zonal Flow System

— System: PV forced
|
2§ - p? VL¢)+v*—¢+ Vi, ‘gf 2 p2(5, V) + V272 () + F -Waves, Eddys
49,59 voxzv
it ot gy bx2z:

- Vid, + (erlqb) + uv2¢, = 0 -Zonal Flow (Axisymmetric)

N.B. ¢,=¢,(x), only. N.B. : Electrons Boltzmann for waves, not for Zonal Flow

— viscosity controls small scales
— drag controls zonal flow - u (large scale)

— conserved: Energy_’(d)z + pé (Vfl)) +< ps(Vp,)* >
Potential Enstrophy — <(¢> — p2V%¢) > +< (p2V2¢,)?% >

Waves ZF
N.B. Energy, Pot Enstr. exchange between Waves and ZF possible.



H-M + Zonal Flow System, cont’d - channels

5 Now-: waves w = w,/(1+kips), vy
eddies 7 {5 VS v, —
zonal mode (symmetry) | mixing length

e = Energy Flux has { Yk Vgr (K)§) — 2" order in ed/T
two components: (#-§) —» 3 order in e/T

N.B. 2 channels for “turbulence spreading” Waves/\Wave transport

Turbulent mixing
-Branching ratio, vs. Ku number ?

- Multiple channels rarely discussed together



Channels, cont’d:

—> Spreading in presence of fixed, externally prescribed shear layer
Waves
Eddies

. [forcing (7,5, Re) + drag = control parameters

—> Here: — Forcing —>{ } — Zonal flow (self-generated)

— “weak” and “strong” Turbulence Regimes

/V coherency factor

> Ku <= 2ndys 3 order energy flux

Ac
\AA

(D)) VyTef
V4 VS VU > >
gr r Dk vgr(k) Sk

c~Vgrilc
—> Ku <1 - wave dominated spreading

Ku > 1 — mixing dominated spreading — ~ 2D fluid

—> Dipoles gone — density gradient 10



Channels, cont’d

But — Enter the ZONAL FLOW

— Multiple channels for NL interaction Waves: p ) o
— But with ZF <= eddy, wave coupling to ZF dominant - o (1 KLpIP=.cne
— ZF is the mode of minimal inertia, damping, transport ' 9 10 o=

It (krps)dz =......

= energy coupled to ZF (7. = 0) cannot “spread”,
unless recoupled to waves

[ [l [ [ [ T

\ \ \ \ \ |74

|

1

2 2 2 B TR gr :
mom flux

R s ) ] mom flux !
[} “ “ [} [} .

— Degradation of ZF (back transfer) is crucial to spreading

— .. u must regulate spreading. What of u — 0 regimes?

—> Reuvisit collisionless NL dissipation problem



FOM — Fluctuation Potential Enstrophy Flux

Results
0.04
»
o 0.03
/," 0.02
K o .
W - 0.01 :> averaged spatially and
g  0.00 temporally

i Turbulent Mixing

0.0
0.1
“Dimits” Regime / A 0.2 002544
g Mty 03 . o000 ¥ U

Potential enstrophy flux generally increases as drag increases. “Dimits regime”
for turbulence spreading. Spreading diminishes with power coupled to Z.F. (Fixed,

spatially)
— Z.FE. is self-generated barrier to spreading
— For Aincreasing, PE flux rises sharply for weak ZF damping. Fate of ZF?

“KH-type” mechanism loss of Dimits regime at higher A? Characterization??

N.B. “Dimits Regime”= Condensation of energy into ZF for weaker forcing.
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Results, Cont’'d
Wave Energy Flux Wave Energy Fqu<—aa—(f|7¢> — > Vg (K)E)

for drift waves

— Dimits regime at low forcing and ZF damping

—Increases with ZF damping and forcing amplitude
W s.0150
— Dominant K,, increases due ZF decorrelation ,;/ 0.0125X
— Spectrum condensation towards low k with inverse cascade 9, :)"0;;)32;,
! 0
/ 1]
P 4 ! 0.00505
-4 R 0.0025
: .. S .
implication for v, and Y, v, (k)Ej
R

— Take note of increasing W.E.flux as u — 0,
A increases.

Physics: ZF shears refract waves
13



Results, Cont’d

T—Cf where A~ < K2 >71/2
Cc

Kubo Number zonal_velocity

0.0 ;
0.1 0.050 & 0.2 :
Plityge 03 0.4 01;)(')(())25""< Plituce, g P00
Fluctuation intensity increases Zonal velocity decreases with increasing drag
as drag increases, A increases (clear)

Kubo # tracks mixing
Control parameters set Ku
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—Spreading and Fate of Zonal Flows

— Spreading rises for increased forcing,
even foru —» 0

— Dimits regime destroyed. How?

= NL back-coupling from ZF necessary
for spreading in systems with ZF

— Animal Hunt for linear instabilities(KH, Tertiary ...) seems pointless in turbulence

. OV
— Instead, Pre = —(VV}) - 8—; = Power transfer [fluctuations — flow]
Pp. < 0 : Wave — ZF transfer

Pr. > 0 : ZF - Wave transfer = ZF decay

15




Aside:

— Of course, evokes ‘happy memories’ of studies of limitation of Dimits shift

in G.K.
— But mere identification of ‘Tertiary Instability’, “R-K.” etc not useful

— Seek insight to and quantification of return of energy from Z.F. to

turbulence, as control parameters scanned = Reynolds Power density
— Goal is nonlinear ZF decay model for improved Predator-Prey system

N.B. Reynolds power density used widely in data analysis

16



Quantifying Wave-ZF

_2

1/2 % Y —wy < Vg Uy > —drag * ]73,2

ot

/

Reynolds power

We quantify ZF - Waves Power Transfer as
the ratio of the area above the axis to mean
work done on the zonal flow.

N.B.:

av,
Or

‘Turbulent viscosity’ model fails capture 2 signs

PRe — _<ﬁﬁ> )

Mean

Power transfer

Reynolds Work as a Function of Time

%00 1 = Reynolds power

=== Average Reynolds work
200 4

100 A

\0‘

-100 1

——_

-200 4

-300 A1

~400 -

1000 1250 1500 1750 2000

Time Snapshot

250 500 750

Reynolds power vs time
Pr. < 0 = Wave — ZF transfer

Pr. > 0 = ZF - Wave transfer

Positive Reynolds power spikes - zonal flow vortex shedding events ?!



Results, Cont’d

Pr. ratio vs ZF damping

0 Amplitude 0.3

0.30 1

0.25 1

S 0.20 4
[}

Dimits Regime !

0.10 q

KHI Rati

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
ZF Damping

— The ratio generally decreases as a function of ZF damping
Damped Zonal Flow More Stable.

~. Fewer Re spikes, as fewer vortex shedding events



Results, Cont’d, P,, Ratio vs Forcing Strength

Pr. ratio vs forcing amplitude

Preliminary
— Explore other FOMs

-
-
—
-
—
—

Reynolds Work Ratio

/
0.00F &------ ¢

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Forcing Amplitude

— The ratio increases as a function of forcing strength

— Indicates that re-coupling of ZF energy to turbulence increases for stronger forcing
— This approach avoids instability morass - amenable to parametrization

=» Significant nonlinear recoupling of energy to waves
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Pr. Ratio vs A, u

Instability Ratio vs Amplitude and ZF Damping
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- P, back transfer increases with forcing, and as u decreases

- Further analysis required
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Related Problem: Jet Migration(Laura Cope)

i.e.-Here: &

—> turbulence patch propagates,
drags ZF/Jet along, by generation

Near, but not at, Dimits regime?

- There: —> Jet migrates
but Migration enabled by dynamics of fluctuation
field, especially zonon

——> Zonon - low mode # fluctuation co-located with Z.F.
—> necessary broken symmetry - propagation

Variee ~ 1°7€%3  Microscopics?
21



So Jet Velocity 1?

— As waves/eddys drag along zonal flow, Jet velocity(ala’ Townsend) is related to

Jet Migration.

SO
— Enstrophy Jet Velocity?! Vier = (vy1i%)/(ii%) - not experimentally accessible

Enstrophy Jet Velocity vs Amplitude and ZF Damping
-e- Amplitude 0.0125 Long +

-®- Amplitude 0.0250 Vjet — (Urﬁ2>/<ﬁ2>

Amplitude 0.0500
Amplitude 0.1000
0.0 -@- Amplitude 0.2000

- - Now familiar trends

. - Seems semi-quantitatively consistent with Cope results.

22




Summary - Drift Wave Turbulence

— Spreading fluxes mapped in forcing, ZF damping parameter space

— Dominant mechanism «—Ku (waves vs mixing) , Both waves and mixings in play.
What of Ku ~ 17 Interplay ?!

— Dimits-like regime discovered. Stationary ZF pattern.

— ZF disruption and quenching intimately linked to spreading

— Pp, > 0 bursts track breakdown of Dimits regime and onset turbulent mixing
Spreading increases.

— Pp, > 0 bursts likely due vortex shedding by zonal flows 53



—General Summary

— Coherent structures dipoles frequently mediate spreading

«—— underpin “ballistic scaling”
— Spreading dynamics non-diffusive; Conventional wisdom

misleading, or worse.

— In DWT, wave propagation and turbulent mixing both drive spreading

— ZF quenching critical to spreading in DWT. Power
coupling most useful to describe ZF quench.

— Closely related to jet migration.
24



So: “ The more things change, the more they stay
the same” - J.-B. Karr (1984)

 Collisionless, nonlinear damping/saturation of Z.F. remains poorly

understood.

* Little progress beyond linear zoology, circa 2000. “Undead” theoretical

guestion.

* Improved confinement in N.T. is related (R. Singh, P.D. submitted ‘24).
Collisionless GK for ITG using GENE =

NT enhanced confinement <-> ZF resiliency

25



Zonal ExB shearing rates: spatiotemporal features
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* Spatiotemporal patterns are highly sensitive to §.
* Spatiotemporal shearing pattern more coherent for NT than for PT.
* Propagating shearing fronts — dispersive feature for § = 0! Front speed ~ 2.25p,v¢y,.

* More coherent spatiotemporal shearing pattern for NT — Stronger mean shearing effect
for NT.

Does NT reduce power transport out of Z.F.? 26
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Figure of Merit
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—Future Plans

— High resolution studies
— Understand ZF quenching physics and calculate power recoupling
— What is physics of Pr,>0 bursts? - shedding? — how quantify?

— Spreading vs Avalanching. Relative Efficiency? Spreading and Transport?

More general:
— Is spreading mechanism universal? Seems unlikely
— Towards a model... Ku~1 is an interesting challenge
— Relation/connection of DW+ZF spreading and Jet Migration (L. Cope)
— Is Directed Percolation of any use in this?
Details-??
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