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 Or…

“How the Birth and Death of Shear Layers 

Determines Confinement Evolution:

From the LH Transition to the Density Limit”

 See as above, P.D. et al Phil Trans Roy Soc 381 (OV thru 2022)

 Many refs. throughout



• Collaborators:

Rameswar Singh, Ting Long, Rongjie Hong, Rui Ke, Zheng Yan, 

George Tynan, Rima Hajjar

• Ackn: 

Peter Manz, Martin Greenwald, Thomas Eich, Lothar Schmitz, 

Andrew Maris, …



N.B. : Why Study Density Limits?

• Constraint on operating space

• Fusion power gain ~ 𝑛2

• Attractive feedback loop ?! :

𝑃𝑓𝑢𝑠𝑖𝑜𝑛 ~ 𝑛2

𝑛𝑚𝑎𝑥 ~ 𝑃𝑖𝑛
𝛼

(0 < 𝛼 < 1)



Caveat Emptor

• Dual/Mixed theoretical and experimental approach

• Emphasis on dynamics, micromacro connection etc., not scalings

• Emphasis on L-mode density limit

• N.B. Negative Triangularity (NV) experiments open new roads forward 

(c.f. Sauter, Hong + DIII-D, submitted)

• DL as confinement transition  exploit LH experience



42 Years of H-mode – Lessons (1982 )
• Saved MFE from Goldston scaling

• Introduced transport barrier, bifurcation  state ‘phases’ and transitions

• Role of flow profile in confinement (BDT ’90)

• Dynamical feedback loops  Predator-Prey cycles, Zonal flows, etc. 

(PD+’94,05; K-D ‘03)

• Consequences of marked transport reduction

 Strong interest in turbulent pedestal states

• Applications elsewhere  Density Limit

N.B. Inhibition of LH for sufficient NT poses challenge to LH model



Preview: A Developing Story

From Linear Zoology to Self-Regulation and its Breakdown

(Drake and Rogers, PRL, 1998) (Hajjar et al., PoP, 2018, et. seq)

Secondary modes and states of particle confinement

• 𝛼𝑀𝐻𝐷 = −
𝑅𝑞2𝑑𝛽

𝑑𝑟
→ ∇P and ballooning drive 

to explain the phenomenon of density limit.
• Invokes yet another linear instability of RBM.
• What about density limit phenomenon in 

plasmas with a low 𝛽?

L-mode: Turbulence is regulated by shear flows, but not 
suppressed.
H-mode: Mean ExB shear ↔∇pi suppresses turbulence and 
transport.
Density Limit: High levels of turbulence and particle 
transport, as shear flows collapse.

Mean ExB shear
𝛻Pi/n

CDW   𝛼 > 1

Barrier
EM CDW

RBM

i.e. Shear Flow:       Density Limit                L-mode               H-mode
Weak (none)                 Modest                 Strong     Mean

> >< <

1-mode per
regime

𝛼 > 1
Weak damping

𝛼 < 1
or damped

Unified 
Picture 

Edge shear – as – order parameter

𝛼 < 1

I-mode

LDL as a “back-transition”!?

𝛼𝑑 =
𝑘∥
2𝑉𝑡ℎ𝑒

2

𝜔𝜈



Outline

• Density Limit Phenomenology 

 Phases and Transitions of Edge Plasma

• Some Theoretical Matters 

 Shear Layers and Their Degradation

• Power  Separatrix Heat Flux Scaling of Density Limit: Dynamical Signatures

• Recent Developments

• To the Future

• Thoughts for ABOUND



Phases and Transitions of the Edge Plasma 

and

Density Limit Phenomenology



A Brief History of Density Limits
 Conventional Wisdom

• Greenwald ത𝑛𝐺 ~ 𝐼𝑝/ 𝜋𝑎
2 (dimensions?)

• High density  edge cooling (transport?!)

• Cooling edge  MARFE (Multi-faceted Axisymmetric Radiation 

from the Edge) by Earl Marmar and Steve Wolfe

MARFE = Radiative Condensation Instability in Strong 𝐵0

after G. Field ’64, via J.F. Drake ‘87 : Anisotropic conduction is key

• MARFE  Contract J-profile  Tearing, Island …  Disruption

after: Rebut, Hugon ‘84, … , Gates …

• But: more than macroscopics going on… 



• Conventional Wisdom: Radiation + MHD  (Rebut  Gates…)

• Argue: Edge Particle Transport is fundamental

– ‘Disruptive’ scenarios secondary outcome, largely consequence of edge cooling,

following fueling vs. increased particle transport  “Causality” issue

– ത𝑛𝑔 reflects fundamental limit imposed by particle transport

• An Important Experiment (Greenwald, et. al. ‘88)
– Density decays without disruption after 

shallow pellet injection

– ത𝑛 asymptote scales with 𝐼𝑝

– Density limit enforced by transport-

induced relaxation

– Relaxation rate not studied

– Fluctuations?
(Alcator C)

𝑡

ത𝑛𝑒



• Shear layer impacts/regulates edge turbulence even in Ohmic/L-mode, enhanced in H-mode

• Ritz, et. al. 1990

 Role of Shear Layer in LDL ?

Title: “Evidence for Confinement Improvement by Velocity Shear Suppression of Edge Turbulence”

n.b. not H-mode!

𝑣𝑝ℎ - closed

𝑣𝑝𝑙 - open

density 𝑉′

Shear layer

Peak

correlation

Shear Layer in L-mode? – Universal Feature of Edges



Toward Microphysics: Recent Experiments - 1
(Y. Xu et al., NF, 2011)

• Decrease in maximum correlation value of LRC 
(i.e. ZF strength) as line averaged density ത𝑛
increases at the edge (r/a=0.95) in both 
TEXTOR and TJ-II.

• The reduction in LRC due to increasing density 
is also accompanied by a reduction in edge 
mean radial electric field (Relation to ZFs).

Is density limit related to edge shear decay?!

Yes !

LRC vs ത𝑛

ത𝑛

See also: Pedrosa ‘07, Hidalgo ‘08 …

Reynolds work (Flow production) drops as 𝑛 → 𝑛𝐺 (Hong+ ’18)



Fluctuation + 𝒏/𝒏𝑮 𝒔𝒄𝒂𝒏, R. Hong et. al. (NF 2018)

• Joint pdf of ෨𝑉𝑟 , ෨𝑉𝜃 for 3 densities, ത𝑛 → 𝑛𝐺

• 𝑟 − 𝑟𝑠𝑒𝑝 = −1𝑐𝑚

• Note: 

– Tilt lost, symmetry restored as ത𝑛 → ത𝑛𝑔

– Consistent with drop in 𝑃𝑅𝑒 observed

Weakened shear flow 

production by Reynolds stress

as 𝑛 → 𝑛𝐺

Distribution

Fluctuating

Velocities



Reynolds Power (Flow Production)

• Studies of 𝑃𝑅𝑒 = − ෤𝑣𝑟 ෤𝑣𝜃 𝜕〈𝑉𝐸〉/𝜕𝑟 vs  𝑛/𝑛𝐺

𝛼 = 𝑘∥
2𝑉𝑡ℎ𝑒

2 /𝜔𝜈
Particle flux

surges for 𝛼 > 1

𝑃𝑅𝑒 drops for 𝛼 < 1

Is DL evolution linked to degradation of edge shear layer ?



An In-depth Look at More Recent Experiments

Ting Long, P.D. et. al.   2021 NF

Rui Ke, P.D., T. Long et. al. 2022 NF

N.B. These experiments are ‘theoretically motivated”



J-TEXT  – Ohmic

• 𝐵𝑇 ~ 1.6 − 2.2 𝑇
𝑛

𝑛𝐺
~0.7 𝑛𝐺 ~ 6.4 → 9.3 × 1019𝑚−3

• 𝐼𝑝 ~ 130 − 190 𝑘𝐴 ത𝑛 ~ 2.0 − 5.3 × 1019𝑚−3

• Principal Diagnostics: Langmuir Probes

– Shear layer collapses as 𝑛/𝑛𝐺 increases

– Turbulence particle flux increases

– Reynolds stress decays

– Velocity fluctuation PdF  symmetry

(2)

(3)

(1)

Black - 0.3𝑛𝐺
Blue - 0.34𝑛𝐺
Green - 0.6𝑛𝐺
Red - 0.63𝑛𝐺



Mean-Turbulence Couplings

• In standard CDW model:

Production ≡ Input from 𝛻𝑛

𝑃𝐼 = −𝑐𝑠
2 ෨𝑉𝑟𝛿𝑛

1

𝑛0

𝜕 𝑛

𝜕𝑟

Reynolds Power ≡ Coupling to Zonal Flow

𝑃𝑘 = − ෨𝑉𝑟 ෨𝑉𝜃 𝑉𝐸
′

– Reynolds power drops as 𝑛/𝑛𝐺 rises (see Hong+,’18)  (2)

– 𝑃𝑘/𝑃𝐼 drops as 𝑛/𝑛𝐺 rises (3)

Fate of the Energy ?

Where does it go?

𝛿𝑛 = ෤𝑛/𝑛0 (1)

(2)

(3)



Fate of the Energy ?
• Turbulence Energy Budget

𝜕𝜀

𝜕𝑡
+

𝜕

𝜕𝑟
𝑣𝑟𝜀 = 𝑃𝐼 − Dissipation

𝜀 = 𝜀𝑘 + 𝜀𝐼 𝜀𝐼 =
𝑐𝑠
2

2
෤𝑛/𝑛0

2

• Then 𝑃𝑆  Power coupled to fluctuation energy flux  Turbulence 

spreading

𝑃𝑆 = −𝜕𝑟 ෤𝑣𝑟𝜀𝐼 = −𝜕𝑟 ෤𝑣𝑟 ෤𝑛
2𝑐𝑠

2 /2𝑛2

Triplet

Spreading

Production

Turbulence Spreading Power

• Turbulence Spreading encompasses “Blob” and “Void” propagation 

(Internal Energy)



Fate of the Energy, Cont’d
• Turbulence Spreading !

– Reynolds power drops

– 𝑃𝑠 increases;  transitions 𝑃𝑠 < 0 to 𝑃𝑠 > 0

• Where does the shear layer energy go?

𝑃𝑘/𝑃𝐼 𝑝𝑒𝑎𝑘 × 𝑃𝑠/𝑃𝐼 𝑝𝑒𝑎𝑘 ~ 0.3, 0.5, 0.4, 0.4 × 10−3 as 𝑛/𝑛𝐺 ↑

≈ constant

Energy diverted from shear layer to spreading at LDL

• N.B. Recent result (Long + 2024, submitted): 𝛿(spreading flux) is more robust 

indicator of DL then 𝛿(particle flux)



Characteristics of Spreading

• Low frequency content of 

ሚ𝐼𝑠𝑎𝑡/𝐼𝑠𝑎𝑡 increases

• ሚ𝐼𝑠𝑎𝑡 autocorrelation time 

increases

Pdf ሚ𝐼𝑠𝑎𝑡 developes positive 

skewness as 𝑛/𝑛𝐺 increases

(1) (2) (3)(2)

(1)

(3)

See also T. Long, P.D.+ submitted 2023 for ෤𝑛 skewness  spreading correlation
and inout symmetry breaking



Characteristics of Spreading, Cont’d

• Enhanced turbulent particle transport events accompany LDL back transition

• Events are quasi-coherent density fluctuations. Diffusive model of spreading 

dubious

• Localized over-turning events, small avalanches, “blobs”, …

N.B. “The limits of my language means the limits of my world.”

- Ludwig Wittgenstein
• Blob ejection  recycling  cold neutral influx  cooling + MHD trigger



Is there a key parameter? – Adiabaticity!

• Adiabaticity  𝛼 = 𝑘∥
2𝑉𝑡ℎ𝑒

2 /𝜔𝜈

𝛼 drops < 1 as 𝑛/𝑛𝐺 increases

• 𝑉𝐸
′ rises with 𝛼 ↑

𝜏𝑎𝑐 decreases with 𝛼 ↑

𝜎( ሚ𝐼)/𝐼 decreases with 𝛼 ↑

𝑃𝑠/𝑃𝐼 decreases with 𝛼 ↑

N.B. 𝑘∥ = 1/𝑅𝑞 assumed



The Obvious Question

• Can driving the shear layer sustain high densities, where LDL, otherwise ?

• “Driving”           bias electrode – here (J-TEXT). Not a conventional H-mode

• Long history of bias-driven shear layers in LH saga – R.J. Taylor, et. seq.

• Recent: Shesterikov, Xu et. al. 2013 - Textor

• Electrode  𝐽𝑟 → 𝑉𝜃 → 𝑉𝐸
′ etc.

• New Here? 

– High Density

– Gas Puffing  push on DL

– Analysis

c.f. Rui Ke, P.D. + NF 2022



The Answer – Looks Promising!

• Edge density doubled for +240V bias

• ത𝑛max,bias > ത𝑛max,float

• Note:  ത𝑛max,float ~ 0.7𝑛𝐺

Experiment limited by graphite probe sputtering

• Key parameter?

– 𝛼 systematically higher with +bias

– 𝛼 ~ 𝑇2/𝑛

• Turbulence spreading quenched by positive bias
Reduced transport  higher T



The Physics

• Edge Shear Layer produced for +bias

N.B. Not an 𝐸𝑟 well

• Reynolds stress, force increase for +bias

 bias effect on eddy alignment

“Shearing”  interplay of bias and Reynolds stress



The Physics

• 𝛿𝐼/𝐼 (→ ෤𝑛/𝑛) fluctuations sharply reduced 

by +bias

• Turbulence spreading quenched by +bias



Key Parameter vs Control Parameters

• 𝛼 vs 𝜔𝑠ℎ𝑒𝑎𝑟 exhibits hysteresis loop

• Cntr clockwise rotation  𝜔𝑠ℎ𝑒𝑎𝑟 ‘leads’ 𝛼

• Is 𝛼 unique ‘key parameter’?

• For drift waves, 𝛼 ~ 𝑇2/𝑛

 shear ↑  turbulence ↓  heat transport ↓

 𝛼 increases

• Is 𝜔𝑠ℎ𝑒𝑎𝑟 the control parameter?



Ongoing and Future Work

• Bias experiment with improved probe

• Ip scan vs 𝑛/𝑛𝐺 scan ? – obvious ‘Greenwald test’ (Long+ 2024, submitted):

Ip ramp down explained via 𝜔𝑠ℎ𝑒𝑎𝑟 𝜏𝑐𝑜𝑟

• Physics of spreading (Long, PD+ 2023)

– Spreading  Blob emission

– Broken symmetry: “Spreading” dominated by large blobs 



Some Theoretical Matters

Shear Layer Physics

- Degradation / Collapse

- Support  Power



Step Back: Zonal Flows Ubiquitous! Why?

• Direct proportionality of wave group velocity and wave energy density flux 

to Reynolds stress  spectral correlation 𝑘𝑥𝑘𝑦

i.e.

𝜔𝑘 = −𝛽 𝑘𝑥/𝑘⊥
2 : (Rossby)

𝑉𝑔,𝑦 = 2𝛽 𝑘𝑥𝑘𝑦/ 𝑘⊥
2 2

෨𝑉𝑦 ෨𝑉𝑥 = −σ𝑘 𝑘𝑥𝑘𝑦 𝜙𝑘
2

So:  𝑉𝑔 > 0 𝛽 > 0  𝑘𝑥𝑘𝑦 > 0 ෨𝑉𝑦 ෨𝑉𝑥 < 0

• Outgoing waves generate a flow convergence!   Shear layer spin-up





Causality  Eddy Tilting

Propagation  Stress

Cf: Held, Vallis in GFD

P.D. + Kim ‘90



But NOT for hydro convective cells:  (i.e. 𝜶 < 𝟏)

• 𝜔𝑟 =
𝜔∗𝑒 ෝ𝛼

2𝑘⊥
2𝜌𝑠

2

1/2

 for convective cell of H-W (enveloped damped)

• 𝑉𝑔𝑟 = −
2𝑘𝑟𝜌𝑠

2

𝑘⊥
2𝜌𝑠

2 𝜔𝑟 ?? ෨𝑉𝑟 ෨𝑉𝜃 = − 𝑘𝑟𝑘𝜃 ;  direct link broken!

 Energy flux NOT simply proportional to Momentum flux 

 Eddy tilting ( 𝑘𝑟𝑘𝜃 ) does not arise as direct consequence of causality

 ZF generation not ‘natural’ outcome in hydro regime!

 Physical picture of shear flow collapse emerges, as change in branching ratio of 

vorticity flux to particle flux as 𝛼 drops

N.B. Generic mechanism, not linked to specific “mode”

𝛼 < 1 ⇒ RBM



Simulations !?

• Extensive studies of Hasegawa-Wakatani system for 𝑘∥2𝑉𝑡ℎ𝑒2 /𝜔𝜈 < 1, > 1 regimes.

• All note weakening or collapse of ordered shear flow in hydrodynamic regime (𝑘∥2𝑉𝑡ℎ𝑒2 /𝜔𝜈 < 1), 

which resembles 2D fluid/vortex turbulence – i.e. 𝛼 < 1

• Physics of collapse left un-addressed, as adiabatic regime  (𝑘∥2𝑉𝑡ℎ𝑒2 /𝜔𝜈) dynamics of primary 

interest – ZFs

• Shear Layer Collapse ↔ 𝛼 < 1 Generic

i.e. Numata, et al ’07 

Gamargo, et al ’95

Ghantous and Gurcan ’15

+ many others



What of the Current Scaling?

• Obvious question: How does shear layer collapse 

scenario connect to Greenwald scaling ത𝑛 ∼ 𝐼𝑝?

• Key physics: shear/zonal flow response to drive is 

‘screened’ by neoclassical dielectric

– 𝜖𝑛𝑒𝑜 = 1 + 4𝜋𝜌𝑐2/𝐵𝜃
2

– 𝜌𝜃 as screening length

– effective ZF inertia lower for larger 𝐼𝑝

i.e.

N.B.: Points to
ZF response as
key to stellarator.



Current Scaling, cont’d

• Shear flow drive:

𝑑

𝑑𝑡

𝑒𝜙

𝑇

2

𝑍𝐹 ≈
σ𝑘 𝑆𝑘,𝑞

2
𝜏𝑐𝑘,𝑞

𝜖𝑛𝑒𝑜 𝑞 2

– Production  beat drive

– Response (neoclassical)

• Rosenbluth-Hinton ‘97 et seq

𝑒 ෠𝜙

𝑇
𝑍𝐹

≈ න
𝑆𝑘,𝑞

1 + 1.16
(𝑞(𝑟))2

𝜖1/2
𝑞𝑟
2𝜌𝑖

2
𝑑𝑡

emission from ‘drift-mode’ interaction

production

Increasing 𝐼𝑝 decreases 𝜌𝜃 and 
off-sets weaker ZF drive

neo
zonal wave #classical

neoclassical response

incoherent
emission

S  polarization NL

(extended)

Nonlinear Noise



Current Scaling, cont’d

෨𝑉𝐸
′
𝑍
≈

𝑆𝑘,𝑞

𝜌𝑖
2 + 1.6𝜖𝑇

3
2𝜌𝜃𝑖

2

∼ 𝑃

𝑒𝜙
𝑇

2

𝜌𝜃𝑖
2 ∼ 𝐵𝜃

2 𝑃
𝑒𝜙

𝑇
𝐷𝑊

2

• Higher current strengthens ZF shear, for fixed drive

• Can “prop-up” shear layer vs weaker production

• Collisionality? – Edge of interest!?

production factor
Production ↔ 𝜏𝑐



Screening in the Plateau Regime!?  (Relevant)
N.B. Ions!

𝜙𝑘 ∞

𝜙𝑘 0

𝑍𝐹

=
𝜖2/𝑞 𝑟 2

𝜖/𝑞 𝑟
2
+ 𝐿

≈
𝜖2/𝑞 𝑟 2

𝐿
=
1

𝐿

𝐵𝜃
𝐵𝑇

2

𝐿 =
3

2
න
0

1−𝜖

𝑑𝜆
∫ 𝑑𝜃

2𝜋
ℎ2𝜌 ≈ 1 −

4

3𝜋
2𝜖 3/2

• Favorable 𝐼𝑝 scaling of time asymptotic RH response persists in plateau 

regime. Robust trend.

• Compare to Banana (𝐿 = 1);

𝜙𝑘 ∞

𝜙𝑘 0

𝑍𝐹

=
𝐵𝜃
𝐵𝑇

2

Current scaling but smaller ratio



Revisiting Feedback in Reduced Model (c.f. Singh, P.D. PPCF ‘21)

• How combine noise, neoclassical dielectric and feedback dynamics?  back to Predator-Prey…

𝜕𝐸𝑡
𝜕𝑡

= 𝛾𝐸𝑡 − 𝜎𝐸𝑣𝐸𝑡 − 𝜂𝐸𝑡
2 𝜎 ~ 𝜖𝑛𝑒𝑜

−1 ~ 𝐵𝜃
2 ~ 𝐼𝑝

2

𝜕𝐸𝑣
𝜕𝑡

= 𝜎𝐸𝑡𝐸𝑣 − 𝛾𝑑𝐸𝑣 + 𝛽𝐸𝑡
2 𝛽 ~ 𝜖𝑛𝑒𝑜

−2 ~ 𝐵𝜃
4 ~ 𝐼𝑝

4

Re: Developments:

• Zonal flow and turbulence always co-exist

• Zonal flow energy increases with current

• Turbulence energy never reaches ‘old’ modulation threshold

• Zonal cross-correlation import TBD

shear satn.

modulation growth damping nonlinear noise
model

*

N.B.: 𝐼𝑝 enhances modulational growth

Limiting reduction 
of complex ZF, 
corrugation 
evolution

High 𝐵𝜃 enhances 
ZF coupling

High 𝐵𝜃 enhances 
“noise” for Z.F.

cf: extends P.D. et. al. ’94; Kim, PD ‘03

*



Criterion for Shear Layer Collapse

• For collapse limit, criterion without noise is viable approximation to with noise

• Derive shear layer persistence criterion

𝜌𝑠

𝜌𝜃𝐿𝑛
1
2

> crit.

crit. =

 Dimensionless parameter  𝜌𝑠

𝜌𝜃𝐿𝑛
1
2 Larger 𝐵𝜃 enhances persistence of ZF

ZF energy

turbulence energy

w/ noise w/o noise

S - D



Power Scaling and Physics of L-mode 
Density Limit (Singh, P.D. PPCF 2022)

• Power Scaling is an old story, keeps returning

• Zanca+ (2019) fits  ത𝑛 ~ 𝑃1/4

• Giacomin+: Simulations recover power scaling

• Observe: 𝑄𝑖ȁbndry will drive shear layer  LH mechanism

• So: 𝑃scaling ↔  shear layer physics: a natural connection

Zanca +



Expanded Kim-Diamond Model

• KD ‘03 – useful model of LH dynamics (0D)

• See also Miki, P.D. et al ’12, et. seq. (1D)

• Evolve 𝜀, 𝑉𝑍𝐹 , 𝑛, 𝑇𝑖 , 𝑉𝐸′



• Treats mean and zonal shearing

• Separates density and temperature 

contributions to 𝑃𝑖

• Heat and particle sources 𝑄, 𝑆

N.B. i) ZeroD interpret as edge layer
ii) Does not determine profiles
iii) Coeffs for ITG

Fluctuation
Intensity

Zonal
Intensity

𝑇𝑖
𝑄 → power
𝑛
𝑆 → fueling 

shear

Shear (mean)

𝑄 𝑆
fuelingheat flux

edge layer



L  DL Studies: Shear Layer Physics  Power Scaling

• Look for shear layer collapse

• 𝑄 ramp-up to L-mode, followed by 𝑆

ramp-up

• Oscillations  predator-prey cycles

• 𝑛 for ZF collapse increases with 𝑄

scaling of 𝑛crit emerges

Q ramp

S ramp



Power Scaling: LDL

• 𝑛crit ~ 𝑄1/3

• Distinct from Zanca, but close (model)

• In K-D, with neoclassical screening 𝑛𝑐𝑟𝑖𝑡 ~ 𝐼𝑝 → 𝐼𝑃
2

• Physics is 𝛾(𝑄) vs ZF damping

• Shear layer drive underpins power scaling

Physics:   𝑄𝑖  Turbulence  Reynolds Stress  ZF shear

Increased ZF damping  Confinement degradation

NB: Unavoidable model dependence in scalings



“If it Flux Like a Duck… (M.N. Rosenbluth, after F. Wagner)”

• Hysteresis ! in 𝜀𝑍𝐹 vs Q

• Expected, given 2 states transport

• Not familiar bistability !  slow mode

• Physics prediction… beyond scaling

Also:

• Is there torque effect of density limit,                  

i.e. 𝛻𝑃/𝑛 vs 𝐵𝜃𝑉𝜙 ?

• Torque  𝑉𝐸
′ Mean field

Reyn. stress coherence

Critical slowing 
down effect

Beyond Scalings: LDL ‘Transition’ Physics



Recent: NT Density Limit Studies (DIII-D) (Sauter, Hong+ 2023)

• ത𝑛 ~ 2 𝑛𝐺 achieved with ~ 10 MW NBI. No disruption

• NT greatly expands dynamic range of L-mode by preventing LH transition. Allows separation 

LDL, HDL.

• ത𝑛, 𝑛𝑒𝑑𝑔𝑒 both scale as 𝑃𝛼

ത𝑛 → 𝛼 ~ 0.3

𝑛𝑒𝑑𝑔𝑒 → 𝛼 ~ 0.4

• Confinement degrades above 𝑛𝐺? – Major question…

• 𝑉𝐸
′ effects noted 

NB: High 𝛽𝑝, peaked density DIII-D dose not degrade 𝜏𝐸 above 𝑛𝐺 (DIII-D; Ding, Garofalo+ …)

Stay Tuned

Caveat Emptor



From L-DL to H-DL

• H-mode density limit is back transition HL at high density, 

usually followed by progression to 𝑛Greenwald

• Key issue !

• Candidates

– AUG: 𝛼𝑀𝐻𝐷 at separatrix (Eich, Manz)

– Goldston, Brown: Conduction broadens SOL, reduces 𝑉𝐸′ 

– instability calculated & inward spreading hypothesized

• Experiments needed! 

c.f. Dog + Tail ?  track inward spreading ?!

Gentle “pump-and-puff” (Mahdavi) has beat Greenwald
 strong shear layer…

So
𝛾 = 𝑐𝑠/ 𝜆𝑅 1/2 - 𝜙/𝜆2

𝜆: 𝑣𝐷 ∗
𝜏𝑇
𝜏cond

N.B. Physics of Back Transition is key to HDL. What degrades ExB shear, absent ELMs



Conclusions: 𝑽𝑬
′ as Edge Order Parameter

• Density limits as “back-transition” phenomena; 𝑉𝐸′ physics crucial

• L-DL mechanism:

– Shear layer degradation

– Strong turbulence spreading  Blob emission

• 𝛼 is key parameter, but not only

• Scalings of L-DL emerge from zonal flow physics

– 𝐼𝑝 scaling  neo dielectric

– 𝑃 scaling  Reynolds stress, radial force balance

• Novel hysteresis evident in L-DL dynamics

• Back Transition is key. HDL  back transition trigger unclear.



Speculations / Questions

• Is H-DL due turbulent degradation of 𝑉𝐸′ in pedestal? Mechanism?

• Can external means be used to enhance edge density?

• Collisionless regimes? - 𝛻n TEM.

• Is there a L-mode edge with 𝛼 > 1 and 𝑛 > 𝑛𝐺?

• D-L-H triple point, ala’ phase transitions?

• New states: 

– Power – Density feedback loop in burning plasma?

– Neg. Tri. at high n, P ? Features of edge plasma?

• Origin of confinement degradation at high density?



Thoughts for ABOUND

• Edge shear layer evolution during gas puff  cooling, spreading (Blobs) response

• Grand Challenge: Integrate Transport + MHD (“Causality Simulation”)

– When does enhanced transport trigger condensation + island growth ?

– Combine: turbulence + radiation + MHD

– Recovery for small perturbations ?! – Necessary for credibility

• Physics of Power Dependence  mean shear, ZF? Negative Triangularity 

desirable  DIII-D  



Thank You !
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