# Dynamics of Turbulence Entrainment: A Comparative Study

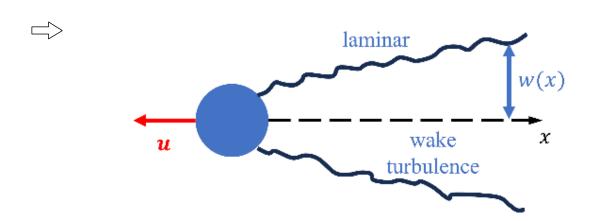
P.H. Diamond<sup>(1)</sup> and Runlai Xu<sup>(2)</sup>

- 1) UC San Diego
- 2) University of Oxford

Bout++ Fest 8/8/2024

N.B. "Turbulence Spreading" ≅Entrainment

### Wake-Classic Example of Turbulence Spreading



Similarity Theory Sphere in Fluid Mixing Length Theory  $W \sim (F_d/\rho U^2)^{1/3} X^{1/3}$ ,  $F_d \sim C_D \rho U^2 A_S$ C<sub>D</sub> independent of viscosity at high Re

- Physics: Entrainment of laminar region by expanding turbulent region. Key is <u>turbulent mixing</u>. > Wake expands
- ⇒ Townsend '49:
  - Distinction between momentum transport eddy viscosity—and fluctuation energy transport
  - Failure of eddy viscosity to parametrize spreading
  - Jet Velocity:  $V = \frac{\langle V_{perp} * V^2 \rangle}{\langle V^2 \rangle} \Longrightarrow$  spreading flux FOM

### **Spreading in MFE**

Numerous gyrokinetic simulations
N.B. <u>Basic</u> studies absent ...

 $\partial_t \xi = \gamma \xi (1 - \xi) + \partial_x D(\xi) \partial_x \xi + D_0 \partial_x^2 \xi$ 

i.e.

- $\Rightarrow$  Diagnosis primarily by:  $\bullet$  color VG  $\gamma\sim 0(\epsilon)$ 
  - tracking of "Front"
- ⇒ Theory ⇒ Nonlinear Intensity diffusion models
  - ⇒ Reaction-Diffusion Equations especially Fisher + NL diffusion
  - ⇒ Continuum DP Models Later......

### Recently:

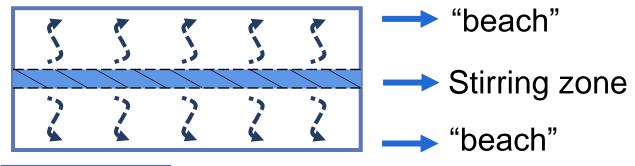
- $\Rightarrow$  Renewed interest in context of  $\lambda_q$  broadening problem, cf. Xu Chu, P. D.; Z. Li + ...
- $\implies$  Simulations measure correlation of spreading  $\langle \widetilde{V}_r \widetilde{p} \widetilde{p} \rangle$  with  $\lambda_q$  broadening (Nami Li+ ...)
- Intermittency effects T. Wu, P. D. + 2023, A. Sladkomedova 2024, T. Long, P. D. '24



Especially blobs, voids

### **Spreading Studies** - Numerical Experiments

□ 2D Box, Localized Stirring Zone



Comparison of:

| <u>System</u>                        | <u>Features</u>                                     |
|--------------------------------------|-----------------------------------------------------|
| 2D Fluid                             | Selective Decay, Vortices How to Measure Spreading? |
| 2D MHD with weak $B_0$ perp.         | Alfvenization, Vortex<br>Bursting, Zeldovich number |
| Forced Hasegawa-Mima with Zonal Flow | Waves + Eddies + ZF Multiple regimes and Mechanisms |

### **Numerics: 2D Dedalus simulation**

#### **Box Characteristics:**

Dedalus Framework analogous to BOUT++

- Grid Size: 512×512

- Doubly Periodic boundary condition, beach regulates expansion

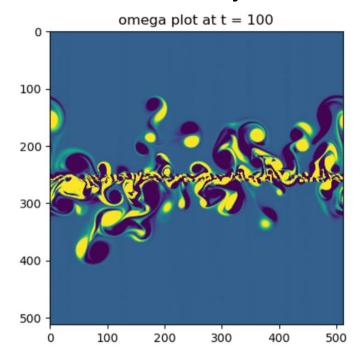
### **Forcing Characteristics:**

- Superposition of Sinusoidal Forcing, vorticity
- Spectrum: Constant E(k), ensuring uniform energy distribution across wave numbers.
- Correlation Length: Approximately 1/10 of the box scale, some room for dual cascade.
- Localized through a Heaviside step function.
- Phase of forcing randomized every typical eddy turnover time

# 2D Fluid 2D MHD + Weak Field

### What Happens?

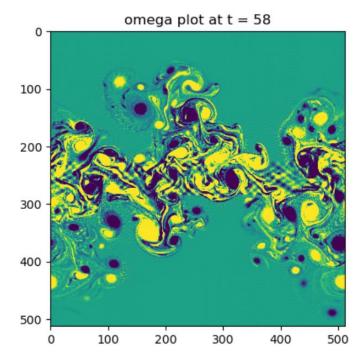
### In Far Field, away from Forcing layer



Vorticity snapshot at Re~100

□ Dipoles emerge
 Spreading intermittent

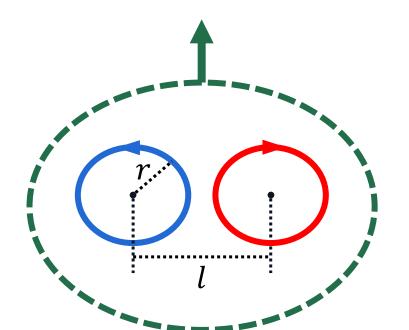
No apparent "Front"



Vorticity snapshot at Re~2000

- Dipoles, filaments, cluster
- Fractalized front

### ⇒ N.B. <u>Dipole Vortex</u>



Uniform speed due to mutual induction

$$- C = \frac{\Gamma}{l} = \frac{vr}{l}$$

- Dipole Vortices propagate at constant speed, "free flyers"
- Physical origin of "ballistic spreading"?!
  - i.e. ensemble dipoles expands linearly in time
  - c.f. Zaslavskii comment circa 2000.

# **Summary - 2D Fluid**

- Coherent structures Dipole vortices mediate spreading of turbulent region → free flyers
- Mixed region expands as  $w \sim t$ , consistent with dipoles.
- No discernable "Front", spreading is intermittent. (space+time)
- Spreading distribution is non-trivial. Requires further study.

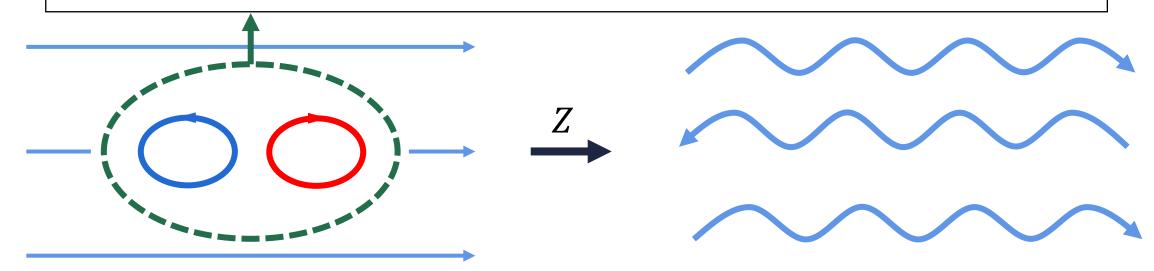
### 2D MHD

- The equations:  $\frac{d}{dt}(\nabla^2\varphi) = \nu\nabla^2\nabla^2\varphi + \nabla A \times \hat{\mathbf{z}} \cdot \nabla\nabla^2 A + \tilde{f}$   $\frac{d}{dt}A = \eta\nabla^2 A$   $\frac{d}{dt} = \partial_t + \nabla\varphi \times \hat{\mathbf{z}} \cdot \nabla$
- Inviscid Invariants:  $E = \langle V^2 + B^2 \rangle$ ,  $H = \langle A^2 \rangle$ ,  $H_c = \langle \vec{V} \cdot \vec{B} \rangle \Longrightarrow 0$ , hereafter Conservation of H is Key!
- Consider weak mean magnetic field:  $B = B_0(y)\hat{x}$  $B_0(y) \sim B_0 \sin(y) \Rightarrow \text{ initial imposed field}$
- As before, localized forcing region, effectively unmagnetized

### Crux of the Issue!?

- ⇒ Hydrodynamics: Dipole vortex 'Carries' turbulence energy ⇒ spreading
- $\implies$  But... weak  $B_0$  can 'burst' vortices  $\implies$

Converts dipole kinetic energy to Alfven waves, propagating laterally, and to dissipation.



So, can a <u>weak</u>  $B_0$  block spreading in 2D MHD!? N.B. Perp Alfven waves observed

### ⇒ 2D MHD: Summary

- Weak  $B_0$  enables vortex disruption Dipole bursting  $\Longrightarrow$  Saturates spreading
- Weak  $B_0$  blocks advance of kinetic energy
- Process: Conversion dipole KE to Alfven waves, laterally propagating
- $Z = R_m \frac{V_{A0}^2}{\langle V_{rms}^2 \rangle}$  as critical parameter
- Reinforces notion of "free flyer dipoles" as critical to spreading

### Forced Hasegawa – Mima + Zonal Flows

### H-M + Zonal Flow System

– System:

$$\frac{d}{dt} \left( \tilde{\phi} - \rho_s^2 \nabla_{\perp}^2 \tilde{\phi} \right) + v_* \frac{\partial \tilde{\phi}}{\partial y} + v_{*u} \frac{\partial \tilde{\phi}}{\partial y} = \frac{\partial}{\partial r} \rho_s^2 \left\langle \tilde{v}_r \nabla_{\perp}^2 \tilde{\phi} \right\rangle + v \nabla^2 \nabla^2 \left( \tilde{\phi} \right) + \tilde{F} \qquad \text{—Waves, Eddies}$$

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \bar{v}_z \frac{\partial}{\partial y} - \nabla \tilde{\phi} \times \hat{\mathbf{z}} \cdot \nabla$$

$$\frac{\partial}{\partial t} \nabla_x^2 \bar{\phi}_z + \frac{\partial}{\partial r} \left\langle \tilde{v}_r \nabla_{\perp}^2 \tilde{\phi} \right\rangle + \mu \nabla_x^2 \bar{\phi}_z = 0 \qquad \text{—Zonal Flow (Axisymmetric)}$$

N.B.  $\bar{\phi}_z = \bar{\phi}_z(x)$ , only.

N.B.: Electrons Boltzmann for waves, not for Zonal Flow

PV forced

- viscosity controls small scales
- drag controls zonal flow  $\mu$

- conserved: Energy 
$$\longrightarrow \left\langle \tilde{\phi}^2 + \rho_s^2 (\nabla \tilde{\phi})^2 \right\rangle + \left\langle \rho_s^2 (\nabla \phi_z)^2 \right\rangle$$
Potential Enstrophy  $\longrightarrow \left\langle \left( \tilde{\phi} - \rho_s^2 \nabla^2 \tilde{\phi} \right)^2 \right\rangle + \left\langle \left( \rho_s^2 \nabla^2 \phi_z \right)^2 \right\rangle$ 

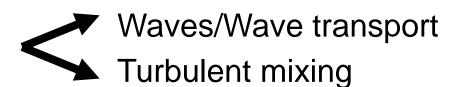
N.B. Energy, Pot Enstr. exchange between Waves and ZF possible.

### H-M + Zonal Flow System, cont'd

 $\begin{array}{lll} \rightarrow & \text{Now:} & \textit{waves} & \omega = \omega_*/(1+k_\perp^2\rho_s^2), & \underline{v_{gr}} \\ & \text{eddies} & \widetilde{v} & \left\{\widetilde{v} \text{ vs } \overline{v_*} \rightarrow \right. \\ & \text{zonal mode (symmetry)} & \text{mixing length} \end{array}$ 

i.e.  $\Rightarrow$  Energy Flux has two components:  $\begin{cases} \sum_{\pmb{k}} v_{gr}(\pmb{k}) \xi_{\pmb{k}} \to 2^{\text{nd}} \text{ order in } e\tilde{\phi}/\mathsf{T} \\ \langle \tilde{v}_r \xi \rangle \to 3^{\text{rd}} \text{ order in } e\tilde{\phi}/\mathsf{T} \end{cases}$ 

N.B. 2 channels for "turbulence spreading"



-Branching ratio, vs. Ku number?

### For clarity; Contrast:

⇒ Spreading in presence of fixed, externally prescribed shear layer

$$\implies$$
 Here:  $\rightarrow$  Forcing  $\rightarrow$   $\left\{\begin{array}{l} \text{Waves} \\ \text{Eddies} \end{array}\right\}$   $\rightarrow$  Zonal flow (self-generated)

: forcing  $(\tilde{v}_{rms}, Re)$  + drag  $\Rightarrow$  control parameters

⇒ "weak" and "strong" Turbulence Regimes

$$v_{gr} \text{ VS } v_r o rac{\langle \tilde{v}_r \xi \rangle}{\sum_{\pmb{k}} v_{gr}(\pmb{k}) \xi_{\pmb{k}}} o rac{\tilde{v}_r \tau_c f}{\Delta_c} o Ku \iff 2^{\text{nd}} \text{ vs } 3^{\text{rd}} \text{ order energy flux}$$

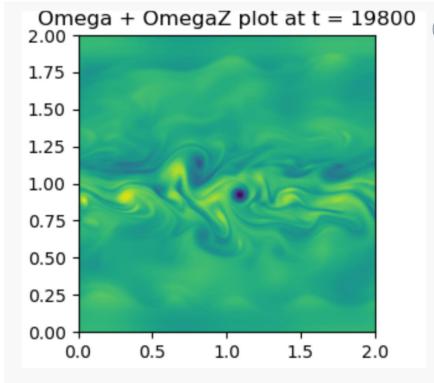
 $\implies Ku < 1 \rightarrow \text{wave dominated spreading}$ 

 $Ku > 1 \rightarrow \text{mixing dominated spreading} \implies \sim 2D \text{ fluid}$ 

# Typical saturated snapshot(Kubo 0.2)

- Dipoles disappear
- Large coherent vortex

N.B. Density gradient precludes dipoles.



Total <u>vorticity</u> snapshot at the end. Steady state; Turbulent in the center only. Dipole isn't a steady structure in this system; instead, we get single vortex that looks like Jupiter's eye, which is not gonna move by itself

Total Vorticity:  $\nabla^2(\tilde{\phi} + \phi_z)$ 

### H-M + Zonal Flow System, cont'd

- Enter the Zonal Flow...
  - Multiple channels for NL interaction
  - But with  $ZF \longleftrightarrow eddy$ , wave coupling to ZF dominant
  - ZF is the mode of minimal inertia, damping, transport

Waves:

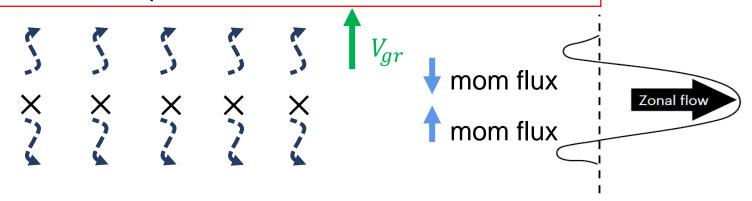
$$\frac{\partial}{\partial t} (1 + k_{\perp}^2 \rho_s^2) \tilde{\phi} = \dots$$

$$\frac{\partial}{\partial t} (k_r^2 \rho_s^2) \bar{\phi}_z = \dots$$

ZF:

$$\frac{\partial}{\partial t}(k_r^2\rho_s^2)\bar{\phi}_z = \dots$$

 $\Rightarrow$  energy coupled to ZF ( $\tilde{v}_r = 0$ ) cannot "spread", unless recoupled to waves

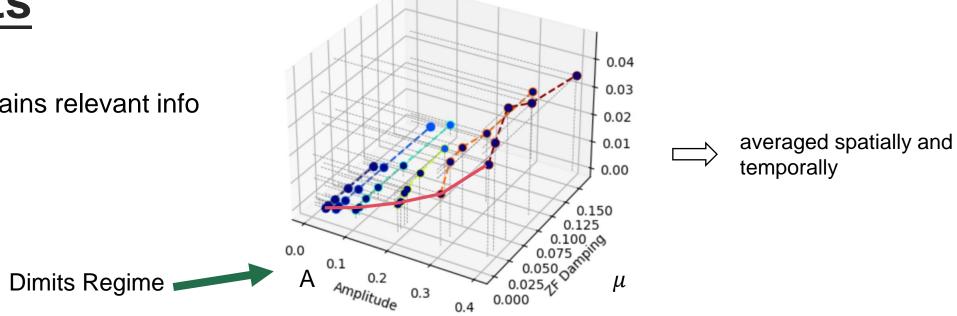


- Degradation of ZF (back transfer) is crucial to spreading
- $\mu$  must regulate spreading. What of  $\mu \to 0$  regimes? Nonlinear Transfer

#### Fluctuation Potential Enstrophy Flux

# Results

3D plot contains relevant info



- Potential enstrophy flux generally increases as drag increases. "Dimits regime" for turbulence spreading. Spreading diminishes as power coupled to Z.F. (Fixed, spatially)
- Self-generated barrier to spreading.
- For A increasing, PE flux rises sharply, even for weak ZF damping. Fate of ZF?
- "KH-type" mechanism loss of Dimits regime at higher A? Characterization??

N.B. "Dimits Regime" = Condensation of energy into ZF for weaker forcing.

# Results, Cont'd Wave Energy Flux

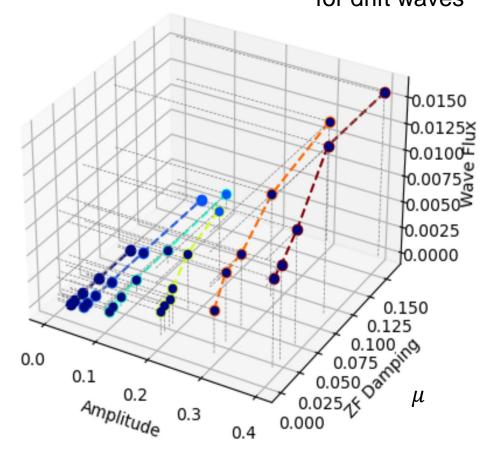
Wave Energy Flux 
$$< -\frac{\partial \phi}{\partial t} \nabla \phi > \longrightarrow \sum_{\pmb{k}} v_{gr}(\pmb{k}) E_{\pmb{k}}$$
 for drift waves

- Dimits regime at low forcing and ZF damping
- -Increases with ZF damping and forcing amplitude
- Dominant  $K_x$  increases due ZF decorrelation
- Spectrum condensation towards low k with inverse cascade



implication for  $v_{gr}$  and  $\sum_{\pmb{k}} v_{gr}(\pmb{k}) E_{\pmb{k}}$ 

– Take note of increasing W.E.flux as  $\mu \to 0$ , A increases.

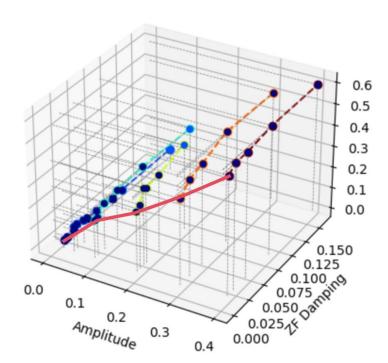


### Results, Cont'd

$$\frac{\tilde{v}_r \tau_c f}{\Delta_{c_c}}$$
 where  $\Delta_c \sim < K_\chi^2 >^{-1/2}$ 

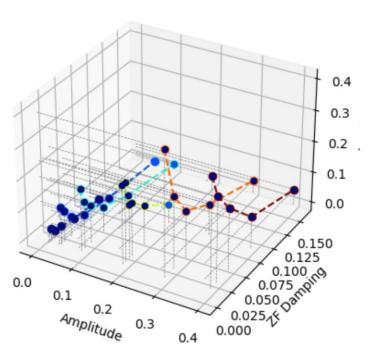
Kubo Number





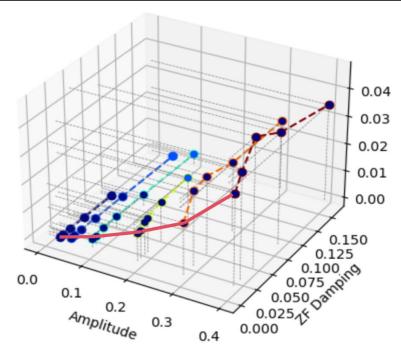
Fluctuation intensity <u>increases</u> as drag increases

zonal\_velocity



Zonal velocity <u>decreases</u> with increasing drag (clear)

### →Spreading and Fate of Zonal Flows



- $\rightarrow$  Spreading rises for increased forcing, even for  $\mu \rightarrow 0$
- → Dimits regime destroyed. How?
- ⇒ Seems necessary for spreading in systems with ZF
- ⇒ Related to issue of 'tertiary instability' (Rogers+, 2000)
- → Animal Hunt for linear instabilities(KH, Tertiary ...) seems pointless in turbulence

$$ightarrow$$
 Instead,  $P_{\mathrm{Re}} = -\langle \widetilde{V_x} \widetilde{V_y} \rangle \cdot \frac{\partial \overline{V_y}}{\partial x}$  Power transfer [fluctuations  $ightarrow$  flow]

 $P_{Re} < 0 : Wave \rightarrow ZF transfer$ 

 $P_{Re} > 0 : \mathsf{ZF} \to \mathsf{Wave} \; \mathsf{transfer} \Rightarrow \mathsf{ZF} \; \mathsf{decay}$ 

### **Quantifying Wave-ZF Power transfer**

$$1/2*rac{\partial \overline{V}_y^2}{\partial t}=\omega_Z<\widetilde{v_x}\widetilde{v_y}>-drag*\overline{V}_y$$



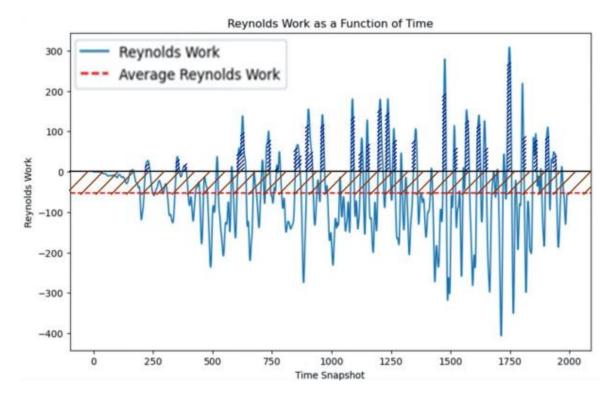
Reynolds power

We quantify  $ZF \rightarrow$  Waves Power Transfer as the ratio of the area above the axis to mean work done on the zonal flow.

N.B.:

$$P_{ ext{Re}} = -\langle \widetilde{V_x} \widetilde{V_y} 
angle \cdot rac{\partial \overline{V}_y}{\partial x}$$

'Turbulent viscosity' model fails capture 2 signs



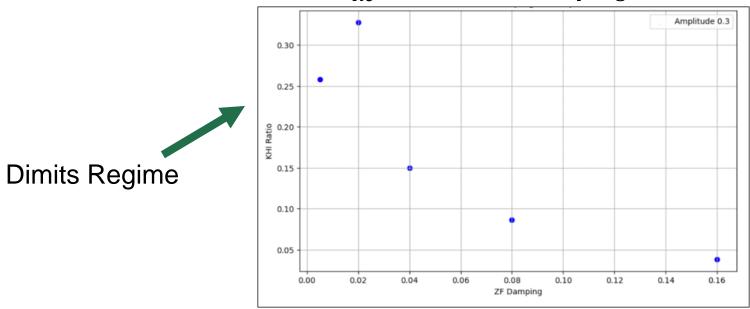
Reynolds power vs time

$$P_{Re} < 0 \Rightarrow \text{Wave} \rightarrow \text{ZF transfer}$$

$$P_{Re} > 0 \Rightarrow \mathsf{ZF} \to \mathsf{Wave} \; \mathsf{transfer}$$

### Results, Cont'd

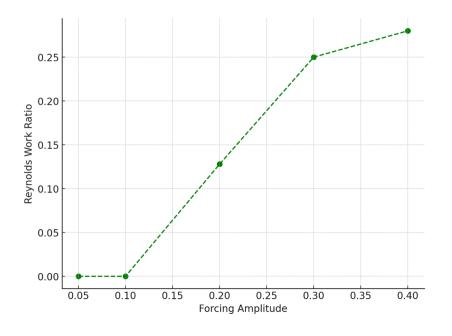
P<sub>Re</sub> ratio vs ZF damping



- The ratio generally decreases as a function of ZF damping
- □ Damped Zonal Flow More Stable, less return of power to fluctuations

# Results, Cont'd, $P_{Re}$ Ratio vs Forcing Strength

 $P_{Re}$  ratio vs forcing amplitude



Preliminary

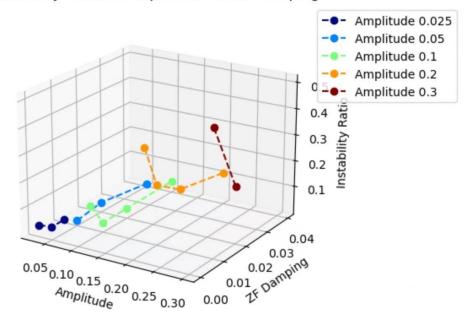
→ Explore other FOMs

Mechanism → vortex shedding!?

- The ratio increases as a function of forcing strength
- Indicates that re-coupling of ZF energy to turbulence increases for stronger forcing
- This approach avoids instability morass.
- ⇒ Significant nonlinear recoupling of energy to waves

### $P_{Re}$ Ratio vs A, $\mu$

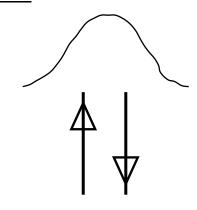
Instability Ratio vs Amplitude and ZF Damping



- $P_{Re}$  back transfer increases with forcing, and as  $\mu$  decreases
- Further analysis required

# Related Problem: Jet Migration(Laura Cope)

<u>i.e.</u> - Here:



turbulence patch propagates, drags ZF/Jet along

- There:



Jet migrates

<u>but</u> Migration enabled by dynamics of fluctuation field

Zonon → low mode # fluctuation co-located with Z.F.

# So Jet Velocity!?

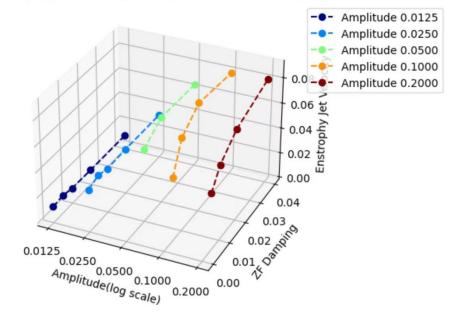
→ As waves/eddys drag along zonal flow, Jet velocity(ala' Townsend) is related to Jet Migration.

SO

→ Enstrophy Jet Velocity?!

$$V_{jet} = \langle v_r \tilde{u}^2 \rangle / \langle \tilde{u}^2 \rangle$$

Enstrophy Jet Velocity vs Amplitude and ZF Damping



- Now familiar trends
- Seems semi-quantitatively consistent with Cope results.

### **Summary - Drift Wave Turbulence**

- → Spreading fluxes mapped in forcing, ZF damping parameter space
- → Dominant mechanism  $\leftarrow$  Ku (waves vs mixing), Both waves and mixings in play.

  what of  $Ku \sim 1$ ?
- → Dimits-like regime discovered. Fixed ZF pattern.
- → ZF quenching intimately linked to spreading
- $\rightarrow$   $P_{Re} > 0$  bursts track breakdown of Dimits regime and onset turbulent mixing Spreading increases.

### → General Summary

- → Coherent structures dipoles frequently mediate spreading
- ←→ underpin "ballistic scaling"
- → Spreading dynamics non-diffusive; Conventional wisdom misleading, or worse.
- → In DWT, wave propagation and turbulent mixing both drive spreading
- → ZF quenching critical to spreading in DWT. Power coupling most useful to describe ZF quench—should be focus.
- → Closely related to jet migration.

### →Future Plans

- High resolution studies
- Understand ZF quenching physics and calculate power recoupling-general case, GK formulation?
- What is physics of  $P_{Re}>0$  bursts? shedding?
- Spreading in Avalanching. Relative Efficiency? Spreading and Transport? Flux-driven H-W System. Potential Enstrophy Flux!?

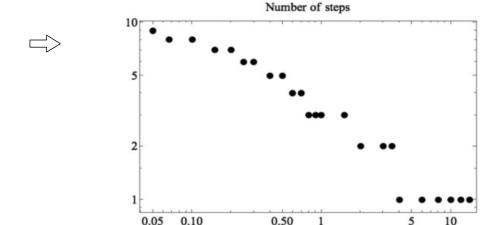
#### More general:

- Is spreading mechanism universal? Seems unlikely
- Towards a model, models... Ku~1 is an interesting challenge
- Relation/connection of DW+ZF spreading and Jet Migration (L. Cope)
- Is Directed Percolation of any use in this?
  Details-??

# Back-Up

# Why Study Spreading?

⇒ Spreading strength sets staircase step size via intensity scattering. See also F. Ramirez, P.D. Phys Rev E 2024



from A. Ashourvan, P.D. (in spirit of BLY, for drift wave turbulence)

- Spreading potentially significant in determining
  - Physical turbulence profiles

β (Turbulence Spreading)

- Non-locality phenomena

### 2D Fluid - the prototype

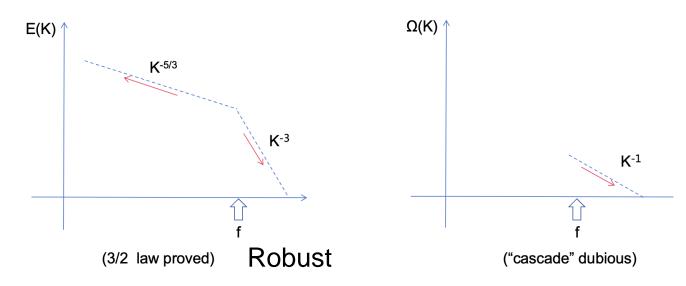
Vorticity Equation:  $\frac{D\omega}{Dt} = \nu \nabla^2 \omega - \alpha \omega$ 

### Key Physics:

Inviscid, unforced invariants  $= \begin{cases} \text{Energy } E = \int d^2x (\nabla \varphi)^2/2 \\ \text{Enstrophy } \Omega = \int d^2x (\nabla^2 \varphi)^2/2 \end{cases}$ 

### **Dual Cascade**

Kraichnan



# 2D Fluid, Cont'd

⇒ Selective Decay

Forward 'Cascade' enstrophy → Senses viscosity

Inverse 'Cascade' energy

Senses drag

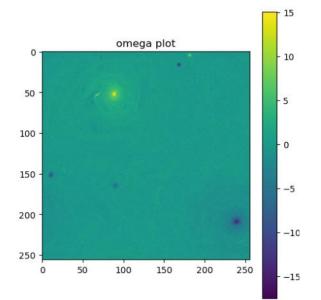
For Final State of Decay:

$$\delta(\Omega + \lambda E) = 0$$

Bretherton + Haidvogel

⇒ Role Coherent Structures (Vortices)

cf: B. Gallet, recent



emergence isolated coherent vortices → survive decay

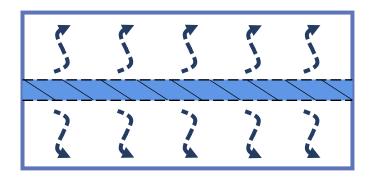
$$- \frac{d}{dt}\nabla\omega = (s^2 - \omega^2)^{1/2}$$

$$\omega = \nabla^2 \varphi \to \text{vorticity}$$
$$s = \partial_{xy}^2 \varphi \to \text{shear}$$

$$s = \partial_{xy}^2 \varphi \rightarrow \text{shear}$$

Dipole vortices emerge, also

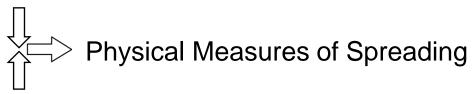
# **2D Fluid**



→ Forcing layer

- Most of system in state of Selective Decay!
- Need Consider / Compare:

$$\langle V_y(\nabla^2\varphi)^2/2\rangle \to \text{Enstrophy Flux}$$

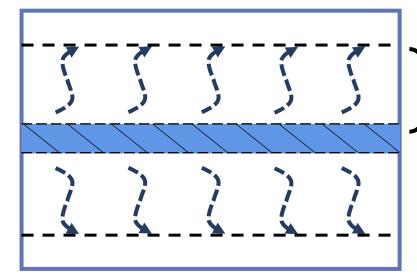


$$\langle V_y(\nabla \varphi)^2/2\rangle \rightarrow \text{Energy Flux}$$

as measures of "intensity spreading". > Selective decay suggests these are radically different.

# On Keeping Score

Loosely, interested in scaling of expansion of turbulent region with time

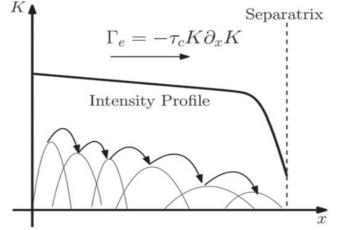


$$l \sim t^{\alpha}$$
 $\alpha$ ?

N.B. Contrast DP ⇒ critical single site

 $\Longrightarrow$  Many approaches to l...

MFE favorite:



Track footprint of  $|\varphi|^2$ Plot vs time, 1D projection

## Keeping Score, cont'd



N.B.:

- Quantity weighting can differ; depending on quantity
- RMS velocity sensitive to how computed

Table 1: Table describing various velocity and transport parameters.

| Parameter                                 | Symbol      | Equation                                                       | Description                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------|-------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RMS Velocity  Quantity-                   | $V_{rms}$   | $V_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$            | Root-mean-square velocity of<br>turbulence, also known as tur-<br>bulence intensity. This can ei-<br>ther be measured near the forc-<br>ing zone and averaged horizon-<br>tally for a characteristic veloc-<br>ity as a basis of comparison,<br>or measured globally to obtain<br>global energy.<br>Quantity-weighted root-mean- |
| Weighted<br>RMS<br>Distance               |             | $\sqrt{\frac{\int  \delta(x) ^2  Q(x)   dx}{\int  Q(x)   dx}}$ | square position represents the location of the quantity of interest, typically energy or enstrophy. One value is generated for each time. The quantity Q is usually energy or enstrophy.                                                                                                                                         |
| Quantity- Weighted RMS Spreading Velocity | $V_{W-rms}$ | $V_{W-rms}$ is the slope of $X_{W-rms}$ plotted against time   | Quantity-Weighted RMS Spreading Velocity represents the bulk motion. This is more comprehensive than the front velocity.                                                                                                                                                                                                         |

## Keeping Score, cont'd

Approaches, cont'd

- Front velocity is MFE favorite
   sensitive to 1D projection, definition
- Transport Flux  $\langle V_y E \rangle$ ,  $\langle V_y \Omega \rangle$ , most physical, clearest connection to dynamics of 2D Fluid but: Sensitive to viscosity and selective decay dynamics
- Jet velocity very sensitive to viscosity, field chosen

| Front Velocity  | $V_{front}$ | $ert V_{front}$ is the slope   | This is usually             |
|-----------------|-------------|--------------------------------|-----------------------------|
|                 |             | obtained from                  | comparable to $V_{W-rms}$ , |
|                 |             | tracking the                   | although front doesn't      |
|                 |             | outermost                      | exist for low Reynolds      |
|                 |             | turbulent patch                | number.                     |
| Transport Flux  | $\Phi_Q$    | $ \Phi_Q =  < QV_{\perp} >$    | The amount of certain       |
| Density of      |             |                                | quantity passing            |
| certain         |             |                                | through a unit length       |
| quantity        |             |                                | per unit time; flux is      |
|                 |             |                                | the integral of flux        |
|                 |             |                                | density through the         |
|                 |             |                                | horizontal surface,         |
|                 |             |                                | which bounds half of        |
|                 |             |                                | the region and can be       |
|                 |             |                                | related to the rate of      |
|                 |             |                                | change of the quantity      |
|                 |             |                                | in that region.             |
| Transport "jet" | $V_Q$       | $V_Q = rac{< QV_{ot}>}{< Q>}$ | Also known as               |
| Velocity        |             | ·                              | normalized flux             |
|                 |             |                                | density. Average is         |
|                 |             |                                | usually taken               |
|                 |             |                                | horizontally. This          |
|                 |             |                                | velocity is separately      |
|                 |             |                                | obtained for each time.     |

#### Keeping Score, cont'd

#### **Observation:**

- —Lower Re → Significant speed, 'front' fluctuations due to variability in dipole population
- —Transport velocities quite sensitive to viscosity and selective decay

i.e. 
$$\langle V_y \Omega \rangle$$
 drops 
$$= \left\{ \begin{array}{l} \text{especially for higher viscosity,} \\ \text{Due selective decay} \end{array} \right.$$

- —Formation of dipoles follows decay of enstrophy
- Dipoles ultimately determine spreading

## **Results**

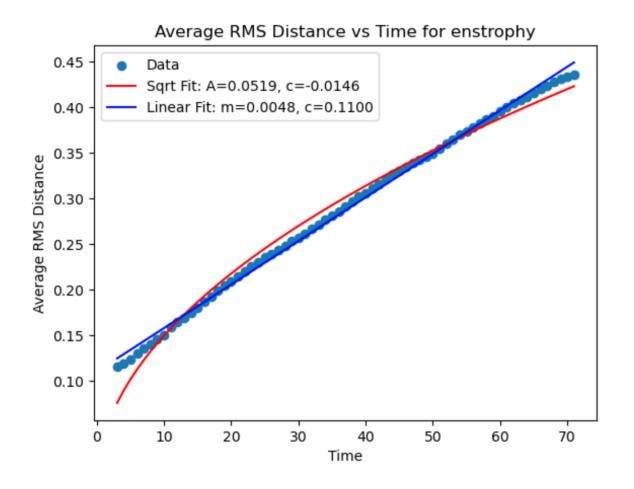
Re ~ 5000

Ω–weightedrms distance

—Constant spreading speed for enstrophy, i.e.,  $l \sim ct$ 

$$\alpha = 1$$

- $-c/V_{rms} \sim 0.1$
- Consistent with picture of dipole vortices carrying spreading flux

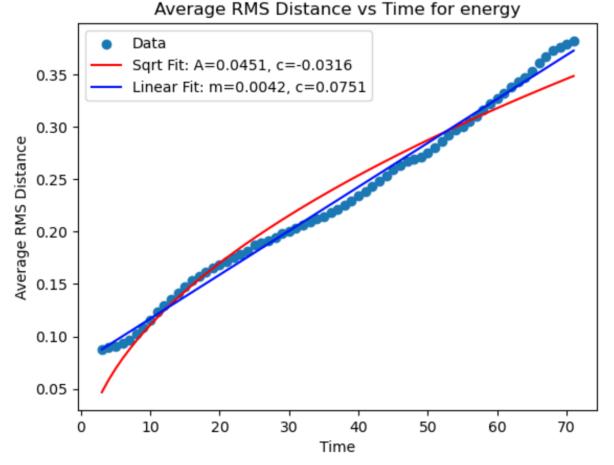


## Results, cont'd

Re ~ 5000

*E*—weighted rms distance

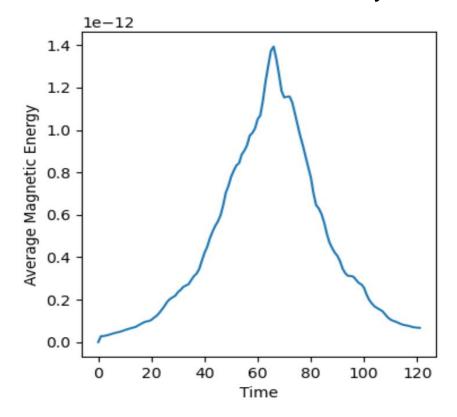
- —Constant spreading speed for energy, i.e.,  $\alpha \simeq 1$
- $-c/V_{rms} \sim 0.1$
- Lager dipoles 
   ← more energy 
   increases fluctuations relative to 
   enstrophy case



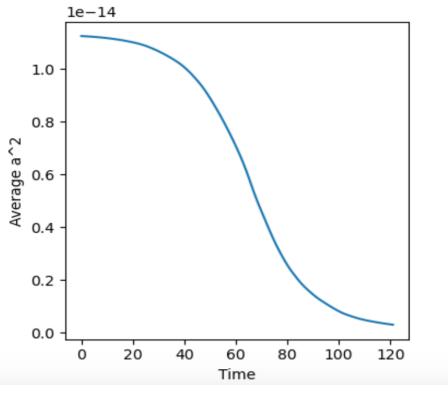
# 2D MHD + Weak $B_0$

#### $\Rightarrow$ 2D MHD

- Zeldovich Theorem: No dynamo in 2D



- Consequence of decay  $\langle A^2 \rangle$ 



$$\frac{d}{dt}\langle A^2\rangle = -\eta \langle B^2\rangle$$
 
$$\int_0^t \langle B^2\rangle dt \leq \frac{\langle A(0)^2\rangle}{\eta}, :: \langle B^2\rangle \text{ decays}$$

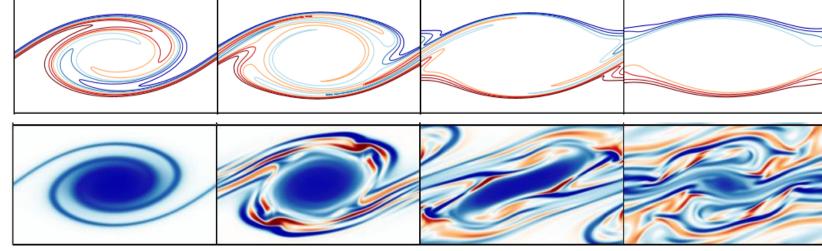
# **Key Physics of 2D MHD**

- Lorentz force suppresses inverse kinetic energy cascade. Inverse cascade  $\langle A^2 \rangle$  develops
- Single Eddy: Expulsion (Weiss'66)

vs. Vortex Disruption (Mak et. al 2017)

Key Parameter:  $Z = Rm \frac{V_{A0}^2}{V_E^2}$  $Z \sim 1$  bounds the two regimes

Expulsion:



Vortex bursting:

from Mak et. al 2017

See also: Gilbert, Mason, Tobias 2016.

# Key Physics of 2D MHD, cont'd

- Turbulent Diffusion: (Cattaneo + Vainshtein '92; Gruzinov + P.D. '94)

Closure +  $\langle A^2 \rangle$  conservation  $\implies$  Quenched Diffusion of B - field

From:  $D_t \sim \eta_{anom} \sim \langle \tilde{V}^2 \rangle \tau_c$ 

To: 
$$D_t \sim \eta_{anom} \sim \langle \tilde{V}^2 \rangle \tau_c / \left[ 1 + R_m V_{A0}^2 / \langle \tilde{V}^2 \rangle \right] \sim D_{Kin} / (1 + Z)$$

- Once again,

Key Parameter: 
$$Z = R_m \frac{V_{A0}^2}{\langle \tilde{V}^2 \rangle}$$

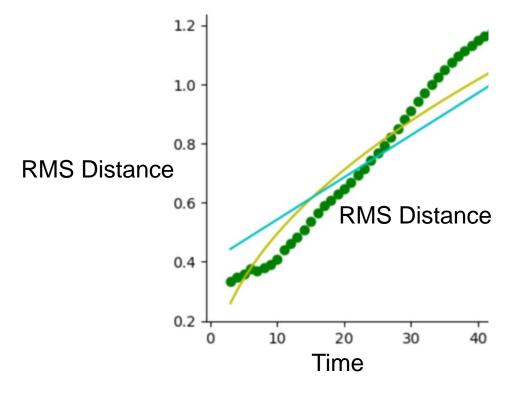
$$<\tilde{V}^2> vs V_E^2$$

N.B.:  $-V_{A0}$  is initial <u>weak mean magnetic field</u>  $-R_m$  large...

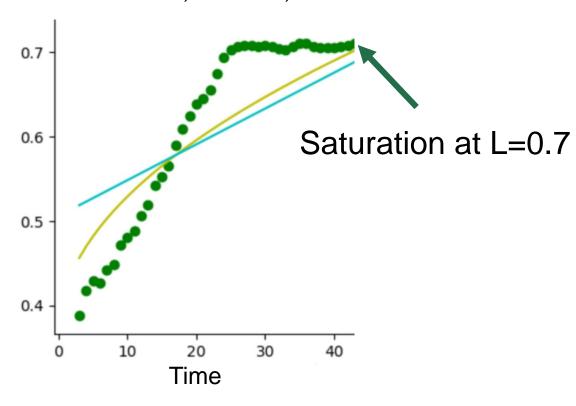
- Physics is simply  $\underline{\mathsf{V}} \cdot \nabla \omega$  vs  $\underline{\mathsf{B}} \cdot \nabla$  J and stretching

#### ⇒ Time evolution of Spreading

Hydro regime: Rm = 100, Bo = 0.001, Z = 0.01



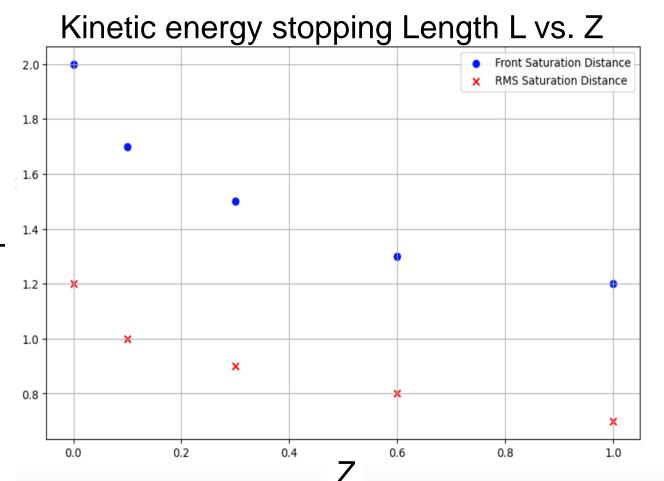
MHD:Rm = 100, Bo = 0.01, Z = 1



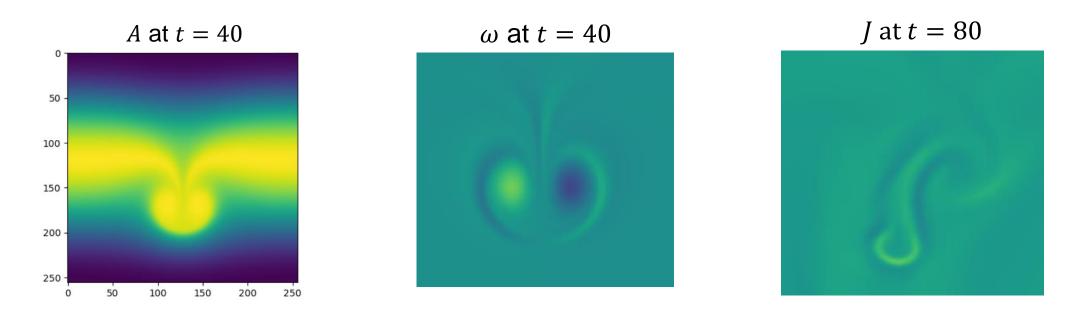
## ⇒ Spreading vs. Z - Turbulence

- Now consider turbulence:

- Kinetic Energy Stopping length decreases with increasing  $Z=R_m \frac{V_{A0}^2}{<\!V_{rms}^2\!>}$  N.B. Z reflects both  $R_m$  and  $B_0$
- Systematic difference between Front and RMS saturation evident, trends match



# $\Rightarrow$ Single Dipole in weak $B_0$

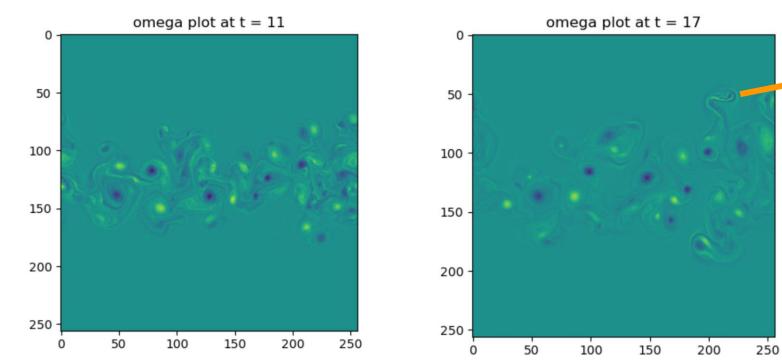


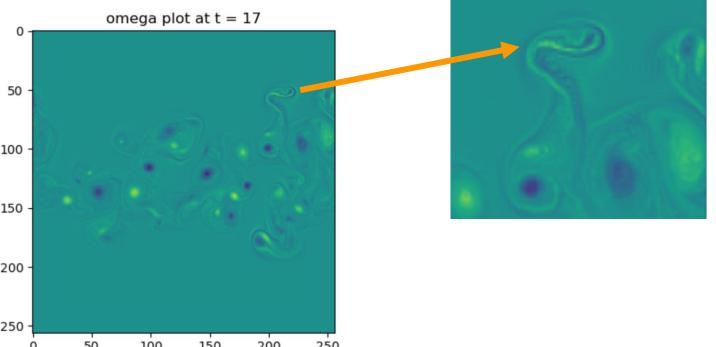
Note wrapping filament tends to cancel and push on dipole, so it distorts and ultimately bursts Filament and vortex bursting. Concentration of energy at small scale ⇒ fast dissipation

Connection: vortex busting ⇔ MHD cascade singularity?!

#### Close Look at Vorticity Field

#### Bursting/Filamentation





- Z=3, Rm≈50, Re≈500, B=0.01
- Dipoles evident at early times, but encounter stronger field as migrate
- Vortex bursting occurs at later times ⇒ Spreading halted.

#### Single Dipole Penetration

- Dipole penetration decreases with increasing Z
- Evidence that varying  $B_0$  and  $R_m$  impact penetration.

But Z is not the full story...  $P_m$  dependance?

#### Log-Log Plot of L against Z

