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Outline

* Things in Common — especially shear layers

« OV of Greenwald Limit Physics (L-mode)
— Basics, History
— Emphasis - Role of particle transport

- Fluctuation studies < shear layers
* Theory of shear layer collapse
— Shear production and electron adiabaticity

— Noise, neoclassical screening and predator-prey

— Current Scaling? — Dimensionless parameters



Outline, cont'd
* Sneak Previews
— J-TEXT Experiments (T. Long)
« Shear Layer Collapse
 Turbulence Spreading and Transport Events
« Comment — Bias Experiment
« What of HDL? (Xu Chu)
— Broadening the SOL by turbulence spreading

 Discussion



Things in Common

* There are no “good” tokamaks... But all tokamaks do have

certain things in common. And each tokamak is diabolical in its

own unique way -- apologies to Lev Tolstoy

* Things in common: Ohmic Phenomenology (Rice 2020)

1. LOC->SO0C transition (mitigated by pellet injection; Greenwald ‘84)

2. Intrinsic rotation reversals
3. L2>H P minimum vs n

4. Density Limit
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ltems 1 ~ 4 (previous) unified by scaling:

Nerie R = By ng ~ I, is unifying scaling
for Ohmic Phenomenology

= n/n; = const (various const)

=»| suggests Greenwald density limit is fundamental

Something else ->|Edge Shear Layer

Evident shear layer near last closed flux surface in most tokamak
operating regimes

Discovered by Ch.P. Ritz, TEXT ‘84



Shear layer impacts/regulates edge turbulence even

Ritz, et. al. 1990
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FIG. 1. Radial profiles for a discharge with 8,=2 T. plasma
current of 200 kA, and chord-averaged density of Hekod
=2x10" cm ™. {(a) Phase velocity of the fluctuations rp
(closed circles), vg, «p plasma rotation (open circles), and drift
velocity eg. (b) Density and floating potential fluctuations.
{c} Density and velocity shear. The statistical error for indivi-
dual shots is of order the symbol size and shot-to-shot reprodu-
cibility is given by the individual symbaols. The systematic er-
ror in the plasma position is 0.5 em or r/a=0.,02.

in Ohmic/L-mode, enhanced in H-mode

Shear layer
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FIG. 3. Peak values of the normalized two-point correlation
function for poloidally and radially separated probes with fixed
separations of dr =3 mm.

Title: “Evidence for Confinement Improvement by Velocity Shear Suppression of Edge Turbulence”

n.b. not H-mode!



Why an Edge Shear Layer?
_61‘([2"179)

/

Fluctuation intensity profile - Reynolds Force

Transition to sheath etc. beyond last closed flux surface

Also in Stellarators - c.f. Hidalgo...

(Universal)

2

The Point: Without shear layer, L-mode confinement would be worse...



I-mode per
regime

Preview: A Developing Story

From Linear Zoology to Self-Regulation and its Breakdown

(Drake and Rogers, PRL, 1998)
| MHD Instability

Made

el o]

(Hajjar et al., PoP, 2018)

State

Electrons

Turbulence Regulation

Base State - L-mode

Adiabatic or Collisionless

a>1
Weak damping

Secondary modes

(ZFs and GAMSs)

H-mode

Irrelevant

Mean ExB shear
VPi/n

Degraded particle confinement

(Density Limit)

Hvdrodvnamic
a<l1

or damped

None - ZF collapse due

weak production

: RBM & Barrier
@m HD @ . EMCDW
i —Mode ]
).2 1 CDW
aq
Rq?d . :
* Aypp = — 948 _, </p and ballooning drive

to explain the phenomenon of density limit.
» Invokes yet another linear instability of RBM.
*  What about density limit phenomenon in
plasmas with a low ?

Secondary modes and states of particle confinement

suppressed.

transport.

L-mode: Turbulence is regulated by shear flows, but not
H-mode: Mean ExB shear <»Vp, suppresses turbulence and

Approaching Density Limit: High levels of turbulence and
particle transport, as shear flows collapse.

Unified
Picture =>»

1.e. Shear Flow:

Density Limit

L-mode

H-mode

Weak (none)

>|<

Modest

i<

Strong Mean

Edge shear — as — order parameter




A Look at Density Limit Phenomenology

- Greenwald Limit



Density Limits: Some Basic

* Not a review!
« Greenwald density limit:

Iy

(Dimensions!) n=ng~ ) .

Plasma Current Limit
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 Manifested on other devices

— See especially REP (n ~ I, scaling)

Aspects

N.B.: density attractive
ntT; [etc

Line averaged limit

(Too) simple dependence!?
Begs origin of I,, scaling?!
Stellarators? — T.B.C.

Most fueling via edge - edge
transport critical to n limits
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A Brief History of Density Limits

« OlId story, Many Density Limits...
« Recall: Murakami, Callen et. al., Hugill ...
* Most = evolutionary dead ends...

=>» Survivor: (c.f. Greenwald PoP, “20 yrs of Alcator C-Mod”)

« Greenwald, emerged late '80s
* Where from? - discharge termination studies Alcator-C
- n tracked I, consistently

« Regression plots followed...



A Brief History of Density Limits
- Conventional Wisdom

« High density - edge cooling (transport?!)

« Cooling edge - MARFE (Multi-faceted Axisymmetric Radiation
from the Edge) by Earl Marmar and Steve Wolfe

MARFE = Radiative Condensation Instability in Strong B,
after G. Field '64, via J.F. Drake ‘87 : Anisotropic conduction is key
« MARFE - Contract J-profile - Tearing, Island ... = Disruption

after: Rebut, Hugon ‘84, ... , Gates ...

« But: more than macroscopics going on...



« Argue: Edge Particle Transport is fundamental

— ‘Disruptive’ scenarios secondary outcome, largely consequence of edge

cooling, following fueling vs. increased particle transport

— 7, reflects fundamental limit imposed by particle transport

* An Important Experiment (Greenwald, et. al. ‘88)

— Density decays without disruption after

lp = 370 kA

shallow pellet injection

B IP = 180 kA

— n asymptote scales with I,

R, (10%/m%)

2 | — — Density limit enforced by transport-

induced relaxation

Time (s) t — Relaxation rate not studied
(Alcator C)

— Fluctuations?



* More Evidence for Role of Edge Transport
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— Post-pellet density decay time vs J /7.

— Increase in relaxation time near (usual)

limit: J/ 7 ~ 1+

— Large Pellets in DIII-D beat 71,

— Peaked profiles <> enhanced core
particle confinement (ITG turbulence

reduced?)

— Reduced particle transport =» impurity

accumulation!

(N.B. Deeper deposition here)



Density limit €-> Fluctuation Structure

(us)
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C-Mod profiles,
Greenwald et al, 2002, PoP

Average plasma density increases as a
result of edge fueling — edge
transport crucial to density limit.

As n increases, high L transport
region extends inward and
fluctuation activity increases.

Turbulence levels increase and
perpendicular particle transport
increases as n/ng; — 1.




Toward Microphysics: Recent Experiments - 1

(Y. Xu et al., NF, 2011)

fiﬂ_}—'l.tix'l’-_]'gm
T

?i i ' | <ng>=2.0x 0" LRCvsn
N\ - m— .
o2l 1\ i ] e Decrease in maximum correlation value of LRC
JF 00 J"’*’“ x\ . j,f"“"\ (1.e. ZF strength) as line averaged density n
—0.2f \j \/ N increases at the edge (r/a=0.95) in both
‘Z: TEXTOR and TJ-II.
-200 - 1Itj:-:': 0 1 “‘n"l 200
(a) lag (us) e At hlgh density ((Tle> > 2 X 1019 m_3), the
L % ' ] LRC (also associated with GAMs) drops
- o ] rapidly with increasing density.
odRa 4G oo o ] * The reduction in LRC due to increasing density
.. = is also accompanied by a reduction in edge
Y mean radial electric field (Relation to ZFs).
3 35 4 45 5
(b) Line average density (10'° m™)

Is density limit related to edge shear decay?!

n
See also: Pedrosa ‘07, Hidalgo 08 ...



P'/.F'f P total

Recent Experiments - 2

(Schmid, Manz et al., PRL, 2017) — stellarator experiment

Eddy Tilt

(a)

— explored collisionality, not n/n

100 7 7T

= He
= Ne
- il
L!lf ?
0.10 |- " ...__]:.

0.01

E (b) H ]

1l
)1

PZF/Ptot ‘

Experimental verification of the importance of
collisionality for large-scale structure formation in TJ-K.

Analysis of the Reynolds stress shows a decrease in
coupling between density and potential for increasing
collisionality — hinders zonal flow drive (Bispectral

study)

Decrease of the zonal flow contribution to the total
turbulent spectrum with collisionality C.

il 1 PR S | 1 1 1
1.0 10.0

a) Increase in decoupling between density (red) and potential (blue) coupling with collisionality C.
b) Increase in ZF contribution to the spectrum in the adiabatic limit (C—0)

C < adiabaticity k{V5,/wv

7 density via collisionality




Fluctuation + n/ng scan, R. Hong et. al. (NF 2018)

i, /g =~ 0.3 fi. /neg = 0.6 fi. /ng = (L8
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« Joint pdf of V., V, for 3 densities, i — n

* T —Tsep = —1lcm

* Note:

— Consistent with drop in P, observed |Production by Reynolds stress

asn—>ng




Key Parameter: Electron Adiabaticity

x 10%°

3 : : ) o kiv? . .
I v e Electron adiabaticity a = 2R emerges as interesting
r ; |(1)|Vel'
T2 local parameter. a~3 — 0.5 during n/n; scan
o~ -
:::?: 1 LR v .
> : * Particle flux 7 and Reynolds power P, =
— (Vg)0,(V,.Vp) | as a drops below unity
0 : . .
25 K10 , , => shear layer collapse. Particle flux rises
P L J .
__56 : . . _ 10 B
E 15 o. ’ Red 0.3 ng
cr_:l ’ % Blue 0.6 Ng
i | Green 0.8 ng
0 1 2 3 4 5
ki vie /wVei -2 al 0 1 2
adiabaticity I = Tsep (cm)

N.B. Plasma beta remained very low = cannot be explained by appeal to RBM



Synthesis of the Experiments

* Shear layer collapse and turbulence and D (particle transport) rise as ﬁi - 1.
G

- Key “microphysics” of density limit !? can trigger cooling, et. seq.

2..2
kjjvin

 ZF collapse as a = drops froma > 1toa < 1.

lw|ve

—> Effect on production = Reynolds power drop

* Degradation in particle confinement at density limit in L-mode is due to breakdown
of self-regulation by zonal flow. Back to Predator-Prey, now focusing on
collapse/back transition

* Note that /5 in these experiments is too small for the simplistic Resistive Ballooning
Modes (RBM) explanation.

» How reconcile all these with our understanding of drift wave-zonal flow physics?
— Familiar Themes, New Direction



The Key Questions

« What physics governs shear layer collapse (or

maintanance) at high density?

< ‘Inverse process’ of familar L->H transition !?

: . | shearlayer - barrier
.e. L>H '{turbulence

ity Limit: strong {Shearlayer,
Density t turbulence- turbulence

=>» What is the fate of shear flow for
hydrodynamic electrons: kifV5/wv <1?  Why?

- What of high density, with kfV5,/wv > 1 ?
9 Paux



A Theory of Shear Layer Collapse



\&
1 mode-per-regime

A Simple, Generic M()del { 1 generic model in multiple limits

d ) )
Hasegawa-Wakatani for 4&1 I1j =)+ DoV K22,
. . . a
Collisional DWT: o r?h ) 2 ||V
= vi@—nwnv(v $)
Fluctuations Mean Fields (Zonal)
. / \
on+1v,.Vn = —ILhVﬁi@ —n)— {ca n}+ DoV 0.1 = —0y (V1) + D Vi2h
902 | 5 TOIG = . o2 202 0 VE P = =0 (Ve V2 D) + o ViV
ON%0 + 0, VV20 = —|—V” 6—i)—{,V ¢} + poV:(V<e) |
‘ _—

Reynolds Stress (GIT)

For neoclassical mean field evolution
2 2 2
Pi = Pefrr = Poi

?



Dispersion Relation fora < 1and a > 1

a(1+ k2 p7)

Dispersion relation: W= % ( — i

Adiabatic Limit:
(x> 1land a > |w|)

ro . _ —_—
Wadiabatic —

.2 2 .
1+ kf pe a
Wave + inverse dispersion

(Classic Drift Wave)

.2 92
‘I‘J_Ps

&1+ K p2) )9)

.2 9
’I‘J_ps

Hydro Limit:
(x K 1land @ < |w|)

Whydrodynamic =

~ Convective Cell

key: ¢ < 1 - drift wave converts to convective cell



Simulations 1?

» Extensive studies of Hasegawa-Wakatani system
for kfVie/wv < 1, > 1 regimes.
i.e. Numata, et al '07
Gamargo, et al '95

Ghantous and Gurcan '15

+ many others

All note weakening or collapse of ordered shear flow in hydrodynamic regime

(kifVihe/wv < 1), which resembles 2D fluid/vortex turbulence

* Physics of collapse left un-addressed, as adiabatic regime (kHZVtzhea)/v > 1)

dynamics of primary interest - ZFs



Step Back: Zonal Flows Ubiquitous! Why?

« Direct proportionality of wave group velocity and wave energy density flux

to Reynolds stress <-> spectral correlation (k, k)

. O=o 1111118

X XXX XXX XXX XX
wy, = —f k. /k% : (Rossby)

e LLLLLLR

> (Bl ==Xy kekylpil? (1
1

So: V; > 0 (8> 0) € kk, >0 (%7,)<0 . )
Propagation €-> Stress <« !

« Outgoing waves generate a flow convergence! = Shear layer spin-up




But NOT for hydro convective cells:

_ Wl
r = 2
2k pg

1/2
] —> for convective cell of H-W (enveloped damped)

2 ~ o~
. V= _zkki,zfz w, €27 (NV,) = —(k,kg); directlink broken!

- Energy flux NOT simply proportional to Momentum flux =»

!

- Eddy tilting ((k,-kg)) does not arise as direct consequence of causality
= ZF generation not ‘natural’ outcome in hydro regime!

=>» Physical picture of shear flow collapse emerges



ZF Collapse €2 PV Conservation and PV Mixing?

T g ‘]";;:

—7& « PV =V2¢ + By is conserved from 6, to 0,.
a B '(-‘:(J

\_|

—

Density
S
Y

2

How reconcile?

Rossby waves:

» Total vorticity 2Q + @ frozen in— Change
in mean vorticity () leads to change in local
vorticity w — Flow generation (Taylor ID)

Drift waves:

« InHW,gq=Inn—-V2¢p=Inny+h+ ¢ —
V2¢ conserved along the line of density
gradient.

* Change in density from position 1 to position
2-> change in vorticity =2 Flow generation
(Taylor ID)

h critical

Quantitatively
Total PV flux Fq = (U, h) — psz(ﬁszqb)

T T

Adiabatic limit @ > 1:
+Particle flux and vorticity flux are tightly
coupled (both prop. to 1/a)

Hydrodynamic limit ¢ < 1 :
- Particle and vorticity flux decouple

I, = ZF generation

PV mixing still possible without ZF
formation = Particles carry PV flux

Branching ratio changes with a!

-
Radius



Some Theoretical Matters



Reduced Model & BLY Reloaded

« Utilize models for real space structure to address shear layer

e.g.{ BLY (98) => Outgrowth of
Ashourvan, P.D. (2016)  staircase studies

See also: J. Li, P.D. ‘2018 (PoP) — Zonal flow saturation for friction > 0 4=

— Wave-flow resonance

« Exploit PV conservation: (PV €<-> Potential Vorticity)
— g=Inn —V2%p - conserved PV €<= equivalent to phase space density
— §=A—-V?p (n) - mean density

(V%) - mean vorticity } define mean PV
So (G*) = € — fluctuation potential enstrophy

* Natural description: (n),(V2¢),(G*) = ¢ e = fluctuation P.E.



Reduced Model, cont'd Lnix = o > 1,

(1 + (Lo Zu)2)6

o,n = —0,, + DyV2n

N.B.: Encompasses ‘predator-prey’ model
O,u = —0,I1 + py Viu

3
d;e + 0,I, =—(,—IH)(@0dmn—0,u) —ez2+P

* Fluxes: { can encompass 2 length scales;

I, > Particle flux (V.7) not critical here

[T > Vorticity flux (%, V2¢) = —9,(V, V) (Taylor, 1915)

¢

Reynolds Force
I'. = turbulence spreading, (V&) = triad interactions



Expression for Transport Fluxes:

5T, =—Dan= _aFhm)dnn snr | Diffusive Flux
w+ial?  dr

- =—yod,u+II"%

/ \ (Physics of vorticity gradient t.b.d.)

_ Production and acceleration of flow by V'n
Shear relaxation by turbulent

viscosity
il (62)  kepeswad (@)@ —o7) = P +wt) = wralal|
B Ym v H es __ _ >*
X = ER w2 |w + i&|? (&%)
- [, = —12,,\EOy¢ —_— Turbulence Spreading

Clear dependence of D, y,I1"®° on |w| and @&




Scaling of transport fluxes with « (adiabaticity parameter)

Plasma Response Adiabatic Hydrodynamic cos

Particle Flux T r. -2 = 1 electron response passes
adia Wdro™ T
ydro : :
Va from adiabatic (o >1) to
Turbulent Viscosity x 1 1 .
Xadia™ = X hydroN I hydrodynamlc ((1 <1)
a Va
. res 1
Residual stress I1 [res . ~— - Hreshydmfv-\/ a a<1 > weak flow
Hres .
= Vorticity Gradient a® al production

e Mean vorticity gradient Vu (i.e. ZF strength) proportional to a << 1 for
convective cells.

* Weak ZF formation for @ << 1 = weak regulation of turbulence and
enhancement of particle transport and turbulence.



Physics of Vorticity Gradient ?!
- Beyond shear ... see also: R. Heinonen, PD 2020

« Vu vs. flow shear, is stronger flow order parameter

Flow

« [Jump in flow shear, over scale [] = [Vu]

« Vorticity gradient prevents global alignment of eddy Sheat \l

or modes with uniform shear
e [I=0 - Vu ~ HreS/xT Shear

« Standard interpretation: Enhanced ‘drift wave

I

elasticity’ = enhanced Vu converts turbulence to 1

waves, so reducing mixing. (after Mcintyre) L



Desperately Seeking Greenwald

- What of current scaling?
- What of a > 1 — Collapse Mechanism?

- Dimensionless Parameter !?

See: R. Singh, PD; NF 2021



What of the Current Scaling?

* Obvious question: How does shear layer collapse

scenario connect to Greenwald scalingn ~ L,?

« Key physics: shear/zonal flow response to drive is

‘'screened’ by neoclassical dielectric

ie. — €neo = 1 + 4mpc? /B
| N.B.: Points to

_ _ _ key to stellarator.
— effective ZF inertia lower for larger I,



Current Scaling, cont'd

* Shear flow drive: emission from ‘drift-mode’ interaction

incoherent } '/ 5 plroduction
emission d ( (e¢)2> 2k|5k,q| Terg

|\ ] 1zF| &
S = polarization NL dt T |€neo (@)1

— Production €-> beat drive neoclassical response

— Response (neoclassical)

* Rosenbluth-Hinton ‘97 et seq

Increasing I, decreases pg and
off-sets weaker ZF drive

¢ Sk,
(QT)ZF ) f (1 + 1.16(;;;))2) 47 p? -

c1/2

\ zonal wave #

classical neo



Current Scaling, cont'd

¢ (e;b)z e 2
(Vg), = e ~B2P
i DW

~ P
pi + 1-65%1051'] \

. production factor
Production <« 1,

« Higher current strengthens ZF shear, for fixed drive

« Can “prop-up” shear layer vs weaker production

» Collisionality? — Edge of interest!?



Screening in the Plateau Regime!? (Relevant)

(qbk(oo))” e?/q(r)?  €*/q()® 1 (@)2

3 (17¢ [de 4
i T h2p a1 ——(2€)3/2
I zfo dA=—hp ~ 1 == (2€)

 Favorable I, scaling of time asymptotic RH response persists in plateau

regime. Robust trend.

« Compare to Banana (L = 1);

ZF 2
(Zki"(‘)’f) — <?> Current scaling but smaller ratio
k T



Summary re Collisionality

2
« Banana(RH) Vi < Wy < Wrj Py () (39> ~ ]2

) ¢ (0)

2
« Plateau Wpi < Vi < Wi ¢k(00) = (&> 1 L<1
¢x (0) L
Scaling persists
)> { weaker factor
* Pfirsch-Schluter Wpi < Wi < Vij

©

=» GAM can still manifest favorable trend with L, in P.-S.

¢y () _
¢ (0)

1 Psc = Pi



Revisiting Feedback (c.f. Singh, P.D. PPCF 21)

* How combine noise, neoclassical dielectric and feedback dynamics? - back to Predator-Prey...

Zero D: a>1
High By enhances
shear satn. / ZF coupling
Limiting reduction % — YE, — 0E,E, — nE2 el B2 ]2
of complex ZF, dt v t neo 0~ Ip
corrugation s
evolution 0E, i
—2 = GE,E, — YaF, + BE? B ~ €2, ~ BY ~ It
modulation growth ~ damping  nonlinear noise \ N.B.: I, enhances modulational growth

High By enhances

Re: Developments: .
noise

« Zonal flow and turbulence always co-exist

« Zonal flow energy increases with current

» Turbulence energy never reaches ‘old’ modulation threshold

cf: extends P.D. et. al. ‘94 et. seq.

« Zonal cross-correlation import TBD



Revisiting Shear Layer Collapse

« For collapse limit, criterion without noise is good approximation to with noise

o

« Derive shear layer persistence criterion 1.5¢ Wi noise w/o noise
1 L i
pS > 't - 6 _ 0
— 1 CT'LL. ZF energy m ~/o
(pgLn)2 R
~ 2 2 3 ]J;":]. 0.5¢ \\“‘\ 0.05
crit. = 7 d 5 (l +QJ_!O;) ) .
' 0 2k2p200 g1 gt Bocl-—— oo ““
0 ‘ =~ hu/o
0 0.2 E, 0.4 0.6
=»|Dimensionless parameter Ll turbulence energy
(poLn)2 Larger By enhances persistence of ZF




Collapse Criteria, Cont'd

« Can determine critical particle source strength triggering collapse

(i) > (crit.) (fuel strength limit)  crit. ~ pg/p;

ncs

« Then convert to local limit on edge density:

1
Ps (5N3 (orit!) =~
n < ” (CS) (crit") L,
 Variations for charge exchange friction...
=» Density limit by shear layer collapse scenario seems viable for a > 1.

Neoclassical screening is key.



More to say, but better to

revisit reality...



SBEMR (105, Dicgo OFPP 2

e SWIP

Experimental study of edge shear layer
evolution near the density limit

of J-TEXT tokamak

T. Long (JEIE)!, P. H. Diamond?, R. Ke (7 %1)2,

M. Xu (F8%)! and J-TEXT team3

1 Southwestern Institute of Physics (1%L W 520 75 FE), Chengdu, China
2 CASS and Department of Physics, University of California, San Diego, CA, USA
3 College of Electrical and Electronic Engineering, Huazhong University of Science and

Technology (B FLFEA %), Wuhan, China
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Edge shear layer collapse as n approaches n;

« As line-averaged density approaches Greenwald density, edge sh
ear layer collapses.

« The ratio of Reynolds power Py, to production power P, decrease
s dramatically.

UVp,ExD

—¢—032n
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LCFS: r = 25.5cm
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Edge shear layer collapse as n approaches n;

« Edge shearing rate |wg| = |ar(v3,EXB)| decreases as line-average
d density increases.

« Edge shearing rate decreases sharply as electron adiabaticity o

< 1.
8 . . 8

— & 130 kA
— 49— 155KA

CFG' —4— 180 kA

VAl

10

(@)

3

> 3 4 5 6
Ne (1019m—3)
Both Py./P; and |w | dropas a < 1
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Turbulence spreading behavior

 Turbulent fluctuation energy transport T = (#,7i%)/2 and turbulent

spreading rate S = —V(#,7i%)/2 increase as n approaches n.

(107 m. &) (a) —e—0.32n,
60 —e—0.45n
40 —— O.59nG
~ —+— 0630,
20
0
ool (10FmS s (b)
50
N
0
-50
24 245 25 255
r (cm)

Collapse of shear layer —» enhanced turbulence spreading
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Turbulence spreading behavior

* Turbulence spreading increases as n/n. increases.
« Turbulence spreading increases as a decreases, sharply for a < 1.

160 160
* 130KA N ° ¢ 130KkA
¢ 150KA ¢ 150kA
120¢ ¢  190KA : 1 120 ‘ ¢ 190KkA |
¢ 39 6 -1
gol (10%°m®s™) . 80 107 m=s )
n e 7p) v
40} : : 40 K
2 M ¢ 1 4
ot L 24 - 0 ¢ ¢
02 03 04 05 06 0 1 2
n/na o

Collapse of shear layer releases turbulence propagation event.

Hereafter “transport event”.
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Low frequency "transport event"

« As n approaches n., the low-frequency components (<50 kHz) of
ion saturation current fluctuations increase drastically.

isat/’sat =fi/n

r=25cm - r=25cm
(a) (b)
; =
10 S
= ~ 40°
S —_ 10
Uy s
— ;
t~
§ 10° E 7
10
<.
107 : : 10°° - :
1 10 100 1 10 100
f(kHz) f(kHz)

Large low-frequency fluctuation as n — ng.
(Hurst parameter TBD)
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auto correlation

cross correlation

Low frequency "transport event"

As line-averaged density increases:
> auto correlation time 7, for I,,, increases
> cross correlation of radially separated I, increases

I s0t

(a)

S\

— 0.32nG
0.63nG

two radially separated I

A~

o~

-4Q -20 0

20 40

T (ps)

two radially separated Iy

(b}

cos (¢)

As density increa
ses:

» coherence in |
ow-frequency

range (2
-50 kHz) incre
ases;

» cross phase is
closeto 11n2
-50 kHz.
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Low frequency "transport event"

. PDF of I

» increasing skewness as n/n; increases due to more positively

0.2

biased tail.
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>
=
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0
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kurtosis: 3.3
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0.02
0.01
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0.02 skewness: 0.6

= 0.01
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Conclusions

» Shear layer collapses as n — ng, resulting in enh

anced transport
» Both Py, /P; and |w,| decline
» Increased turbulence spreading as n — ng
» a < 1 emerges as “trigger criterion ” here
» Collapse = “quasi-coherent” overturning event,

“slug” emission
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%)tivation

* Goldston, et. al. heuristic drift scaling [1] works well for present day discharges.
Based on neoclassical transport: A ~ vp T ~ €pg

* Goldston, et. al. [2], pointed out the importance of the competition of E X B shear
and the interchange mode 1n the SOL.

¥~ cs/(RD)V? — ¢ /22

* Objectives:

* Studying the SOL stability with combined effects of E X B shear, sheath

resistivity and interchange mode, and the possibility of broadening the SOL
with locally generated turbulence.

* Study the influence of turbulent spreading from pedestal on the SOL width

Universi ity of Chinese Academy of Sciences

[1] R. J. Goldston, Nuclear Fusion 52, 013009 (2012).
[2] R. J. Goldston, A. Brown, Bulletin of the American Physical Society, 2020




Linear Analysis: SOL Stability

Model: (Linear Perturbation of the model by
Myra. et. al. 2002 [3]):

(0,08¢ + Arwse /10,08 — e */*TBD,,6n
) = ae*? T §¢p + vAZ5¢
0:6n + Apwge /9,60 + 8,6¢0,Inn

\ = DAén/n+ 2D0,.Inny0,6n
(T)Profile  Note: B = 2p/R
: Usual: denoted by S;
B
C? | Shearing Rate:
: Wg = 3//1%"
— | Small Heat Load Width

Linear growth rate with neoclassical diffusion.

Max Linear Growth Rate Compare
0.2

0.1

0.0

— q=6
q=9
q=18

Ymax/ YHD

-0.1

-0.2

% 2 3 4 s & 7 8 9 10 1 12
AT/AHD
Interchange mode is stabilized by the
combination of shear, sheath resistivity

and neoclassical diffusion.

University of Chinese Academy of Sciences




Spreading: Pedestal - SOL

Pedestal Intensity Flux: Ongoing

e Drift Wave: |
s (0)
e ' ~1.K0,K .
 K: turbulent kinetic energy L i (n)
. F~a—K6 K,a of 0(1) N .
. Balloomng Mode: Pedestal
L 0.5 A Parameters A\
e U~ A = L w ( pc _ ) 2r
Y A\ 1y Ly Ao
* L, is the pedestal width ot e
e« '~ p3 ~1’}2§'2 < ?‘---’Y>U
Pedestal : SOL

Analogue: Spreading of a turbulent spot

SOL Model with Intensity Flux
« d,e =ye —cgel™ —9.rI,
e Turbulent Energy Balance:
e T'y = A.lyle + gelt¥2,
* [j: intensity flux from pedestal
* Linear Damping:
* ¥ =Yo— 3/t ~ =3/i%
* Nonlinear Damping: (One possibility)
« Inverse Cascade: k = 1/3, ¢ = a/3

* 1o = TV/e

* Heat flux Q determines (T )., and enters the
model from ¢, 1n Y,

e SOL as a BL with 2 drives

University of Chinese Academy of Sciences




Spreading: I';,,i,

* What’s the minimal pedestal fluctuation needed to broaden the SOL?

* The criterion: A, = Ay, or equivalently ¥ = vp when 7 = 7.(4, = 7€9°)

CDW Ballooning
1. Balance Linear Damping: , 1. Balance Linear Damping:
« To=lylpty o I ~ Iyl/lfbosvlz)
Balancing with the estimation in the pedestal . (&) (ﬁ _ ) ' (qp)?/3 R1/3 \/,8_
, 1ovl (3Le)0'25 /1(3)'2561_0'5,0_0'25 Ly Ly P Ly t
Cs aln . 2. Balance Nonlinear Damping:
2. Balance Nonlinear Damping;: . Iy ~a32% B
o = e o (B (e _ 1) . 02
Balancing with the estimation in the pedestal Lp) \ Ly Ly bt
|6v] Le \ " 2.25_-0.75 ,—1.5 p—0.75
o~ (aLn> Ae2q""p~ R

The Question:
Is the turbulence level in pedestal to broaden the layer
compatible with good confinement?

University of Chinese Academy of Sciences




SOL Layer Width — Unified Estimation

Ao= A= Ja;w + e

r, = (WB/A —3/2")ex

+gelt®)
oc=0.6x=05

The fluctuation level is
converted from intensity flux
using DW estimation

Effective critical fluctuation
level 1s required.

10

0.00 0.01 0.02

— Linear+Nonlinear

0.03 0.04 0.05 0.06 0.07
edp/T
Keep only Nonlinear Damping

University of Chinese Academy of Sciences




Inside—Outside Separatrix Connection

L mode: HL-2A Wu Ting, et. al. Plasma Sci.

10t Technol. .
| | © 150 kA 6_><1O- : : &
A
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e
- T Al 14 ~
w4 A o
g 21 &kl =T Q
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Figure 7. The power of relative density fluctuation level at
r—rices =~ —15 to —10 mm versus SOL width with different
! ! s L plasma currents.
-10 0 10 20 30
P PSD of near (inside) separatrix
Turbulence spreading reduced at fi/n vs. SOL width

larger current

30

SOL widths larger for
stronger edge turbulence
levels at lower current.

Suggests Inside
turbulence—SOL width
influence due to spreading.
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Conclusions

* SOL is linearly stable due to large E X B shear and sheath resistivity

* Turbulent spreading from the pedestal can broaden the layer and should be
considered

* SOL width 1s related to intensity flux across the separatrix which is in turn
determined by pedestal parameters

* Intensity flux balances linear and nonlinear damping in the SOL

* There exist a minimal intensity flux for spreading such that A > Ay

* Future research:

« HDL: Strong layer broadening weakens shear stabilization and makes SOL interchange
unstable.

* Does SOL turbulence invade pedestal, cause H—=L, defining HDL?
* Two levels: onset and invasion, Gap?

University of Chinese Academy of Sciences




Discussion and Conclusions

« Density limit macroscopics rooted in microphysics of particle

transport, edge turbulence and shear layer

» Shear layer collapse as n — ng is origin of enhanced particle

transport

* Electron adiabaticity, neoclassical screening, incoherent

emission, zonal flow damping all enter dynamics of ZF collapse

» Predator-Prey model is unifying structure



 p./(pgL,)'/? > crit. is zonal flow persistence criterion. ID’s

dimensionless parameter characteristic of Greenwald limit

« ‘Second Wave’ of fluctuation experiments identifies production
ratio, enhanced spreading, « > 1 —» a < 1, ‘quasi-coherent’

phenomena

* Turbulence spreading across BMZ separatrix may mitigate

Goldston heat load pessimism but strong broadening = HDL



Looking Ahead (Experiments)

* Support the shear layer < bias (ongoing)
 L-mode with P, = collapse? Stress T*/n
* Reuvisit perturbation experiments
* Dog - Tail vs Tail 2 Dog and HDL

=» Role of SOL->Core spreading

* Negative Triangularity !?
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