Physics of SOL Broadening by Turbulence

P.H. Diamond UC San Diego

ITPA-PEP, April 2023

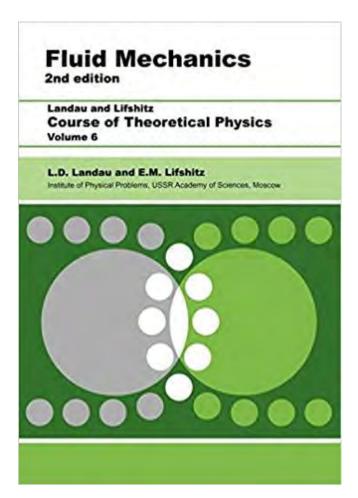
This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

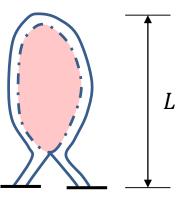
Background

Conventional Wisdom of SOL:

(cf: Stangeby...)

- Turbulent Boundary Layer, ala' Blasius, with D due turbulence
- $-\delta \sim (D\tau)^{1/2}$, $\tau \approx L_c/V_{th}$
- $-D \leftrightarrow local production by SOL instability process$
 - → familiar approach, D ala' QL
- Features:
 - Open magnetic lines → dwell time τ limited by transit,
 conduction, ala' Blasius
 - Intermittency → "Blobs" etc. Observed. Physics?



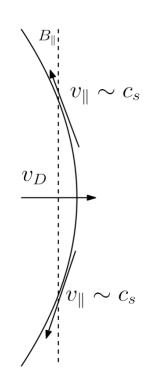


Background, cont'd

But... Heuristic Drift (HD) Model (Goldston +)

$$- \ V \sim V_{\rm curv} \ , \ \tau \sim L_c/V_{thi} \ , \ \lambda \sim \epsilon \ \rho_{\theta i}$$
 \rightarrow SOL width

- Pathetically small
- Pessimistic B_{θ} scaling, yet high I_p for confinement
- Fits lots of data.... (Brunner '18, Silvagni '20)



Why does neoclassical work? → ExB shear suppresses SOL modes i.e.

$$\gamma_{\text{interchange}} \sim \frac{c_s}{(R_c \lambda)^{\frac{1}{2}}} = \frac{3T_{edge}}{|e|\lambda^2}$$

shearing $\leftarrow \rightarrow$ strong λ^{-2} scaling

from:
$$\frac{c_S}{(R_C\lambda)^{\frac{1}{2}}} - \langle V_E \rangle'$$

Background, cont'd

• THE Existential Problem... (Kikuchi, Sonoma TTF):

Confinement \rightarrow H-mode $\leftarrow \rightarrow$ ExB shear

Desire Power Handling \rightarrow broader heat load, etc $\rightarrow \underline{\text{Both}} \text{ to be good } !$

How reconcile? – Pay for power mgmt with confinement ?!

- Spurred:
 - Exploration of turbulent boundary states with improved confinement: Grassy ELM, WPQHM,
 I-mode, Neg. D ... N.B. What of ITB + L-mode edge?
 - SOL width now key part of the story
 - Simulations, Visualizations (XGC, BOUT...) ~ "Go" to ITER and all be well
- But... What's the Physics ?? How is the SOL broadened?

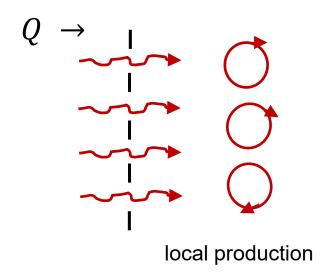
SOL BL Problem

SOL Excitation

- Local production (SOL instabilities)
- Turbulence energy influx from pedestal

Key Questions:

- Local drive vs spreading ratio $\rightarrow Ra$
- Is the SOL usually dominated by turbulence spreading?
- How far can entrainment penetrate a stable SOL → SOL broadening?
- Effects ExB shear, role structures ?

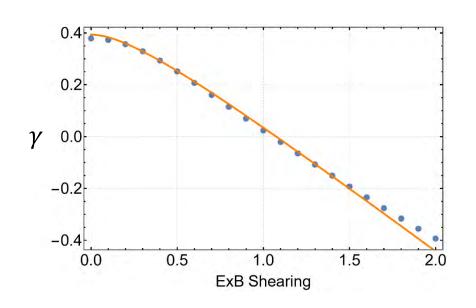


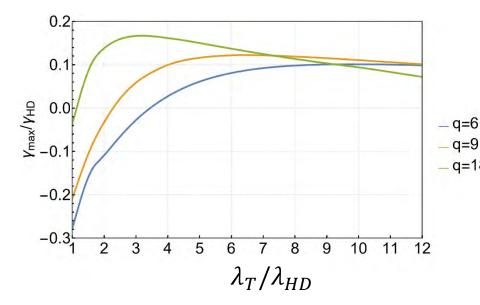
Physics Issues – Part II

- How <u>calculate</u> SOL width for turbulent pedestal but a locally stable SOL?
 - spreading penetration depth
 - must recover HD in WTT limit
- \rightarrow Scaling and cross-over of λ_q relative HD model
- What is effect/impact of barrier on spreading mechanism?
 - Can SOL broadening and good confinement be reconciled?

Model 1 – Stable SOL – Linear Theory

 Standard drift-interchange with sheath boundary conditions + ExB shear (after Myra + Krash.)





Maximal Linear Growth Rate of Interchange Mode in the SOL v.s. normalized layer width λ_D/λ_{HD} at different SOL safety factor q (with $\beta=0.001$)

Linear Growth Rate of a specific mode (fixed k_y) v.s. $E \times B$ shear at $q = 5, \beta = 0.001, k_y \cdot \lambda_{HD} = 1.58$.

- Relevant H-mode ExB shear strongly stabilizing $\gamma_{HD} = c_s/(\lambda_{HD}R)^{1/2}$
- Need λ/λ_{HD} well above unity for SOL instability. $V_E' \approx \frac{3T_e}{|e|\lambda^2} \rightarrow$ layer width sets shear

Model 2 – Two Multiple Adjacent Regions

"Box Model" – after Z.B. Guo, P.D.

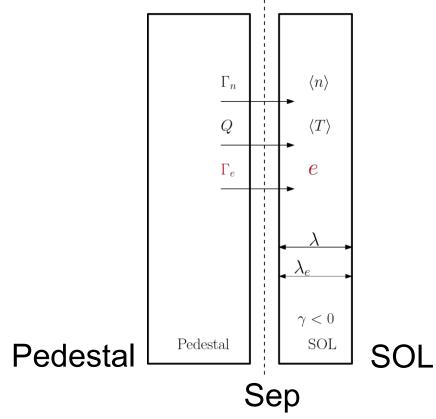


Illustration of Two Box Model: SOL driven by particle flux, heat flux and intensity flux (Γ_e) from the pedestal. The horizontal axis is the radial direction, and vertical axis is the poloidal direction.

Key Point:

- Spreading flux from pedestal can enter stable SOL
- Depth of penetration → extent of SOL broadening
- → Problem in one of entrainment/penetration

Width of Stable SOL

• Fluid particle: $\frac{dr}{dt} = V_{Dr} + \tilde{V}$ • Dwell time: τ_{\parallel}

$$\delta^2 = \langle \left(\int \left(V_D + \tilde{V} \right) dt \right) \left(\int \left(V_D + \tilde{V} \right) dt \right) \rangle$$

$$\langle (\text{step})^2 \rangle = V_D^2 \tau_\parallel^2 + \langle \tilde{V}^2 \rangle \tau_c \tau_\parallel$$

$$= \lambda_{HD}^2 + \varepsilon \tau_\parallel^2$$

$$\text{correlation time modest turbulence }$$

$$\text{turbulence energy density}$$

$$\text{correlation time modest turbulence}$$

$$\text{i.e. drift + diffusion}$$

- So $\lambda = \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right]^{1/2} \rightarrow \underline{SOL \ width}$ [Effects add in quadrature]
- How compute ε ? \rightarrow turbulence energy!

Calculating the SOL Turbulence Energy 1

- $K \epsilon$ type model, mean field approach (c.f. Gurcan, P.D. '05 et seq)
 - Can treat various NL processes via σ , κ
 - Exploit conservative form model
- $\partial_t \varepsilon = \gamma \varepsilon \sigma \varepsilon^{1+\kappa} \partial_x \Gamma_e$ Spreading, turbulence energy flux Growth $\gamma < 0$ NL transfer $\gamma_{NL} \sim \sigma \varepsilon^{\kappa}$ here contains shear + sheath
- N.B.: No Fickian model of Γ_e employed
- Readily extended to 2D, improved production model, etc.

Calculating the SOL Turbulence Energy 2

- Integrate ε equation \int_0^{λ}
- Take quantities = layer average

•
$$\Gamma_{e,0} + \lambda_e \gamma \varepsilon = \lambda_e \ \sigma \ \varepsilon^{1+\kappa}$$

Separatrix fluctuation energy flux ——

Single parameter characterizing spreading

So for
$$\gamma < 0$$
,

$$\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$$

 $\Gamma_{e,0}$ vs linear + nonlinear damping

$$\lambda_e$$
 = layer width for ε

Calculating the SOL Turbulence Energy 3

[Mean Field Theory]

Full system:

$$\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$$

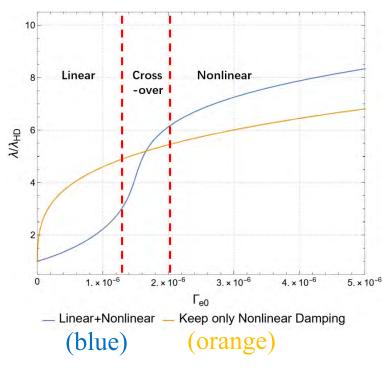
$$\lambda_e = \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right]^{1/2}$$

Simple model of turbulent SOL broadening

- $\Gamma_{0,e}$ is single control parameter characterizing spreading
- $\tilde{\Gamma}_{0,e}$? Expect $\tilde{\Gamma}_e \sim \Gamma_0$

SOL width Broadening vs $\Gamma_{e,0}$

SOL width broadens due spreading



 λ/λ_{HD} plotted against the intensity flux Γ_{e0} from the pedestal at $q=4,\beta=0.001,\kappa=0.5,\sigma=0.6$

Variation indicates need for detailed scaling analysis

- Clear decomposition into
 - Weak broadening regime → shear dominated
 - Cross-over regime
 - Strong broadening regime
 - → NL damping vs spreading

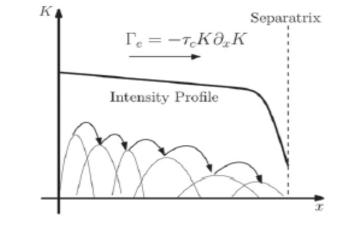
relevant

Cross-over for:

$$\langle \tilde{V}^2 \rangle \sim V_D^2 \implies$$
 cross-over $\Gamma_{0,e}$

• Cross-over for $\tilde{V} \sim O(\epsilon)V_*$

- Need consider pedestal to actually compute $\Gamma_{e,0}$
- Two elements



Does another trade-off loom?

- -- Pedestal Turbulence: Drift wave? Ballooning?
- -- Effect of transport barrier ←→ ExB shear layer → barrier permiability!?
- Key Point: shearing limits correlation in turbulent energy flux

i.e.
$$\Gamma_{e,0} \approx -\tau_c \, I \, \partial_x \, I \approx \tau_c \, I^2 \, / w_{\rm ped}$$
 (Hahm, PD +) ped turbulence correlation time \rightarrow strongly sensitive to shearing intensity

N.B. Caveat Emptor re: intensity flux closure!

Familiar analysis for $D \rightarrow Kubo$

$$D = \int_0^\infty d\tau \, \langle V(0)V(\tau) \rangle = \int_0^\infty d\tau \, \sum_k \left| \tilde{V}_k \right|^2 \exp\left[-k_y^2 \omega_s^2 D \tau^3 - k^2 D \tau \right]$$

• Strong shear (relevant) $au_c = au_t^{1/2} \omega_s^{-1/2}$

$$\tau_c = \tau_t^{1/2} \omega_s^{-1/2}$$

$$\tau_t \sim 1 / k\tilde{V}, \quad \omega_s \sim V_E'$$

Here, via RFB
$$\rightarrow \omega_S = \partial_r \frac{\nabla P_i}{n|e|} \sim \frac{\rho^2}{w_{ped}^2} \Omega_{ci}$$

- $\tau_c + w_{ped}$ + turbulence intensity in pedestal gives $\Gamma_{e,0} \approx \tau_c I^2/w_{ped}$
- Need $\Gamma_{e,0} \geq \Gamma_{e,\min} \approx |\gamma| \lambda_{HD}^3 \tau_{\parallel}^{-2}$

- Pedestal → Drift wave Turbulence
- Necessary turbulence level:

- Weak Shear
$$\frac{\delta V}{c_s} \sim \left(\frac{\rho}{R}\right)^{1/2} q^{-1/4}$$

- Strong Shear
$$\frac{\delta V}{c_s} \sim \left(\frac{\rho}{R}\right)^{1/2} q^{-1/4} \left(\frac{w_{ped}}{\rho}\right)^{-1/8}$$

blue – all damping
orange – nonlinear only
green – linear only
1

0.01

0.02

0.03

 $e\delta\phi/T$

0.04 0.05

- \rightarrow λ/λ_{HD} vs $|e|\hat{\phi}/T_e$ in pedestal
- \rightarrow ρ/R is key parameter
- → Broadens layer at acceptable fluctuation level

- Pedestal → Ballooning modes → Grassy ELMs
- Necessary relate turbulence to $L_{P,crit}$ / L_P 1
- Strong shear:

$$\frac{L_{P_c}}{L_P} - 1 \sim \left(\frac{q\rho}{R}\right)^{\frac{10}{7}} \left(\frac{R}{w_{ped}}\right)^{\frac{16}{7}} \left(\frac{w_{ped}}{\Delta_r}\right)^{\frac{16}{7}} \beta$$

• Supercriticality scales with $\frac{\rho}{R}$, β_t

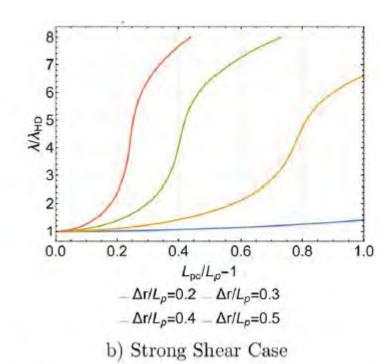


Figure 10. Typical cases for ballooning. The normalized pedestal width $\lambda/\lambda_{\rm HD}$ is plotted against supercriticality $L_{\rm pc}/L_{\rm p}-1$ at different mode width $\Delta/L_{\rm p}$.

Computing the Turbulence Energy Flux 5 → **Bottom Line**

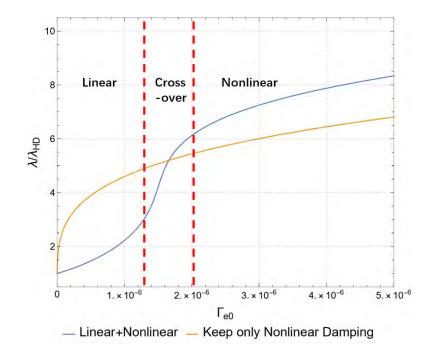
- SOL broadening to $\lambda > \lambda_{HD}$ achieveable at tolerable pedestal fluctuation levels
- DW levels scale $\sim \left(\frac{\rho}{R}\right)^{1/2}$
- Ballooning supercritical scale ~ $\left(\frac{\rho}{R}\right)^{10/7} \beta$
- 'Grassy ELM' state promising
- Sensitivity analysis \rightarrow Cross over ε determined primarily by linear damping (shear). Conclusion ~ insensitive to NL saturation

Partial Summary

Turbulent scattering broadens stable SOL

$$\lambda = \left(\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right)^{1/2}$$

Separatrix turbulence energy flux specifies SOL turbulence drive



$$\Gamma_{0,e} = \lambda_e |\gamma| \varepsilon + \lambda \sigma \varepsilon^{1+\kappa}$$

Broadening increases with $\Gamma_{0,e}$ cross-over for $\langle \tilde{V}^2 \rangle \sim V_D^2$

Non-trivial dependence

• $\Gamma_{0,e}$ must overcome shear layer barrier

Yes – can broaden SOL to $\lambda/\lambda_{MHD} > 1$ at tolerable fluctuation levels Further analysis needed

Broader Messages

- Turbulence spreading is important even dominant process in setting SOL width. $\Gamma_{0,e}$ is critical element. $\lambda = \lambda(\Gamma_{0,e}$, parameters)
- Production Ratio R_a merits study and characterization
- Spreading is important saturation meachanism for pedestal turbulence
 - Simulation should stress calculation and characterization of turbulence energy flux over visualizations and front propagation studies.
 - Critical questions include local vs FS avg, channels and barrier interaction, Turbulence 'Avalanches'
- Turbulent pedestal states attractive for head load management

Open Issues

- Quantify $\lambda = \lambda \left(\frac{|e|\widehat{\phi}}{T} \Big|_{ped} \right)$ dependence
- Structure of Flux-Gradient relation for turbulence energy?
 - Phase relation physics for intensity flux? crucial to ExB shear effects
 - Kinetics $\rightarrow \langle \tilde{V}_r \delta f \delta f \rangle$, Local vs Flux-Surface Average, EM
 - SOL Diffusive? → Intermittency('Blob'), Dwell Time?
 - SOL → Pedestal Spreading ? ←→ HDL (Goldston) ?
 - i.e. Tail wags Dog? Both wagging? → Basic simulation, experiment?

Counter-propagating pulses?