An Overview of Staircases in Confined Magnetized Plasmas

P.H. Diamond

Isaac Newton Institute, Cambridge and

Depts. Astronomy & Astrophysics and Physics, UC San Diego

Imperial College, 24/4/2024

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Mea Culpa

- Pitched for a Classical Physics audience
 - : extensive development
- Approach selective, not unique
 - ∴ several worthy topics neglected
- Tries to convey how confinement experiments drive new theoretical problems

Outline

- Brief Primer on Confinement Physics
- Simple Models, via Potential Vorticity / Total Charge
- Mesoscopics → Staircases
- Staircase Models → What do we learned?
- Current Issues, especially Noise effects, Resiliency
- Future Directions, especially + Fast Particles, Burning Plasma

Primer on Confinement Physics

Magnetically confined plasma → tokamaks

 Nuclear fusion: option for generating large amounts of carbon-free energy – "30 years in the future and always will be... "

 Challenge: ignition -- reaction release more energy than the input energy

Lawson criterion:

$$n_i \tau_E T_i > 3 \times 10^{21} \text{m}^{-3} \text{s keV}$$

→ confinement

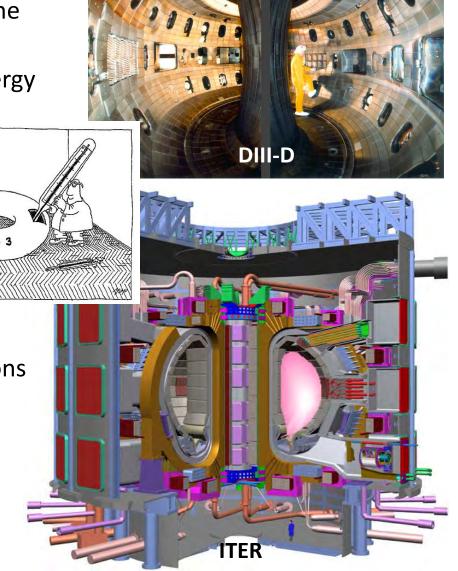
 $au_E \sim \frac{W}{P_{in}}$

→ turbulent transport

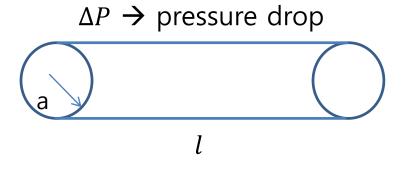
Turbulence: instabilities and collective oscillations

 \rightarrow low frequency modes dominate the transport ($\omega < \Omega_{ci}$)

- Key problem: Confinement, especially scaling
- NB: Not the only problem



- Essence of confinement problem:
 - given device, sources; what profile is achieved?
 - $\tau_E = W/P_{\rm in}$, How optimize W, stored energy
- Related problem: Pipe flow → drag ↔ momentum flux

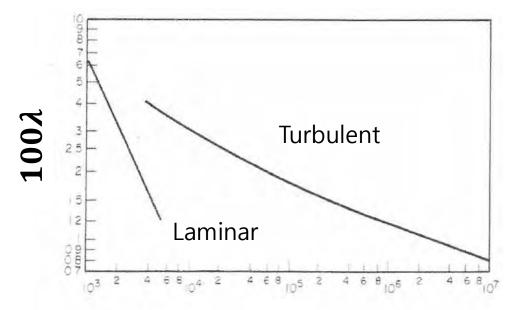


$$\Delta P \pi a^2 = \rho V_*^2 2 \pi a l$$

$$\Rightarrow \text{ friction velocity } V_* \leftrightarrow u$$

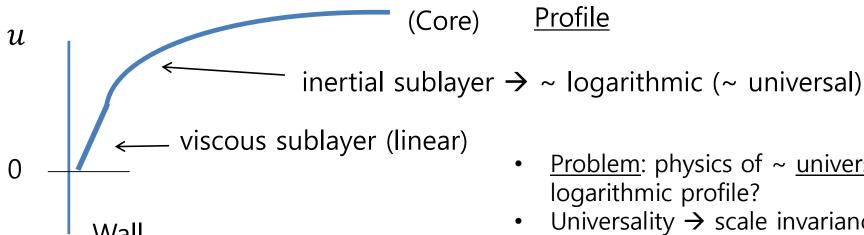
Balance: momentum transport to wall (Reynolds stress) vs ΔP

→ Flow velocity profile



Re

$$\lambda = \frac{2a\Delta P/l}{(1/2)\rho u^2}$$
Friction factor



- <u>Problem</u>: physics of ~ <u>universal</u> logarithmic profile?
- Universality → scale invariance
- Prandtl Mixing Length Theory (1932)

- Wall stress =
$$\rho V_*^2 = -\rho v_T \, \partial u / \partial x$$
 or: $\frac{\partial u}{\partial x} \sim \frac{V_*}{x} \leftarrow$ Spatial counterpart of K41 eddy viscosity Scale of velocity gradient?

Absence of characteristic scale →

$$v_T \sim V_* x$$
 $x \equiv \text{mixing length}$, distance from wall $u \sim V_* \ln(x/x_0)$ Analogy with kinetic theory ...

$$v_T = v \rightarrow x_0$$
, viscous layer $\rightarrow x_0 = v/V_*$

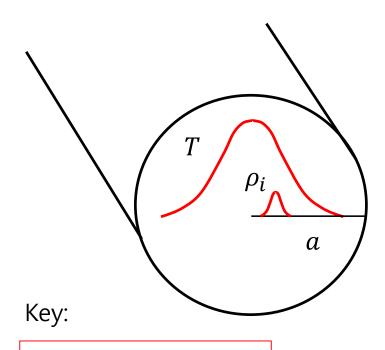
Primer on Turbulence in Tokamaks I

- Strongly magnetized
 - Quasi 2D cells, Low Rossby #
- \bigstar Localized by $\vec{k} \cdot \vec{B} = 0$ (resonance) pinned cells

•
$$\vec{V}_{\perp} = +\frac{c}{B} \vec{E} \times \hat{z}$$
, $\frac{V_{\perp}}{l \Omega_{ci}} \sim R_0 \ll 1$

- ∇T_e , ∇T_i , ∇n driven
- Akin to thermal convection with: g → magnetic curvature
- \rightarrow Re $\approx VL/\nu$ ill defined, not representative of dynamics
- → Resembles 'wave turbulence', not high Re Navier-Stokes turbulence
- \rightarrow $K \sim \tilde{V}\tau_c/\Delta \leq 1 \rightarrow Kubo \# near unity, Ku is meaningful parameter$
- \rightarrow Broad dynamic range, due electron and ion scales, i.e. a, ρ_i, ρ_e

Primer on Turbulence in Tokamaks II



2 scales:

$$\rho \equiv \text{gyro-radius}$$

 $a \equiv \text{cross-section}$

$$\rho_* \equiv \rho/a \implies$$
 key ratio

$$\rho_* \ll 1$$

- Characteristic scale \sim few $\rho_i \rightarrow$ "mixing length"
- Characteristic velocity $v_d \sim \rho_* c_s$
- Transport scaling: $D_{GB} \sim \rho \ V_d \sim \rho_* \ D_B$ Gyro-Bohm (optimistic) $D_B \sim \rho \ c_s \sim T/B$ Bohm (pessimistic)
- i.e. Bigger is better! → sets profile scale via heat balance (Why ITER is huge...)
- Reality: $D \sim \rho_*^{\alpha} D_B$, $\alpha < 1 \rightarrow$ 'Gyro-Bohm breaking'
- 2 Scales, $\rho_* \ll 1$ \Rightarrow key contrast to pipe flow
- Sneak preview: $\alpha \leq 1$
- related to turbulence driven zonal shear flows

Models via Potential Vorticity

Potential Vorticity

- GFD → The Fluid Dynamics of PV (R. Salmon)
- Ditto for Confined Plasmas.... (PD)
- $PV = q = \frac{\overrightarrow{\omega} + 2\overrightarrow{\Omega}}{\rho} \cdot \nabla \psi$ (ala' conserved charge density)

Rotating Fluid ψ conserved scalar

$$\frac{d}{dt} \left[\frac{\overrightarrow{\omega} + 2\overrightarrow{\Omega}}{\rho} \cdot \nabla \psi \right] = 0$$
 PV Conservation

• From:

Freezing in
$$\frac{d}{dt} \left(\frac{\overrightarrow{\omega} + 2\overrightarrow{\Omega}}{\rho} \right) = \left(\frac{\overrightarrow{\omega} + 2\overrightarrow{\Omega}}{\rho} \right) \cdot \overrightarrow{\nabla v}$$

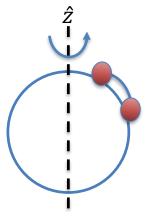
Conserved scalar $\frac{d}{dt}\delta\psi = 0$

Potential Vorticity, cont'd

Displace parcel in latitude, density/thickness

$$\rightarrow \omega$$
 changes

$$q = \frac{(\overrightarrow{\omega} + 2\overrightarrow{\Omega}) \cdot \nabla \psi}{\rho}$$



Conservation ←→ Symmetry, ala' Noether

Particle relabeling $\vec{x}(x,\tau)$ $s \rightarrow s' = s + \delta s$

PV conserved when particles can be relabeled, without changing the thermodynamic state

Useful Form: β -plane Equation

-
$$eta$$
-plane equation $\dfrac{d}{dt}(\omega+\beta y)=0$ (after Charney + ...) n.b. topography

- Locally Conserved PV $q=\omega+\beta y$ planetary $q=\omega/H+\beta y$
 - Latitudinal displacement → change in relative vorticity
 - Linear consequence → Rossby Wave

$$\omega=-\beta k_x/k^2$$
 $\omega=0$ \Rightarrow zonal flow observe: $v_{q,y}=2\beta k_xk_y/(k^2)^2$ $k_\chi=0$ \Rightarrow azimuthal symmetry

Rossby wave intimately connected to momentum transport

Reynolds stress $\langle V_x V_y \rangle$

- Latitudinal PV Flux → circulation

PV Dynamics – Plasmas

Isn't this about plasmas, too?

•
$$q = (\vec{\omega} + 2\vec{\Omega}) \cdot \frac{\nabla \psi}{\rho}$$

So
$$\frac{d}{dt} \left[\frac{\omega_z + \Omega_i}{n_o(r) + \tilde{n}} \right] = 0$$

$$\Rightarrow \frac{d}{dt}\widetilde{\omega}_z - \Omega_i \frac{1}{n_0} \frac{\widetilde{dn_i}}{dt} = 0$$

with
$$V_{thi} \ll \frac{\omega}{k_{\parallel}} < V_{the}$$
 $\frac{\tilde{n}_i}{n_0} \sim \frac{\tilde{n}_e}{n_0} \sim \frac{|e|\hat{\phi}}{T}$

$$\frac{d}{dt} \left(\frac{|e|\widehat{\phi}}{T} - \rho_s^2 \nabla_{\perp}^2 \frac{|e|\widehat{\phi}}{T} \right) + V_* \partial_y \frac{|e|\widehat{\phi}}{T} = 0$$

Linearization → drift wave

$$\begin{array}{ccc} 2\overrightarrow{\Omega} \to & \Omega_i \hat{z} \\ \\ \rho \to & n_0(r) + \tilde{n} \\ \\ \overrightarrow{\nabla} \psi \to & \hat{z} \end{array}$$

ala' Geostrophic balance:

$$\begin{cases} \vec{V} = -\frac{c}{B} \nabla \phi \times \hat{z} \\ E \times B \text{ drift} \end{cases}$$

$$\omega_z = \frac{c}{B_0} \nabla^2 \phi$$

Hasegawa-Mima Eqn.

→ PV conservationalso Sagdeev +

PV and Models - Plasmas

Hasegawa-Mima, prototype:

$$\frac{d}{dt}(\phi - \rho_s^2 \nabla^2 \phi + \ln n_0(r)) = 0$$

- tip of iceberg of zoology of systems: multi-field, drift kinetics, gyrokinetics...
- captures essence ←→ minimal model
- in tokamak, zonal flows have: $k_{\parallel}=0$ and $k_{\theta}=0$

$$\frac{d}{dt} \nabla^2 \phi = 0$$
 distinct evolution zonal models! $\leftarrow \rightarrow$ electron response

 \rightarrow generation of flow $\rightarrow \langle \tilde{V}_r \nabla^2 \tilde{\phi} \rangle \rightarrow$ vorticity flux $\rightarrow \langle \tilde{V}_r \tilde{V}_{\theta} \rangle$ (Taylor identity)

←→ mean field of wave interactions

$$\begin{split} \frac{d}{dt} \nabla_{\perp}^2 \phi + \chi_{\parallel e} \nabla_{\parallel}^2 (\phi - n) &= \mu \nabla_{\perp}^2 \nabla_{\perp}^2 \phi \\ \frac{d}{dt} n + \chi_{\parallel e} \nabla_{\parallel}^2 (\phi - n) &= D_0 \nabla_{\perp}^2 n \end{split} \qquad \chi_{\parallel e} = v_{the}^2 / v_{ei} \\ \chi_{\parallel e} \to \infty & \to \text{HM} \end{split}$$

$$\frac{d}{dt} = \partial_t + \nabla \phi \times \hat{z} \cdot \nabla \qquad \qquad n = \langle n(x) \rangle + \tilde{n} \qquad \nabla_{\perp}^2 \phi = \langle \nabla_{\perp}^2 \phi(x) \rangle + \nabla_{\perp}^2 \tilde{\phi}$$
shear

- PV $q=n-\nabla_{\!\perp}^2\phi$ conserved! , to μ , D_0 $n\leftrightarrow \nabla_{\!\perp}^2\phi$ PV exchange
- $\chi_{\parallel} \neq 0 \rightarrow \langle \tilde{v}_r \tilde{n} \rangle \neq 0$ 'negative dissipation \rightarrow drift instability (Sagdeev, et. al., 60's) $\omega \leq \omega_{*e} \rightarrow \langle \tilde{v}_r \tilde{n} \rangle > 0$
- ZF \rightarrow $k_{\parallel} = 0$
- ZF \rightarrow $\langle \tilde{v}_r \nabla^2 \tilde{\phi} \rangle$ \rightarrow Reynolds force Corrugation \rightarrow $\langle \tilde{v} \tilde{n} \rangle$ \rightarrow particle flux

phase lag between $\tilde{n}, \tilde{v} \rightarrow$ particle flux

$$\langle \tilde{n}
abla^2 \tilde{\phi}
angle \quad ?$$
 c.f. Singh, P.D. 2021

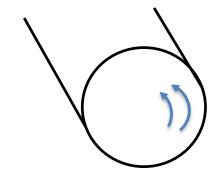
Mesoscopics → **Staircases**

Mesoscales

- MFE plasma combine:
 - broad dynamic range
 - modest excitation ($Ku \leq 1$)
- [few ρ_i] < l < L_p : mesoscales Δ_c (meso) system size (micro) (macro)
 - recall: $\rho_* \sim \rho_i/L_p \ll 1$
- Mesoscopic: Zonal Flows, Avalanches see Minjun Choi, and ... Staircases ... (PPCF accepted paper)

Plasma Zonal Flows I

- What is a Zonal Flow? Description?
 - n = 0 potential mode; m = 0 (ZF)
 - toroidally, poloidally symmetric ExB shear flow



- Why are Z.F.'s important?
 - Zonal flows are secondary (nonlinearly driven):
 - modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. '78)
 - modes of minimal damping (Rosenbluth, Hinton '98)
 - drive zero transport (n = 0)
 - natural predators to feed off and retain energy released by gradient-driven microturbulence
- i.e. ZF's soak up turbulence energy

Plasma Zonal Flows II

- Fundamental Idea:
 - Potential vorticity transport + 1 direction of translation symmetry
 - → Zonal flow in magnetized plasma / QG fluid
 - Kelvin's theorem is ultimate foundation

cf: McIntyre and Wood

- Charge Balance → polarization charge flux → Reynolds force
 - Polarization charge $\rightarrow \rho^2 \nabla^2 \phi = n_{i,GC}(\phi) n_e(\phi)$ polarization length scale ion GC electron density
 - so $\Gamma_{i,GC} \neq \Gamma_e \longrightarrow \rho^2 \langle \widetilde{v}_{rE} \nabla_{\perp}^2 \widetilde{\phi} \rangle \neq 0$ 'PV transport' \rightarrow polarization flux \rightarrow What sets coherence?
 - If 1 direction of symmetry (or near symmetry):

$$-\rho^{2}\langle \widetilde{v}_{rE} \nabla_{\perp}^{2} \widetilde{\phi} \rangle = -\partial_{r} \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle \quad \text{(Taylor, 1915)}$$

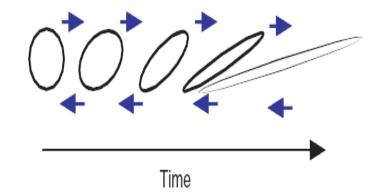
$$-\partial_r \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle$$
 Reynolds force Flow Recall $\langle \omega_Z \rangle$ evolution!

Zonal Flows Shear Eddys I

- Coherent shearing: (Kelvin, G.I. Taylor, Dupree'66, BDT'90)
 - radial scattering + $\langle V_E \rangle$ ' \rightarrow hybrid enhanced decorrelation

$$- k_r^2 D_{\perp} \rightarrow (k_{\theta}^2 \langle V_E \rangle^{1/2} D_{\perp} / 3)^{1/3} = 1 / \tau_c$$

→ shearing restricts mixing scale!



Other shearing effects (linear):

- Response shift and dispersion —
- spatial resonance dispersion: $\omega k_{\parallel} v_{\parallel} \Rightarrow \omega k_{\parallel} v_{\parallel} k_{\theta} \langle V_E \rangle'(r r_0)$
- differential response rotation → especially for kinetic curvature effects

Quasi-Particle Model – Eddy Population Evolution

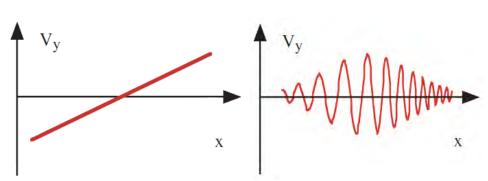
- Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. '98, et. seq.) Coherent interaction approach (L. Chen et. al.) Adiabatic Theory
- $dk_r / dt = -\partial(\omega + k_\theta V_E) / \partial r$; $V_E = \langle V_E \rangle + \widetilde{V}_E$ Mean shearing : $k_{r}=k_{r}^{(0)}-k_{\theta}V_{E}^{\prime}\tau$

Zonal
$$:\langle \delta k_r^2 \rangle = D_k \tau$$
 Random shearing $D_k = \sum_q k_\theta^2 \left| \widetilde{V}_{E,q}' \right|^2 \tau_{k,q}$

Mean Field Wave Kinetics

$$\frac{\partial N}{\partial t} + (\vec{V}_{gr} + \vec{V}) \cdot \nabla N - \frac{\partial}{\partial r} (\omega + k_{\theta} V_{E}) \cdot \frac{\partial N}{\partial \vec{k}} = \gamma_{\vec{k}} N - C\{N\} - \text{Applicable to ZFs and GAMs}$$

$$\Rightarrow \boxed{\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_{\vec{k}} \langle N \rangle - \langle C\{N\} \rangle} \quad \longleftarrow \quad \text{Zonal shearing via } D_k$$



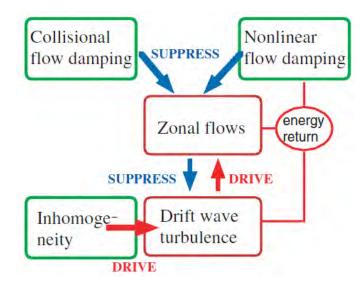
- Wave ray chaos (not shear RPA) underlies $D_k \rightarrow$ induced diffusion
- Induces wave packet dispersion

→ Evolves population in response to shearing

Feedback Loops

- Closing the loop of shearing and Reynolds work
- Spectral 'Predator-Prey' Model

- → Self-regulating system → "ecology"
- → Transport regulated



Prey → Drift waves, <*N*>

$$\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_k \langle N \rangle - \frac{\Delta \omega_k}{N_0} \langle N \rangle^2$$

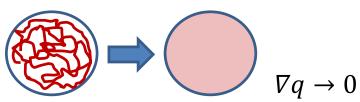
Predator \rightarrow Zonal flow, $|\phi_{\alpha}|^2$

$$\frac{\partial}{\partial t} |\phi_q|^2 = \Gamma_q \left[\frac{\partial \langle N \rangle}{\partial k_r} \right] |\phi_q|^2 - \gamma_d |\phi_q|^2 - \gamma_{NL} [|\phi_q|^2] |\phi_q|^2$$

Another Aspect: Dynamics in Real Space – What of the Configuration?

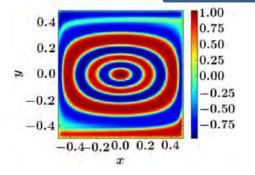
- Conventional Wisdom → Homogenization ?!
 - Prandtl, Batchelor, Rhines:
 - PV homogenized:Shear + Diffusion

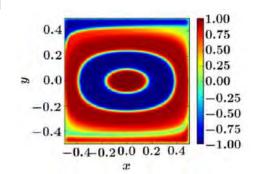
(2D fluid)



2 scales: a, $a/Re^{1/3}$ BL \rightarrow "emergent"

- Mechanism: Shear dispersion $\tau \sim \tau_{rot} (Re)^{1/3} \rightarrow \tau_{rot} Re$
 - 'PV Mixing'
- Introduce Bi-stable Mixing → Layers





coarsens

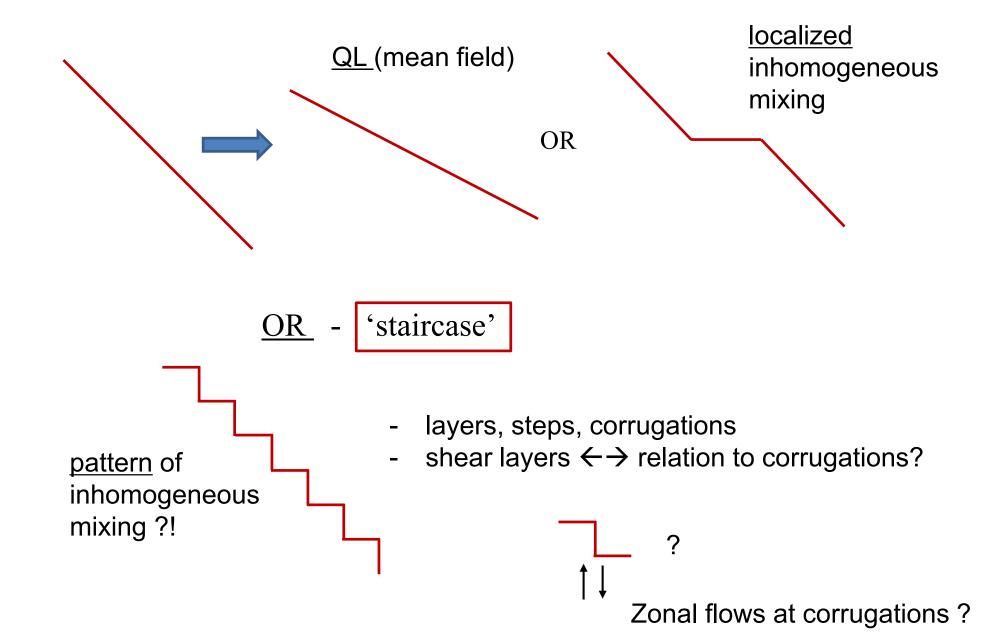
Cahn-Hilliard + Eddy Flow ←→ bistability

(Fan, P.D., Chacon, PRE Rap. Com. '17)

(spinodal decomposition)

→ target pattern

Fate of Gradient?



<u>Spatial Structure: ExB staircase formation</u> (after PV staircase Dritschel + McIntyre)

- ExB flows often observed to self-organize structured pattern in magnetized plasmas
- `ExB staircase' is observed to form

ExB staircase"

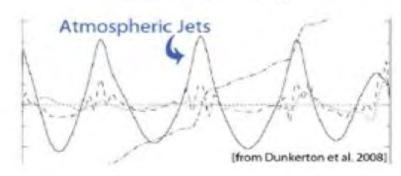
of shear flows

ExB shear rate

A00x10'

So 350

Normalised radius: r/ρ



also: GK5D, Kyoto-Dalian-SWIP group, gKPSP, ... several GF codes

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. '10)

- flux driven, full f simulation

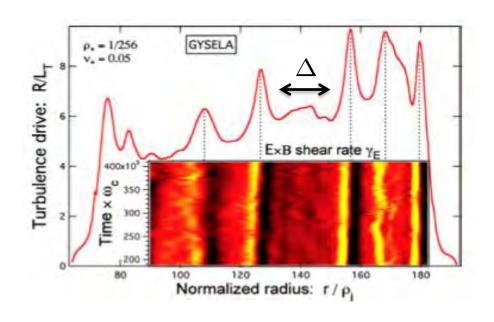
- Quasi-regular pattern of shear layers and profile corrugations (steps)
- Region of the extent $\Delta\gg\Delta_c$ interspersed by temp. corrugation/ExB jets

→ ExB staircases

- so-named after the analogy to PV staircases and atmospheric jets
- Step spacing → avalanche distribution outer-scale
- scale selection problem

ExB Staircase, cont'd

• Important feature: co-existence of shear flows and zones strong mixing

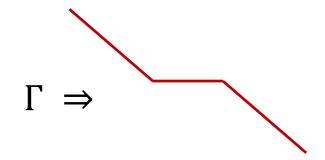


- Seem mutually exclusive?
 - → strong ExB shear prohibits transport
 - → mesoscale scattering smooths out corrugations
- Can co-exist by separating regions into:
 - 1. mixing zones of the size $\Delta\gg\Delta_c$
 - 2. localized strong corrugations + jets
- How understand the formation of ExB staircase??
 - What is process of self-organization linking avalanche scale to ExB step scale?
 - i.e. how explain the emergence of the step scale ?
- Some similarity to phase ordering in fluids spinodal decomposition
 → bistability as key

How do Staircase Form? → What can be learned from (simple) models?

General Ideas on Formation

- Inhomogeneous mixing ?!
- Staircase must reconcile 2 states transport $\leftarrow \rightarrow$ 2 types of domains



strong mixing zones, shallow gradient + weak mixing zones, steep gradient

- Bistability is natural candidate
- Suggests 2 space/time scales. Dynamics $\leftarrow \rightarrow$ 1 scale emergent
- (BLY): Balmforth, Llewellyn Smith, Young '98

General Ideas on Formation, cont'd

- Classic: Balmforth, Llewllyn Smith, Young '98 (BLY)
- $k \epsilon$ model framework (TKE + scalar)
- 2 scales: $l_0 \rightarrow \text{imposed}$

$$l_{OZ}$$
 \rightarrow Ozmidov scale (emergent) $\tilde{v}(l)/l \sim \omega_{bouy}$

- N.B. Emergent scale is recurring element in layering story
- i.e. Ozmidov, Rhines, Hinze ... <u>and</u> BL in expulsion...

The Bounty of BLY, for Drift Wave Systems

- * A. Ashourvan, P.D. Phys. Rev. E. Rap. Comm. (2016), PoP (2017)
 - → Hasegawa-Wakatani drift wave turbulence
 - M. Malkov, P.D. Phys. Rev. Fluids (2019)
 - \rightarrow QG/ β -plane
- * W.X. Guo, P.D., Hughes et. al. PPCF (2019)
 - → H-W Drift Wave Turbulence

see talk by W.X. Guo, this meeting

Basic Equations ↔ Hasegawa-Wakatani (life beyond CHM)

$$\frac{d}{dt}\nabla_{\perp}^{2}\phi + \chi_{\parallel e}\nabla_{\parallel}^{2}(\phi - n) = \mu\nabla_{\perp}^{2}\nabla_{\perp}^{2}\phi$$

$$\frac{d}{dt}n + \chi_{\parallel e} \nabla_{\parallel}^2 (\phi - n) = D_0 \nabla_{\perp}^2 n$$

$$\frac{d}{dt} = \partial_t + \nabla \phi \times \hat{z} \cdot \nabla \qquad \qquad n = \langle n(x) \rangle + \tilde{n} \qquad \nabla_{\perp}^2 \phi = \langle \nabla_{\perp}^2 \phi(x) \rangle + \nabla_{\perp}^2 \tilde{\phi}$$
Zonal shear

- PV $q=n-\nabla_{\!\!\perp}^2\phi$ conserved! , to μ , D_0 $n\leftrightarrow \nabla_{\!\!\perp}^2\phi$ PV exchange
- $\chi_{\parallel} \neq 0 \rightarrow \langle \tilde{v}_r \tilde{n} \rangle \neq 0$ 'negative dissipation \rightarrow drift instability (Sagdeev, et. al.) $\omega \leq \omega_{*e} \rightarrow \langle \tilde{v}_r \tilde{n} \rangle > 0$
- ZF \rightarrow $k_{\parallel} = 0$
- ZF $\rightarrow \langle \tilde{v}_r \nabla^2 \tilde{\phi} \rangle \rightarrow$ Reynolds force $\langle \tilde{n} \nabla^2 \tilde{\phi} \rangle$?

 Corrugation $\rightarrow \langle \tilde{v} \tilde{n} \rangle \rightarrow$ particle flux c.f. Singh, P.D. 2021

'Bistable' Mixing – A Simple Mechanism

- Mean field model with <u>2</u> mixing scales
- So, for H-W: PE, $\langle n \rangle$, $\langle \nabla^2 \phi \rangle$
- Density: $\frac{\partial}{\partial t}\langle n\rangle = \frac{\partial}{\partial x} \left(D_n \frac{\partial \langle n\rangle}{\partial x} \right) + D_c \frac{\partial^2 \langle n\rangle}{\partial x^2}$
- Vorticity: $\frac{\partial}{\partial t} \langle u \rangle = \frac{\partial}{\partial x} \left[(D_n \chi) \frac{\partial \langle n \rangle}{\partial x} \right] + \chi \frac{\partial^2 \langle u \rangle}{\partial x^2} + \mu_c \frac{\partial^2 \langle u \rangle}{\partial x^2},$
- simple mixing + 2 length scale

 → staircase
- Potential Enstrophy(intensity): $\frac{\partial}{\partial t} \varepsilon = \frac{\partial}{\partial x} \left(D_{\varepsilon} \frac{\partial \varepsilon}{\partial x} \right) + \chi \left[\frac{\partial \langle n u \rangle}{\partial x} \right]^2$ includes <u>crude</u> turbulence spreading model
- $D, \chi \sim \tilde{V} l_{mix}$ $= \varepsilon_c^{-1/2} \varepsilon^{3/2} + \gamma_{\varepsilon} \varepsilon.$

$$l_{\text{mix}} = \frac{l_0}{(1 + l_0^2 [\partial_x (n-u)]^2 / \varepsilon)^{\kappa/2}},$$

- $l_0 \rightarrow$ excitation scale (drive)
- $l_R \rightarrow \text{Rhines scale (}\frac{\text{emergent}}{\omega_{MM}} \text{ vs } \Delta\omega \text{ can be generalized}$
- Scale cross-over → 'transport bifurcation'
- $l_0/l_R < 1 \rightarrow \text{strong mixing (eddys)}$

- two scales!
- $l_0/l_R > 1 \rightarrow$ weak mixing (waves) \rightarrow gradient sharpening feedback
- Is this ~ equivalent to 'two-fluid' mixing length model ala' Ed Spiegel?

How, Why?

- PV is mixed → natural for 'mixing length model', exploits PV as conserved phase space density
- Potential Enstrophy is natural formulation $-\langle \delta f^2 \rangle$ for intensity \rightarrow conservation
- Beyond BLY \rightarrow 2 mean fields $\langle n \rangle$, $\langle \nabla^2 \phi \rangle$ + ε fluctuation potential enstrophy
 - → exchange and couplings, two channels
- Reynolds work and particle flux couple mean and fluctuations
- $D_n, \chi \to \text{turbulent transport coefficients are fundamental}$
- Glorified ' $k \epsilon$ model', adapted to drift wave problem

How, Why? Cont'd

- $l_{mix} > \rho_s \rightarrow \text{simplifies inversion } (\nabla^2 \phi \rightarrow V)$
- Dissipative DW ~ adiabatic regime: $k_{\parallel}^2 V_{the}^2 / v > \omega$ $\alpha = k_{\parallel}^2 v_{the}^2 / \omega v$

$$D_n \approx \tilde{v}^2/\alpha \sim \epsilon l^2/\alpha \rightarrow \langle v_r \tilde{n} \rangle$$
 phase fixed by $\alpha!$

Major simplification \rightarrow solid, where applicable

$$\chi \sim D_n$$
 (non-resonant diffusion)

- $\langle \tilde{v}_r \nabla^2 \phi \rangle = -\chi \partial_\chi \langle \nabla^2 \phi \rangle + \Pi_{resid} [\nabla n]$ $\langle \nabla^2 \phi \rangle = \underline{\text{shear}}$ [χ only in numerics]
- $\langle \tilde{v}_r \tilde{q}^2 \rangle \rightarrow -l^2 \epsilon^{1/2} \partial_x \varepsilon$ spreading, entrainment, SOFT

How, Why? Cont'd

• D_n , χ regulate P.E. exchange between mean, fluctuations \rightarrow key role in model

• Mixing Length:
$$l_{mix} = \frac{l_0}{\left[1 + \frac{l_0^2 [\partial_{\chi} (n-u)]^2}{\epsilon}\right]^{\kappa/2}} = \frac{l_0}{1 + \left(l_0^2 / l_{Rh}^2\right)^{\kappa/2}}$$

Physics: "Rossby Wave Elasticity' (ala' McIntyre)

i.e.
$$D \sim \frac{\langle \tilde{v}^2 \rangle}{\Delta \omega} \rightarrow \langle \tilde{v}^2 \rangle \frac{\Delta \omega}{\omega_r^2 + (\Delta \omega)^2} \approx \langle \tilde{v}_r^2 \rangle \frac{\Delta \omega}{\omega_r^2}$$
 for $\Delta \omega < \omega_r$

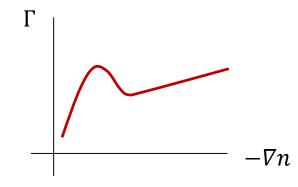
→ waves enhance memory

$$ightarrow \omega_r \sim \nabla \langle q \rangle \quad
ightarrow \quad \text{nonlinear } \Gamma_{PV} \quad \text{vs} \quad \langle q \rangle \quad
ightarrow \quad \text{S-curve}$$

• Soft point: $\kappa \rightarrow$ suppression exponent

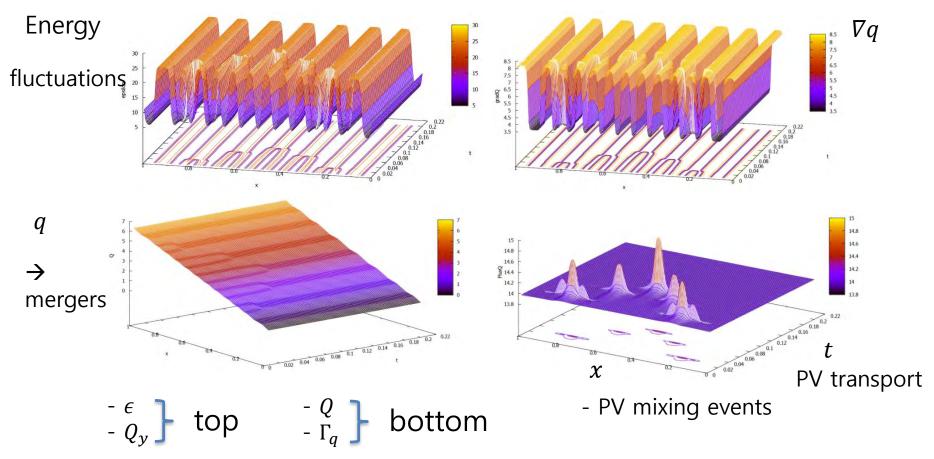
$$\kappa = 1$$
 doesn't always work

Rigorous bound on κ , from fundamental equations?



Some Results

Staircase Model – Formation and Merger (QG-HM)

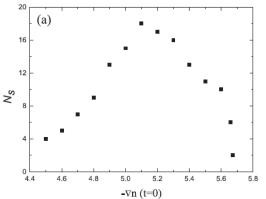


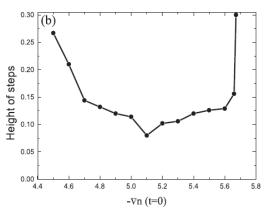
Note later staircase mergers induce strong PV flux bursts!

(Malkov, P.D.; PR Fluids 2018)

Staircase Structure?

- Number of steps? domain L → Scale Selection ?!
- Scan # steps vs ∇n at t=0 (n.b. mean gradient)
 - a maximum # steps (and minimal step size) vs ∇n
 - <u>rise</u>: increase in free energy as ∇n ↑
 - drop: diffusive dissipation limits N_s
- Height of steps?
 - minimal height at maximal #
 - ightharpoonup system has a ∇n 'sweet spot' for many, small steps and zonal layers





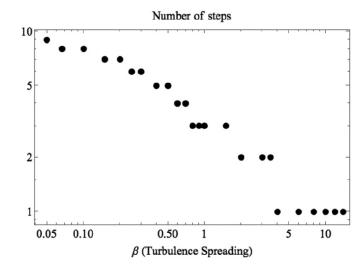
Beyond BLY

Issues, Buried Bodies
 and Flux-Driven Systems

N.B. In some cases, body parts visible above ground...

Spreading/Entrainment

- Spreading/entrainment effect on P.E. is unconstrained, beyond $\nabla \cdot \Gamma_q$ structure
 - Contrast: D_n , χ Following standard $k \epsilon$ model crude!
- How robust is staircase to effects of entrainment, avalanching...? Model ??
- $D_{\varepsilon} \rightarrow \beta l^2 \epsilon^{1/2}$

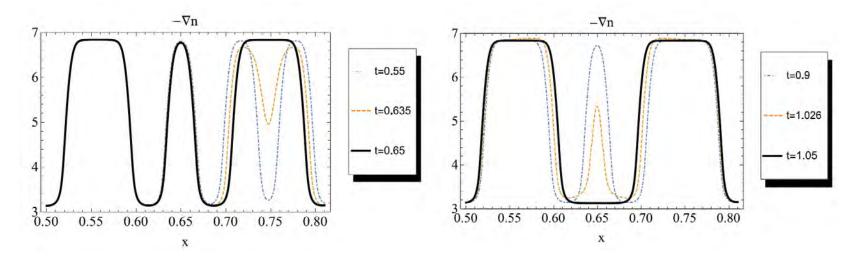


Entrainment has significant effect on S.C. structure

Large $\beta \rightarrow \text{wash out S.C.}$

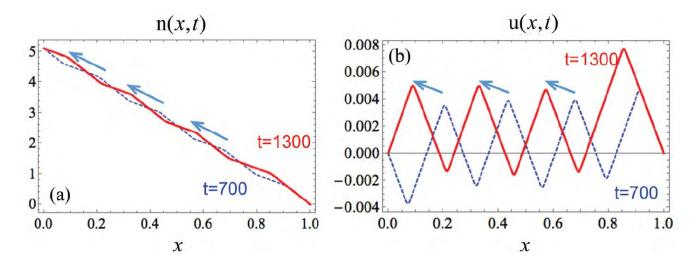
Spreading model is important model constituent

Mergers Happen



- 'Type-II' merger (c.f. Balmforth, KITP'21)
- 'Type-I' (motion) mergers also observed
- → Staircase coarsens....
- → Obvious TBD:
 - Interplay/Competition of Spreading and Mergers?
 - Scan coarsening time vs β , merger rate vs increments in β

Staircases and <u>Dynamics</u>! (Global)

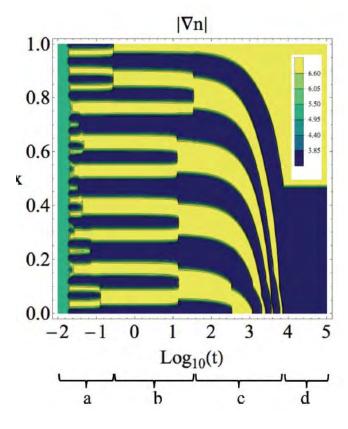


- B.C. Neumann LHS, Dirichlet RHS.. (ala' sandpile) → asymmetry
- 'Escalator Modes' appear. Cause, Consequence?
 - → "Non-locality" → c.f. Yan, P.D. 2022
- Needs further study...
 - → Credible model must address staircase <u>dynamics</u>

 Dynamics is both local (mergers) and global

Dynamic Staircases, Cont'd

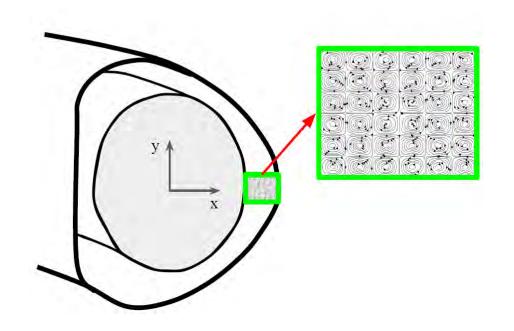
Steps and barriers observed to condense to outer boundary



Is this a way to understand L→H transition?, barrier formation?

Ashourvan, P.D. (2016)

- Collapse of staircase into macroscopic barriers?
- Need quantify!



(Fixed) Cellular Array Problem → Test bed for Resiliency Studies

$$Pe = \frac{\tau_D}{\tau_H}$$

Fixed Cellular Array

Consider a **general** case of a system of eddies not overlapping but tangent \rightarrow **Staircase**

Transport? Deff ~ D Pe^{1/2}

$$\rightarrow$$
 Two time rates: v / ℓ , D / ℓ^2

$$\rightarrow$$
 Pe = v ℓ / D >> 1

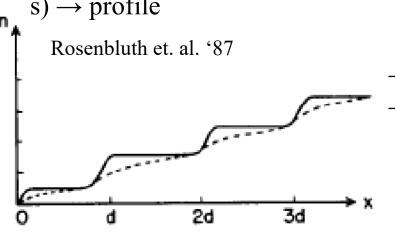
$$\frac{\partial n}{\partial t} + \mathbf{u} \cdot \nabla n = D\nabla^2 n,$$

Profile?

Consider concentration of injected dye (passive scalar transport in eddy

 $s) \rightarrow profile$

2 scales
$$l$$
 vs $\sqrt{l D/V}$



- → Layering!
- → Simple consequence of two rates

Important:

- **BUT**, this setup is co ntrived, NOT self-or ganized Cellular array is seve rely constrained Staircase arises in an arra y of stationary eddies!
- Staircase arises in stationary array of passive ed dies (Note that there is no FEEDBACK)
- Global transport hybrid:
 - \rightarrow fast rotation in cell
 - \rightarrow slow diffusion in boundary layer
- Irreversibility localized to inter-cell boundary.

"Steep transitions in the density exist be tween each cell."

Relevant to key question of "near marginal stability"

Fluctuating Vortex Array

Why are we doing this? We know that a system with two disparate time scales forms a staircase!

- Now consider fluctuations... \rightarrow Will staircase survive?
- → We begin with the 2D NS equation that can be written in nondimensional form (Perlekar and Pandit 2010),

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \omega = \frac{1}{\Omega} \nabla^2 \omega + F_\omega - \alpha \omega, \qquad \nabla^2 \psi = \omega.$$

- → The "vortex array" is simply the array of cells and "fluctuation" is related to turbulence induced variability in the structure. The fluctuating vortex array (FVA) allows us to study a **less constrained** version of the array!
- The fluctuating flow structure is created by slowly increasing the Reynolds number in the NS equation $\Omega = \frac{\tau_{\nu}}{\tau_{H}}$
- \rightarrow By increasing the Reynolds number this modifies the forcing and drag term, thus, **scattering** the vortex ar ray. The <u>resilience</u> of the staircase is studied by **increasing disorder** in the vortex crystal through F_{ω}

$$F_{\omega} \equiv -n^3 \left[\cos(nx) + \cos(ny)\right]/\Omega$$

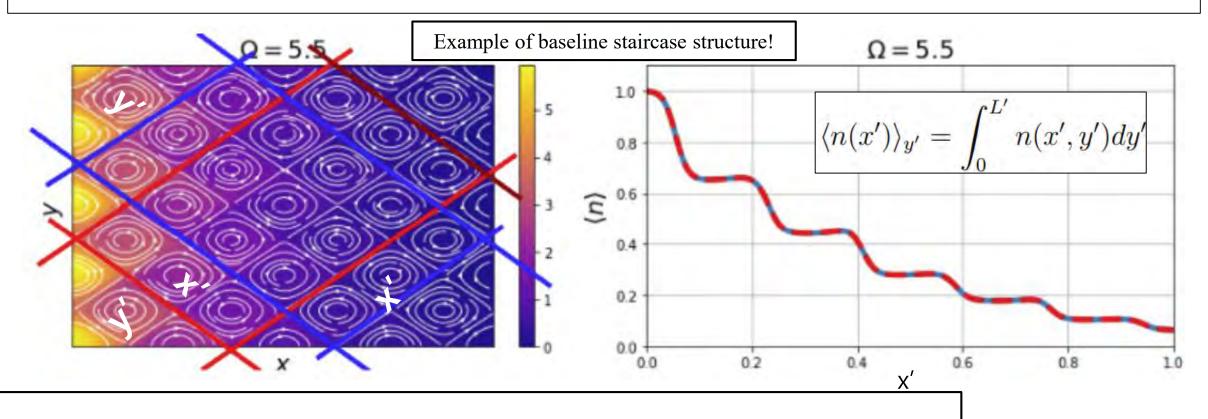
The streamfunction, ψ , at different evolutionary stages of the "fluctuating" vortex array is inserted into the passive scalar equation to study the resilience of the staircase structure.

What Happens to Staircase?

$$\frac{\partial n}{\partial t} + \mathbf{u} \cdot \nabla n = D \nabla^2 n,$$

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \mathbf{\nabla}\right) \omega = \frac{1}{\Omega} \nabla^2 \omega + F_\omega - \alpha \omega, \qquad \nabla^2 \psi = \omega.$$

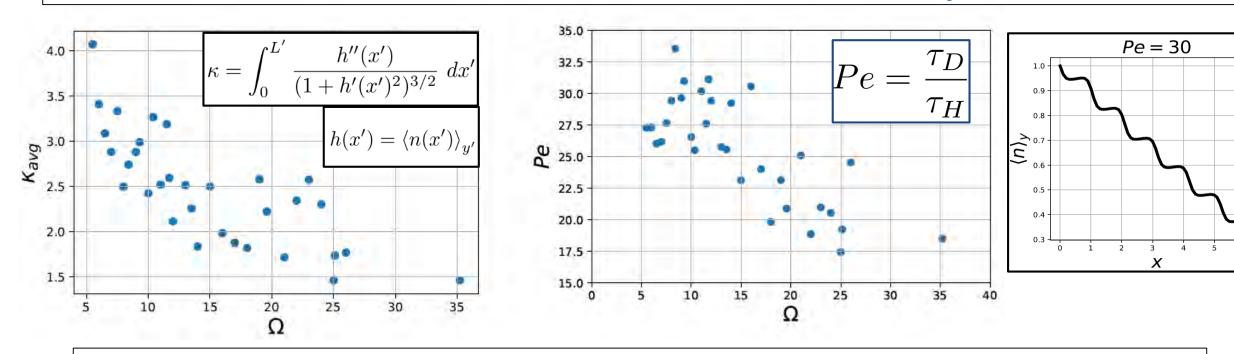
The Staircase



- For a weakly FVA we get a **baseline staircase** structure.
- On the left figure the blue and red box correspond to the blue and red plot line on the right.
 - O Both blue and red average scalar concentration have the same profile in stable stage.

So what happens to the staircase if we increase the Reynolds number in the VA?

Criteria for Staircase Resiliency



We establish a **set of criteria** to give a meaning to the statement of "**resiliency**":

- 1) $Pe \gg 1$ is a **necessary** condition for the **formation of transport barriers** in the process of scalar mixing (**First principles**). $Pe \gg 1$ criterion is satisfied for the range of $0 < \Omega < 40$.
- 2) A staircase should **maintain a sufficiently high curvature** (equivalent to sustaining a sufficient number of steps). Our studies suggest that $\kappa \gtrsim 1.5$ is an adequate value for a staircase.

N.B. Increasing Re, $\Omega \rightarrow$ increasing cell excursion \rightarrow overlap + mergers

What Next?

Layering in Burning Plasmas!?

Current Picture: Energetic Particles – dilute

```
Thermals → DW's + ZWheating
```

Confinement controlled by thermally driven turbulence with hots as "extra"

Burning Plasma: mix

EP's - α particles slowing down \rightarrow Thermals

{ Confinement now a "soup" of EP + Thermals

• EP's and α 's introduce new scales $\rho_{\theta hot} > \rho_{\theta thermal}$

<u>and new</u> collective modes ... → AE's (Alfven Eigenmode)

Burning Plasmas

```
• EP/α → AE
```

Thermals → DW

ZW

Issues

```
Alfven eigenmodes (zoology) \omega \sim \omega_A, resonance with EP's Drift waves \omega \sim \omega_*
\omega \sim 0
```

- Feedback loops much 'richer'. Staircase morphology?
- ZF/Z-mode field now multi-scale
 - → SC with multi-scale steps. SC in EP and thermal population.
- $-\alpha$'s slow down on <u>electrons</u>. Thermals: TEM \rightarrow increased complexity
- Zonal flow damping ←→ ion heating ?!
- AE vs DW competition → layering ?!

Feedback Loops (Heuristic)

Multiple, embedded loops – "3 Animals Problem" Zonal structures connect AE, DW

'channel' α energy to ions

- Competition of populations
- Traps: i.e. separate ZF population by injection + ECH ?!

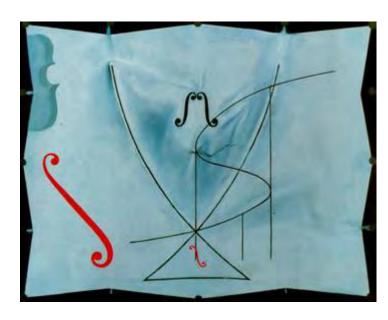
but DW scattering can quench AE's which drive ZF! so?

Adventures ahead... c.f. GJ Choi, PD, Hahm NF'23 - dilution
 → Significant effect on couplings in HM

Concluding Thoughts

Problem of layering evolves along a winding road, with many

bifurcations



Salvador Dali

Stay tuned...

Back Up

Some Details of Model

→ 2 Simple Models a.) Hasegawa-Wakatani (collisional drift inst.)
 b.) Hasegawa-Mima (DW)

$$\begin{array}{lll} \text{a.)} \ \mathbf{V} = \frac{c}{B} \hat{z} \times \nabla \phi + \mathbf{V}_{pol} \\ & \to m_s \\ \\ L > \lambda_D \ \to \ \nabla \cdot \mathbf{J} = 0 \ \to \ \nabla_\perp \cdot \mathbf{J}_\perp = -\nabla_\parallel J_\parallel \\ & J_\perp = n|e|V_{pol}^{(i)} & \text{n.b.} \\ & J_\parallel : \eta J_\parallel = -(1/c)\partial_t A_\parallel - \nabla_\parallel \phi + \nabla_\parallel p_e & \text{MHD: } \partial_t A_\parallel \text{ v.s. } \nabla_\parallel \phi \\ \text{b.)} & dn_e/dt = 0 & \text{DW: } \nabla_\parallel p_e \text{ v.s. } \nabla_\parallel \phi \\ & \to & \frac{dn_e}{dt} + \frac{\nabla_\parallel J_\parallel}{-n_0|e|} = 0 \end{array}$$

Some Details of Model, cont'd

$$\begin{array}{ll} \underline{\text{So H-W}} & \rho_s^2 \frac{d}{dt} \nabla^2 \hat{\phi} = -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0) + \nu \nabla^2 \nabla^2 \hat{\phi} \\ & D_{\parallel} k_{\parallel}^2/\omega \\ & \frac{d}{dt} n - D_0 \nabla^2 \hat{n} = -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0) \\ & \text{is key parameter} \\ & \rightarrow \langle \tilde{v}_r \tilde{n} \rangle \neq 0 \\ & \text{b.)} & D_{\parallel} k_{\parallel}^2/\omega \gg 1 \rightarrow \hat{n}/n_0 \sim e \hat{\phi}/T_e \\ & (m, n \neq 0) & \text{and instability} \end{array}$$

$$rac{d}{dt}(\phi -
ho_s^2
abla^2 \phi) + v_* \partial_y \phi = 0 \longrightarrow \mathsf{H-M}$$

n.b.
$$PV = \phi - \rho_s^2 \nabla^2 \phi + \ln n_0(x)$$
 $\frac{d}{dt}(PV) = 0$

An infinity of technical models follows ...

Recent Development

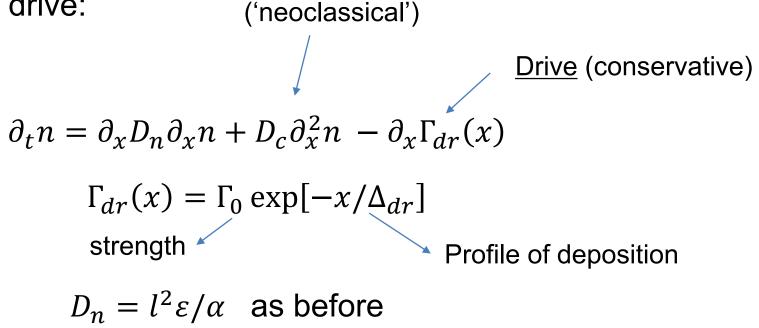
- Extension of PV Theory to inhomogeneous $\vec{B}_0(\vec{x})$ (Hahm+ 2023)
 - $\leftarrow \rightarrow$ analogy $H = H(\vec{r})$
 - → PV evolution via incompressible advection of "magnetically weighted PV"
 - → novel HM Eqn
- Analogous TEP Theory with $\vec{B}_0(\vec{x})$, n/B incompressibly advected

$$\Gamma \sim \partial_r(n/B) \rightarrow \text{diffusion} + \text{convection}$$

$$\sim \frac{\partial_r \langle n \rangle}{B} \qquad \sim \frac{\langle n \rangle}{B^2} \, \partial_r B$$

Flux Driven Studies

- MFE problems are almost always flux-driven, with source and sink. Not addressed in BLY '98. Gradients not "pinned"
- For conservative drive:

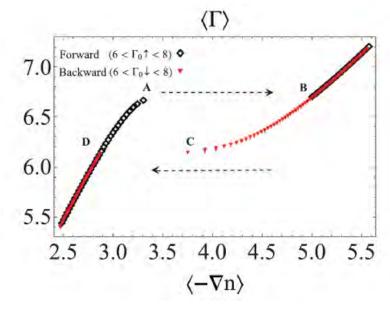


Collisional transport

Now address global confinement dynamics

Global Bifurcation in Staircase

• Average $\langle \Gamma \rangle$ vs $\langle \nabla n \rangle$ plot shows GLOBAL transport bifurcation and hysteresis

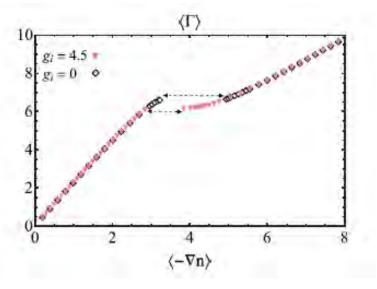


S-curve once more, with feeling!

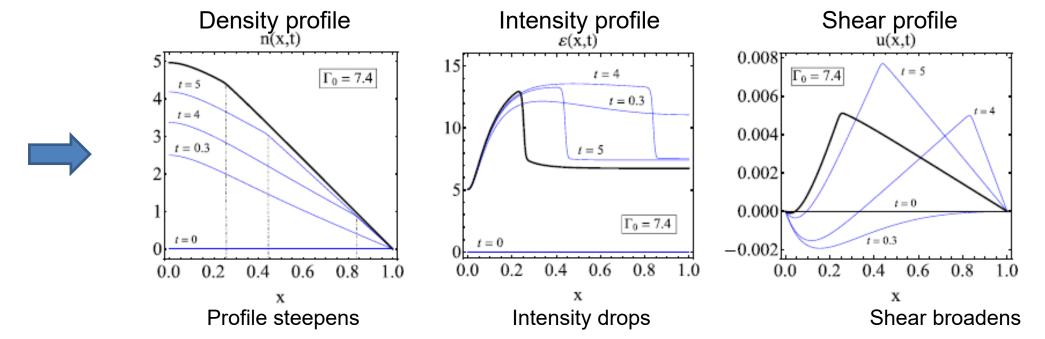
- Global confinement bifurcation, in staircase state
- Regional weightings l_0 , l_{Rh} . Good confinement, l_{Rh} dominates
- Merits of staircase state ?! Compare to single barrier ?!

Global Bifurcation, Cont'd

~ Steady State



Final state $\langle \Gamma \rangle$ vs $\langle \nabla n \rangle$

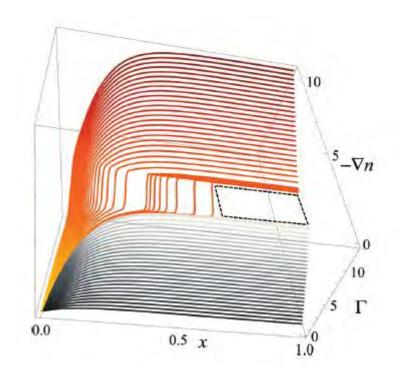


Global and Local ↔ Flux Landscape

Flux Landscape ← family of S-curve

Red → enhanced confinement

Grey → normal confinement



- See also
 - P.D., V.B. Lebedev, el. al., PRL '97
 - Lebedev, P.D., Phys. Plasmas '98 (barrier propagation)

Current Issues

Ongoing Studies

"Jamming" in Avalanches as SC mechanism

```
{Kosuga, PD, Gurcan'13, also Qi + }
```

Phenomenology -> c.f. Minjun Choi, this meeting

- * Resiliency how robust is S.C.? (F. Ramirez, PD, PRE 2024)
 - Physics of Spreading / Entrainment (Runlai Xu, PD) address weakest link in model

Where to next?

N.B. Recall –

"Some models are too good to be true.

Other models are too true to be good."

New Applications – 'Stress Test' the Model

N.B. BLY already 'flogged thru the fleet', but...

Thermal Rossby / ITG → PV conservation broken (buoyancy)

... $\rightarrow \langle \tilde{v}_r \tilde{T} \rangle$ - dynamic coherence in flux \rightarrow New Twist

* • Multi-scale: DW + ETG, AE + DW + ZF

Theory-Enhanced Model (but not too complicated!)

• NL noise – incoherent mode coupling. How represent in M.L.T. ?

entrainment, as above

<u>n.b.</u> inhomogeneous mixing – inhomogeneous noise!?

c.f.: R. Singh, P.D. - PPCF 2021

includes $\langle n\nabla^2\phi\rangle$ coherence

- Dressed parcels two component model (E. Spiegel, D. Gough "On taking i.e. 'slug' + waves
 mixing length theory seriously")
 - → akin dressed test particle model (plasma) !?

But what is the gain?

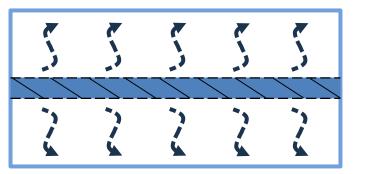
Exploit Relation to Wave Kinetics (Vlasov Eqn. for wave packet)

$$N=\omega E_W pprox \Omega$$
 for zonal symmetry
Potential enstrophy
WKE — stochastic: PD et. al. '05
coherent: Kaw, Garbet

Easy to propose extensions, but may jeopardize the simplicity and clarity of BLY '98

A Closer Look at Turbulence Spreading

2D Fluid: Simplest Incarnation of Spreading



→ Forcing layer, localized

- Most of system in state of Selective Decay!
- Need Consider / Compare :

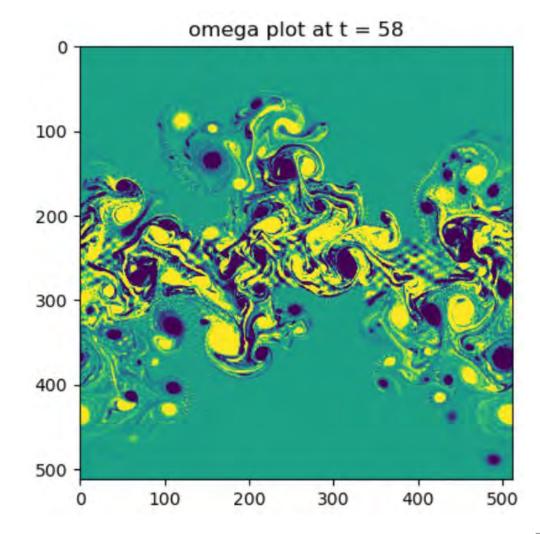
$$\langle V_y(\nabla^2\varphi)^2/2 \rangle \to \text{Enstrophy Flux}$$
 Physical Measures of Spreading $\langle V_y(\nabla\varphi)^2/2 \rangle \to \text{Energy Flux}$

as diagnostic of "intensity spreading".

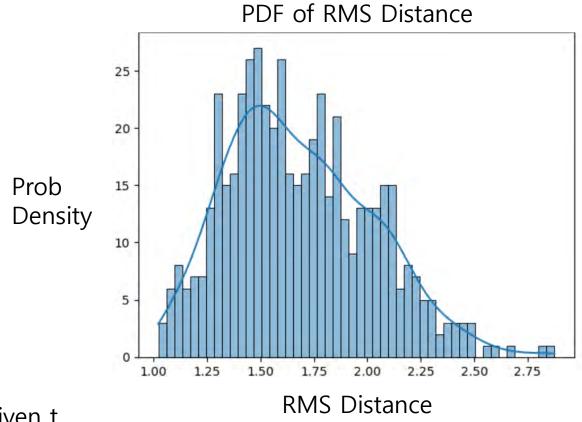
⇒ What Happens

At Re ~ 2000 (marginal resolution):

- Dipoles, Filaments cluster
- Fractalized spreading front?!



Results, cont'd



- ⇒ PDF of spreading (vorticity) at given t.
- Calculate enstrophy-weighted rms distance for each position X; plot histogram
- Note skewed structure.

Summary - 2D Fluid

- Coherent structures Dipole vortices mediate spreading of turbulent region
- Mixed region expands as $w \sim t$, consistent with role of dipole.
- No discernable "Front", spreading is strongly intermittent. (space+time)
- Spreading PDF is non-trivial, exhibits tail.
- Turbulence spreading strongly non-diffusive.
- More at York Fest: Comparison 2D Hydro, 2D MHD, HM+ZF