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Mea Culpa

• Pitched for a Classical Physics audience

∴ extensive development

• Approach selective, not unique

∴ several worthy topics neglected

• Tries to convey how confinement experiments drive new theoretical 

problems



Outline

• Brief Primer on Confinement Physics

• Simple Models, via Potential Vorticity / Total Charge

• Mesoscopics  Staircases

• Staircase Models  What do we learned?

• Current Issues, especially Noise effects, Resiliency

• Future Directions, especially + Fast Particles, Burning Plasma



Primer on Confinement Physics



• Challenge: ignition -- reaction release more energy 
than the input energy

Lawson criterion:

 confinement  

 turbulent transport 

Magnetically confined plasma  tokamaks

• Nuclear fusion: option for generating large 
amounts of carbon-free energy – “30 years in the 
future and always will be… “
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DIII-D
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• Turbulence: instabilities and collective oscillations 

 low frequency modes dominate the 
transport (𝜔 < Ω𝑐𝑖)

• Key problem: Confinement, especially scaling

• NB: Not the only problem

𝜏𝐸 ∼
𝑊

𝑃𝑖𝑛



• Essence of confinement problem:

– given device, sources; what profile is achieved?

– 𝜏𝐸 = 𝑊/𝑃in ,  How optimize W, stored energy

• Related problem: Pipe flow  drag ↔ momentum flux

a

𝑙

Δ𝑃  pressure drop

Δ𝑃𝜋𝑎2 = 𝜌𝑉∗
22𝜋𝑎𝑙

 friction velocity V∗ ↔ 𝑢

Balance: momentum transport to wall

(Reynolds stress) vs Δ𝑃

 Flow velocity profile

𝜆 =
2𝑎Δ𝑃/𝑙

(1/2)𝜌𝑢2

Friction factor

𝑹𝒆

𝟏
𝟎
𝟎
𝝀

Laminar

Turbulent



• Prandtl Mixing Length Theory (1932)

– Wall stress = 𝜌𝑉∗2 = −𝜌𝜈𝑇 𝜕𝑢/𝜕𝑥

– Absence of characteristic scale 

eddy viscosity

𝜈𝑇 ∼ 𝑉∗𝑥

𝑢 ∼ 𝑉∗ln(𝑥/𝑥0)

𝜈𝑇 = 𝜈 → 𝑥0, viscous layer  𝑥0 = 𝜈/𝑉∗

𝑥 ≡ mixing length, distance from wall

Analogy with kinetic theory …

𝑢

0
viscous sublayer (linear)

Wall

(Core)

inertial sublayer  ~ logarithmic (~ universal)

• Problem: physics of ~ universal 
logarithmic profile?

• Universality  scale invariance

or:   
𝜕𝑢

𝜕𝑥
~

𝑉∗

𝑥

Spatial counterpart 
of K41

Scale of velocity gradient?

Profile



Primer on Turbulence in Tokamaks I

• Strongly magnetized 

– Quasi 2D cells,  Low Rossby #

– Localized by  𝑘 ⋅ 𝐵 = 0 (resonance) – pinned cells

• 𝑉⊥ = +
𝑐

𝐵
𝐸 × Ƹ𝑧,

𝑉⊥

𝑙 Ω𝑐𝑖
~ 𝑅0 ≪ 1

• 𝛻𝑇𝑒, 𝛻𝑇𝑖, 𝛻𝑛 driven

• Akin to thermal convection with: g  magnetic curvature

• Re ≈ 𝑉𝐿/𝜈 ill defined, not representative of dynamics

• Resembles ‘wave turbulence’, not high 𝑅𝑒 Navier-Stokes turbulence

• 𝐾 ∼ ෨𝑉𝜏𝑐/Δ ≤ 1 Kubo # near unity,   Ku is meaningful parameter

• Broad dynamic range, due electron and ion scales, i.e. 𝑎, 𝜌𝑖 , 𝜌𝑒

*

𝐵0
𝐸𝜃

𝑎

𝑇𝑖
෠𝜙











Primer on Turbulence in Tokamaks II

• Characteristic scale ~ few 𝜌𝑖  “mixing length”

• Characteristic velocity 𝑣𝑑 ~ 𝜌∗𝑐𝑠

𝑎

• Transport scaling:  𝐷𝐺𝐵 ~ 𝜌 𝑉𝑑 ∼ 𝜌∗ 𝐷𝐵 - Gyro-Bohm (optimistic)

𝐷𝐵 ∼ 𝜌 𝑐𝑠 ∼ 𝑇/𝐵 – Bohm (pessimistic)

• i.e. Bigger is better!  sets profile scale via heat balance 

(Why ITER is huge…)

• Reality: 𝐷 ~ 𝜌∗
𝛼 𝐷𝐵 , 𝛼 < 1  ‘Gyro-Bohm breaking’

• 2 Scales, 𝜌∗ ≪ 1  key contrast to pipe flow

• Sneak preview: 𝛼 ≤ 1

• related to turbulence driven zonal shear flows

2 scales:

𝜌 ≡ gyro-radius

𝑎 ≡ cross-section

𝜌∗ ≡ 𝜌/𝑎  key ratio

𝜌∗ ≪ 1

𝑇
𝜌𝑖

Key:



Models via Potential Vorticity



Potential Vorticity

• GFD  The Fluid Dynamics of PV (R. Salmon)

• Ditto for Confined Plasmas…. (PD)

• 𝑃𝑉 = 𝑞 =
𝜔+2Ω

𝜌
⋅ 𝛻𝜓 (ala’ conserved charge density)

𝑑

𝑑𝑡

𝜔+2Ω

𝜌
⋅ 𝛻𝜓 = 0

• From: 

Freezing in 𝑑
𝑑𝑡

𝜔+2Ω

𝜌
=

𝜔+2Ω

𝜌
⋅ 𝛻v

Conserved scalar  𝑑
𝑑𝑡
𝛿𝜓 = 0

Rotating Fluid

𝜓 conserved scalar

PV Conservation



Potential Vorticity, cont’d

• Displace parcel in latitude, density/thickness

 𝜔 changes

𝑞 =
𝜔+2Ω ⋅𝛻𝜓

𝜌

• Conservation  Symmetry, ala’ Noether

Particle relabeling Ԧ𝑥 𝑥, 𝜏 𝑠 → 𝑠′ = 𝑠 + 𝛿𝑠

PV conserved when particles can be relabeled, without changing the 

thermodynamic state

Ƹ𝑧



Useful Form: 𝜷-plane Equation

- 𝛽-plane equation

- Locally Conserved PV

- Latitudinal displacement → change in relative vorticity

- Linear consequence → Rossby Wave

observe:
→ Rossby wave intimately connected to momentum transport

 Reynolds stress 〈𝑉𝑥𝑉𝑦〉- Latitudinal PV Flux → circulation

n.b. topography

𝜔 = 0 zonal flow
𝑘𝑥 = 0 azimuthal symmetry

parcel planetary

(after Charney + …)



PV Dynamics – Plasmas
• Isn’t this about plasmas, too?

• 𝑞 = 𝜔 + 2Ω ⋅
𝛻𝜓

𝜌

So     𝑑
𝑑𝑡

𝜔𝑧+Ω𝑖

𝑛0 𝑟 + ෤𝑛
= 0

⇒
𝑑

𝑑𝑡
෥𝜔𝑧 − Ω𝑖

1

𝑛0

෪𝑑𝑛𝑖
𝑑𝑡

= 0

with 𝑉𝑡ℎ𝑖 ≪
𝜔

𝑘∥
< 𝑉𝑡ℎ𝑒

෤𝑛𝑖

𝑛0
~

෤𝑛𝑒

𝑛0
~

𝑒 ෡𝜙

𝑇


𝑑

𝑑𝑡

𝑒 ෡𝜙

𝑇
− 𝜌𝑠

2𝛻⊥
2 𝑒 ෡𝜙

𝑇
+ 𝑉∗𝜕𝑦

𝑒 ෡𝜙

𝑇
= 0  PV conservation

2Ω → Ω𝑖 Ƹ𝑧

now 𝜌 → 𝑛0 𝑟 + ෤𝑛

𝛻𝜓 → Ƹ𝑧

ala’ Geostrophic balance:

𝑉 = −
𝑐

𝐵
𝛻𝜙 × Ƹ𝑧

𝜔𝑧 =
𝑐

𝐵0
𝛻2𝜙

Hasegawa-Mima Eqn.

also Sagdeev +
Linearization  drift wave

𝐸 × 𝐵 drift



PV and Models - Plasmas

• Hasegawa-Mima, prototype:

𝑑

𝑑𝑡
𝜙 − 𝜌𝑠

2𝛻2𝜙 + ln 𝑛0(𝑟) = 0

• tip of iceberg of zoology of systems: multi-field, drift kinetics, gyrokinetics…

• captures essence  minimal model

• in tokamak, zonal flows have:   𝑘∥ = 0 and 𝑘𝜃 = 0

𝑑

𝑑𝑡
𝛻2𝜙 = 0

 generation of flow  ෨𝑉𝑟𝛻
2 ෨𝜙  vorticity flux  ෨𝑉𝑟 ෨𝑉𝜃 (Taylor identity)

 mean field of wave interactions

distinct evolution zonal
models!  electron response



A bit more↔ Hasegawa-Wakatani (life beyond CHM)

𝑑

𝑑𝑡
𝛻⊥
2𝜙 + 𝜒∥𝑒𝛻∥

2 𝜙 − 𝑛 = 𝜇𝛻⊥
2𝛻⊥

2𝜙

𝑑

𝑑𝑡
𝑛 + 𝜒∥𝑒𝛻∥

2 𝜙 − 𝑛 = 𝐷0𝛻⊥
2𝑛

𝑑

𝑑𝑡
= 𝜕𝑡 + 𝛻𝜙 × Ƹ𝑧 ⋅ 𝛻 𝑛 = 𝑛 𝑥 + ෤𝑛 𝛻⊥

2𝜙 = 𝛻⊥
2𝜙 𝑥 + 𝛻⊥

2 ෨𝜙

• PV 𝑞 = 𝑛 − 𝛻⊥
2𝜙 conserved! , to 𝜇 , 𝐷0

• 𝜒∥ ≠ 0 → ෤𝑣𝑟 ෤𝑛 ≠ 0

𝜔 ≤ 𝜔∗𝑒 → ෤𝑣𝑟 ෤𝑛 > 0

• ZF  𝑘∥ = 0

• ZF → ෤𝑣𝑟𝛻
2 ෨𝜙 → Reynolds force

Corrugation  → ෤𝑣 ෤𝑛 → particle flux

‘negative dissipation 
mechanism’

shear

 drift instability (Sagdeev, et. al., 60’s)

෤𝑛𝛻2 ෨𝜙 ?

c.f. Singh, P.D. 2021

𝜒∥𝑒 = 𝑣𝑡ℎ𝑒
2 /𝜈𝑒𝑖

𝜒∥𝑒 → ∞  HM

phase lag between ෤𝑛, ෤v  particle flux

𝑛 ↔ 𝛻⊥
2𝜙 PV exchange



Mesoscopics  Staircases



Mesoscales

• MFE plasma combine:

– broad dynamic range

– modest excitation (𝐾𝑢 ≤ 1)

• [few 𝜌𝑖]   <   𝑙 <   𝐿𝑝 :  mesoscales

• Mesoscopic: Zonal Flows, Avalanches – see Minjun Choi, and … Staircases … 

Δ𝑐
(micro)

system size
(macro)

(meso)

recall: 𝜌∗ ~ 𝜌𝑖/𝐿𝑝 ≪ 1

(PPCF accepted paper)



Plasma Zonal Flows I
• What is a Zonal Flow? – Description?

– n = 0 potential mode; m = 0 (ZF)

– toroidally, poloidally symmetric ExB shear flow 

• Why are Z.F.’s important?

– Zonal flows are secondary (nonlinearly driven):

• modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. ‘78)

• modes of minimal damping (Rosenbluth, Hinton ‘98)

• drive zero transport (n = 0)

– natural predators to feed off and retain energy released by 
gradient-driven microturbulence

i.e. ZF’s soak up turbulence energy



Plasma Zonal Flows II
• Fundamental Idea:

– Potential vorticity transport + 1 direction of translation symmetry                             
→  Zonal flow in magnetized plasma / QG fluid

– Kelvin’s theorem is ultimate foundation

• Charge Balance → polarization charge flux → Reynolds force
– Polarization charge

– so                                                                   ‘PV transport’ 

– If 1 direction of symmetry (or near symmetry):

eGCi  ,

)()(,
22  eGCi nn 

polarization length scale ion GC

0~~ 22  rEv

polarization flux

ErErrE vvv   ~~~~ 22  (Taylor, 1915)

ErEr vv  ~~

→ What sets coherence?

Reynolds force Flow

electron density

Recall 〈𝜔𝑍〉 evolution!

cf: McIntyre and Wood



• Coherent shearing: (Kelvin, G.I. Taylor, Dupree’66, BDT‘90)

– radial scattering +       →  hybrid enhanced decorrelation

– →

 shearing restricts mixing scale!

• Other shearing effects (linear):

– spatial resonance dispersion:

– differential response rotation → especially for kinetic curvature 
effects

Zonal Flows Shear Eddys I

'EV

Dkr
2

cE DVk  /1)3/'( 3/122 

)(' 0|||||||| rrVkvkvk E  

Response shift 
and dispersion



Quasi-Particle Model – Eddy Population Evolution
• Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)

• ;

• Mean Field Wave Kinetics
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Zonal shearing via 𝐷𝑘

- Wave ray chaos (not shear RPA) 

underlies Dk → induced diffusion

- Induces wave packet dispersion

- Applicable to ZFs and GAMs 

EEE VVV ~


Coherent interaction approach (L. Chen et. al.)

 Evolves population in response to shearing

Adiabatic Theory



Feedback Loops
• Closing the loop of shearing  and Reynolds work

• Spectral ‘Predator-Prey’ Model

2
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


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





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qq k
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t
 


















Prey → Drift waves, <N>

Predator → Zonal flow, |ϕq|2

 Self-regulating system  “ecology”

 Transport regulated



Another Aspect: Dynamics in Real Space – What of the Configuration?

• Conventional Wisdom  Homogenization ?!

– Prandtl, Batchelor, Rhines:

– PV homogenized:

– Mechanism:   - Shear dispersion  𝜏 ∼ 𝜏𝑟𝑜𝑡 𝑅𝑒 1/3
 𝜏𝑟𝑜𝑡 𝑅𝑒

- ‘PV Mixing’

– Introduce Bi-stable Mixing  Layers

– Cahn-Hilliard + Eddy Flow  bistability

 target pattern

(2D fluid)

𝛻𝑞 → 0Shear + Diffusion

(Fan, P.D., Chacon,
PRE Rap. Com. ‘17)

coarsens

(spinodal decomposition)

2 scales:  𝑎, 𝑎/𝑅𝑒1/3
BL  “emergent”



Fate of Gradient?

OR

localized
inhomogeneous
mixing

QL (mean field)

OR - ‘staircase’

pattern of
inhomogeneous
mixing ?!

- layers, steps, corrugations
- shear layers  relation to corrugations?

?

Zonal flows at corrugations ?



Spatial Structure: ExB staircase formation 
(after PV staircase Dritschel + McIntyre)

• `ExB staircase’ is observed to form

- so-named after the analogy to PV staircases 
and atmospheric jets

- Step spacing  avalanche  distribution 
outer-scale

- flux driven, full f simulation

- Region of the extent 
interspersed by temp. corrugation/ExB jets

- Quasi-regular pattern of shear layers 
and profile corrugations (steps)

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. ’10)

→ ExB staircases

• ExB flows often observed to self-organize structured pattern
in magnetized plasmas

also: GK5D, Kyoto-Dalian-SWIP group, 
gKPSP, ... several GF codes

- scale selection problem



ExB Staircase, cont’d 

• Important feature: co-existence of shear flows and zones strong mixing

- Can co-exist by separating regions into:

- What is process of self-organization linking avalanche scale to ExB step scale?

i.e. how explain the emergence of the step scale   ?

• How understand the formation of ExB staircase??

1. mixing zones of the size

- Seem mutually exclusive ?

2. localized strong corrugations + jets

→ strong ExB shear prohibits transport

→ mesoscale scattering smooths out corrugations

• Some similarity to phase ordering in fluids – spinodal decomposition
 bistability as key



How do Staircase Form?

 What can be learned from 

(simple) models?



General Ideas on Formation

• Inhomogeneous mixing ?!

• Staircase must reconcile 2 states transport   2 types of domains

• Bistability is natural candidate

• Suggests 2 space/time scales. Dynamics  1 scale emergent

• (BLY): Balmforth, Llewellyn Smith, Young ’98

strong mixing zones, shallow gradient
+
weak mixing zones, steep gradientΓ ⇒



General Ideas on Formation, cont’d

• Classic: Balmforth, Llewllyn Smith, Young ‘98 (BLY)

• 𝑘 − 𝜖 model framework (TKE + scalar)

• 2 scales:    𝑙0  imposed

𝑙𝑂𝑍  Ozmidov scale (emergent)     ෤𝑣 𝑙 /𝑙 ~ 𝜔𝑏𝑜𝑢𝑦

• N.B. Emergent scale is recurring element in layering story

• i.e. Ozmidov, Rhines, Hinze … and BL in expulsion…



The Bounty of BLY, for Drift Wave Systems

• A. Ashourvan, P.D. – Phys. Rev. E. Rap. Comm. (2016), PoP (2017)

 Hasegawa-Wakatani drift wave turbulence

• M. Malkov, P.D. – Phys. Rev. Fluids (2019)

 QG/𝛽 −plane

• W.X. Guo, P.D., Hughes et. al. – PPCF (2019)

 H-W Drift Wave Turbulence

see talk by W.X. Guo, this meeting

*

*



Basic Equations ↔ Hasegawa-Wakatani (life beyond CHM)

𝑑

𝑑𝑡
𝛻⊥
2𝜙 + 𝜒∥𝑒𝛻∥

2 𝜙 − 𝑛 = 𝜇𝛻⊥
2𝛻⊥

2𝜙

𝑑

𝑑𝑡
𝑛 + 𝜒∥𝑒𝛻∥

2 𝜙 − 𝑛 = 𝐷0𝛻⊥
2𝑛

𝑑

𝑑𝑡
= 𝜕𝑡 + 𝛻𝜙 × Ƹ𝑧 ⋅ 𝛻 𝑛 = 𝑛 𝑥 + ෤𝑛 𝛻⊥

2𝜙 = 𝛻⊥
2𝜙 𝑥 + 𝛻⊥

2 ෨𝜙

• PV 𝑞 = 𝑛 − 𝛻⊥
2𝜙 conserved! , to 𝜇 , 𝐷0

• 𝜒∥ ≠ 0 → ෤𝑣𝑟 ෤𝑛 ≠ 0

𝜔 ≤ 𝜔∗𝑒 → ෤𝑣𝑟 ෤𝑛 > 0

• ZF  𝑘∥ = 0

• ZF → ෤𝑣𝑟𝛻
2 ෨𝜙 → Reynolds force

Corrugation  → ෤𝑣 ෤𝑛 → particle flux

‘negative dissipation 
mechanism’

zonal shear

 drift instability (Sagdeev, et. al.)

෤𝑛𝛻2 ෨𝜙 ?

c.f. Singh, P.D. 2021

𝑛 ↔ 𝛻⊥
2𝜙 PV exchange



‘Bistable’ Mixing – A Simple Mechanism

• Mean field model with 2 mixing scales

• So, for H-W:   PE, 𝑛 , 〈𝛻2𝜙〉

• Density:

• Vorticity:

• Potential Enstrophy(intensity):

• 𝐷, 𝜒 ∼ ෨𝑉𝑙𝑚𝑖𝑥

• Scale cross-over  ‘transport bifurcation’

• 𝑙0/𝑙𝑅 < 1 → strong mixing (eddys)

• 𝑙0/𝑙𝑅 > 1 → weak mixing (waves)   gradient sharpening feedback

• Is this ~ equivalent to ‘two-fluid’ mixing length model ala’ Ed Spiegel ?

simple mixing + 2 length scale
 staircase

 includes crude turbulence 
spreading model

𝑙0  excitation scale (drive)
𝑙𝑅  Rhines scale (emergent)

𝜔𝑀𝑀 vs Δ𝜔 - can be generalized

two scales!



How, Why ?

• PV is mixed  natural for ‘mixing length model’, exploits PV as conserved phase space density

• Potential Enstrophy is natural formulation − 〈𝛿𝑓2〉 for intensity  conservation

• Beyond BLY  2 mean fields 𝑛 , 〈𝛻2𝜙〉 +  𝜀 – fluctuation potential enstrophy

 exchange and couplings, two channels

• Reynolds work and particle flux couple mean and fluctuations

• Nonlinear damping ↔ forward potential enstrophy cascade

• 𝐷𝑛, 𝜒 → turbulent transport coefficients are fundamental

• Glorified ‘𝑘 − 𝜖 model’, adapted to drift wave problem



How, Why ? Cont’d

• 𝑙𝑚𝑖𝑥 > 𝜌𝑠 → simplifies inversion  (𝛻2𝜙 → 𝑉)

• Dissipative DW  ~  adiabatic regime: 𝑘∥2𝑉𝑡ℎ𝑒2 /𝜈 > 𝜔 𝛼 = 𝑘∥
2𝑣𝑡ℎ𝑒

2 /𝜔𝜈

𝐷𝑛 ≈ ෤𝑣2/𝛼 ∼ 𝜖𝑙2/𝛼 →  𝑣𝑟 ෤𝑛 phase fixed by 𝛼!

Major simplification  →  solid, where applicable

𝜒 ~ 𝐷𝑛 (non-resonant diffusion)

• ෤𝑣𝑟𝛻
2𝜙 = −𝜒𝜕𝑥 𝛻

2𝜙 + Π𝑟𝑒𝑠𝑖𝑑 𝛻𝑛

𝛻2𝜙 = shear [𝜒 only in numerics]

• ෤𝑣𝑟 ෤𝑞
2 → −𝑙2𝜖1/2𝜕𝑥𝜀 spreading, entrainment,  SOFT



How, Why ? Cont’d

• 𝐷𝑛, 𝜒 regulate P.E. exchange between mean, fluctuations  key role in model

• Mixing Length:  𝑙𝑚𝑖𝑥 =
𝑙0

1+
𝑙0
2 𝜕𝑥 𝑛−𝑢 2

𝜖

𝜅/2 =
𝑙0

1+ 𝑙0
2 / 𝑙𝑅ℎ

2 𝜅/2

Physics: “Rossby Wave Elasticity’ (ala’ McIntyre)

i.e. 𝐷 ∼
෤𝑣2

Δ𝜔
→ ෤𝑣2

Δ𝜔

𝜔𝑟
2 + Δ𝜔 2 ≈ ෤𝑣𝑟

2 Δ𝜔

𝜔𝑟
2 for Δ𝜔 < 𝜔𝑟

 waves enhance memory

 𝜔𝑟 ~ 𝛻 𝑞 → nonlinear Γ𝑃𝑉 vs  𝑞 → S-curve

• Soft point:   𝜅 → suppression exponent  

𝜅 = 1 doesn't always work

Rigorous bound on 𝜅, from fundamental equations?

Γ

−𝛻𝑛



Some Results
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Staircase Model – Formation and Merger (QG-HM)

Note later staircase mergers induce strong PV flux bursts!

(Malkov, P.D.; PR Fluids 2018)

- 𝜖
- 𝑄𝑦

top - 𝑄
- Γ𝑞

bottom

PV transport

𝛻𝑞

𝑞

Energy

- PV mixing events



mergers

fluctuations

𝑥
𝑡



Staircase Structure?

• Number of steps?  - domain L   Scale Selection ?!

• Scan # steps vs 𝛻𝑛 at t=0

– a maximum # steps (and minimal step size) vs 𝛻𝑛

– rise: increase in free energy as 𝛻𝑛 ↑

– drop: diffusive dissipation limits 𝑁𝑠

• Height of steps?

– minimal height at maximal #

 system has a 𝛻𝑛 ‘sweet spot’ for many, 

small steps and zonal layers

(n.b. mean gradient)

W.X. Guo + (2019)



Beyond BLY 
- Issues, Buried Bodies 

and Flux-Driven Systems

N.B. In some cases, body parts visible above ground…



Spreading/Entrainment

• Spreading/entrainment effect on P.E. is unconstrained, beyond 𝛻 ⋅ Γ𝑞 structure

Contrast:  𝐷𝑛, 𝜒 Following standard 𝑘 − 𝜖 model crude!

• How robust is staircase to effects of entrainment, avalanching… ? Model ??

• 𝐷𝜀 → 𝛽 𝑙2 𝜖1/2

• Spreading model is important model constituent

Entrainment has significant 
effect on S.C. structure

Large 𝛽 → wash out S.C.



Mergers Happen

• ‘Type-II’ merger   (c.f. Balmforth, KITP’21)

• ‘Type-I’ (motion) mergers also observed

 Staircase coarsens….

 Obvious TBD:

– Interplay/Competition of Spreading and Mergers?

– Scan coarsening time vs 𝛽,  merger rate  vs  increments in 𝛽



Staircases and Dynamics !  (Global)

• B.C. Neumann LHS, Dirichlet RHS..   (ala’ sandpile)   asymmetry

• ‘Escalator Modes’

• ‘Shear Migration’

 “Non-locality”   c.f. Yan, P.D. 2022

• Needs further study…

 Credible model must address staircase dynamics

Dynamics is both local (mergers) and global

appear.   Cause, Consequence?



Dynamic Staircases, Cont’d

• Steps and barriers observed to condense to outer boundary

• Collapse of staircase into macroscopic barriers?

• Need quantify!

Is this a way to understand
LH transition?, barrier formation?

Ashourvan, P.D. (2016)



(Fixed) Cellular Array Problem
 Test bed for Resiliency Studies
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Fixed Cellular Array
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“Steep transitions in the density exist be
tween each cell.”

Rosenbluth et. al. ‘87
→ Layering!
→ Simple consequence of two rates

Transport? Deff ~ D Pe½

→ Two time rates: v / ℓ, D / ℓ²
→ Pe = v ℓ / D  >>  1

Profile?
Consider concentration of injected dye (passive scalar transport in eddy
s) → profile

Consider a general case of a system of eddies not overlapping but tangent → Staircase

● Staircase arises in stationary array of passive ed
dies (Note that there is no FEEDBACK)

● Global transport hybrid:
→ fast rotation in cell
→ slow diffusion in boundary layer

● Irreversibility localized to inter-cell boundary.

Important:

Relevant to key question of “near 
marginal stability”

Staircase arises in an arra
y of stationary eddies!

BUT, this setup is co
ntrived, NOT self-or
ganized
Cellular array is seve
rely constrained

2 scales 𝑙 vs  𝑙 𝐷/𝑉



Fluctuating Vortex Array

→ We begin with the 2D NS equation that can be written in nondimensional form (Perlekar and Pandit 2010),
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→ The fluctuating flow structure is created by slowly increasing the Reynolds number in the NS equation 

→ By increasing the Reynolds number this modifies the forcing and drag term, thus, scattering the vortex ar
ray. The resilience of the staircase is studied by increasing disorder in the vortex crystal through F⍵

→ The “vortex array” is simply the array of cells and “fluctuation” is related to turbulence induced variability 
in the structure. The fluctuating vortex array (FVA) allows us to study a less constrained version of the array!

The streamfunction, ψ, at different evolutionary stages of the “fluctuating” vortex array is inserted into the 
passive scalar equation to study the resilience of the staircase structure.

Why are we doing this? We know that a system with two disparate time scales forms a staircase!
● Now consider fluctuations… → Will staircase survive?



What Happens to Staircase?
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The Staircase
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● For a weakly FVA we get a baseline staircase structure. 
● On the left figure the blue and red box correspond to the blue and re

d plot line on the right.
○ Both blue and red average scalar concentration have the same p

rofile in stable stage.

x’

Example of baseline staircase structure!

So what happens to 
the staircase if we 
increase the Reynolds 
number in the VA?



Criteria for Staircase Resiliency

We establish a set of criteria to give a meaning to the statement of “resiliency”:
1) Pe≫ 1 is a necessary condition for the formation of transport barriers in the process of scalar 

mixing (First principles). Pe≫1 criterion is satisfied for the range of 0 < Ω < 40.
2) A staircase should maintain a sufficiently high curvature (equivalent to sustaining a sufficient 

number of steps). Our studies suggest that κ ≳ 1.5 is an adequate value for a staircase.

N.B. Increasing 𝑅𝑒, Ω increasing cell excursion
 overlap + mergers



What Next ?



Layering in Burning Plasmas !?

• Current Picture: Energetic Particles – dilute

Thermals  DW’s + ZW

• Burning Plasma: mix

EP’s - 𝛼 particles slowing down Thermals

• EP’s and 𝛼’s introduce new scales 𝜌θℎ𝑜𝑡 > 𝜌θ𝑡ℎ𝑒𝑟𝑚𝑎𝑙

and new collective modes …  AE’s  (Alfven Eigenmode)

heating

𝜖 Confinement controlled by 
thermally driven turbulence 
with hots as “extra”

Confinement now a “soup” 
of EP + Thermals



Burning Plasmas

• EP/𝛼  AE

• Thermals  DW

ZW

• Issues

– Feedback loops much ‘richer’. Staircase morphology?

– ZF/Z-mode field now multi-scale

 SC with multi-scale steps. SC in EP and thermal population.

– 𝛼’s slow down on electrons. Thermals: TEM  increased complexity

– Zonal flow damping  ion heating ?!

– AE vs DW competition  layering ?!

Alfven eigenmodes (zoology)
𝜔 ~ 𝜔𝐴, resonance with EP’s

Drift waves 𝜔 ~ 𝜔∗

𝜔 ~ 0



Feedback Loops (Heuristic)

• Fusion burn            𝛼’s       AE            𝜔𝐴

• Multiple, embedded loops – “3 Animals Problem”  Zonal structures connect AE, DW

– Competition of populations

• Traps: i.e. – separate ZF population by injection + ECH ?!

but DW scattering can quench AE’s which drive ZF! so?

• Adventures ahead… c.f. GJ Choi, PD, Hahm NF’23 - dilution

DW’s

ZM’s

slowing 
down

𝑃𝑖𝑛

DW’s scatter 
AE response 𝜔∗

 Significant effect on couplings in HM 

‘channel’ 𝛼 energy to ions



Concluding Thoughts

• Problem of layering evolves along a winding road, with many 

bifurcations

• Stay tuned… Salvador Dali



Back Up



Some Details of Model

→ 2 Simple Models a.) Hasegawa-Wakatani (collisional drift inst.)

b.) Hasegawa-Mima (DW)

a.)

→→

b.)

→

e.s.

n.b.

MHD:

DW:



So H-W

is key parameter

b.)

→ H-M

n.b.

→ ෤𝑣𝑟 ෤𝑛 ≠ 0
and instability

An infinity of technical models follows …

Some Details of Model, cont’d



Recent Development

• Extension of PV Theory to inhomogeneous 𝐵0 Ԧ𝑥 (Hahm+ 2023) 

 analogy 𝐻 = 𝐻(Ԧ𝑟)

 PV evolution via incompressible advection of “magnetically weighted PV”

 novel HM Eqn

• Analogous TEP Theory with 𝐵0 Ԧ𝑥 ,  𝑛/𝐵 incompressibly advected

Γ ~ 𝜕𝑟(𝑛/𝐵)  diffusion + convection 

~ 𝜕𝑟 𝑛
𝐵

~ 𝑛
𝐵2
𝜕𝑟𝐵



Flux Driven Studies

• MFE problems are almost always flux-driven, with source and sink. Not 

addressed in BLY ’98. Gradients not “pinned”

• For conservative drive:

𝜕𝑡𝑛 = 𝜕𝑥𝐷𝑛𝜕𝑥𝑛 + 𝐷𝑐𝜕𝑥
2𝑛 − 𝜕𝑥Γ𝑑𝑟 𝑥

Γ𝑑𝑟 𝑥 = Γ0 exp −𝑥/Δ𝑑𝑟

𝐷𝑛 = 𝑙2𝜀/𝛼 as before

• Now address global confinement dynamics

Collisional transport
(‘neoclassical’)

Drive (conservative)

Profile of depositionstrength



Global Bifurcation in Staircase

• Average Γ vs 𝛻𝑛 plot shows GLOBAL transport bifurcation and hysteresis

• Global confinement bifurcation, in staircase state

• Regional weightings   𝑙0 , 𝑙𝑅ℎ.    Good confinement, 𝑙𝑅ℎ dominates

• Merits of staircase state ?!   Compare to single barrier ?!

S-curve once more,
with feeling !



Global Bifurcation, Cont’d

Final state 〈Γ〉 vs 〈𝛻𝑛〉

Density profile Intensity profile Shear profile

~  Steady State

Profile steepens Intensity drops Shear broadens



Global and Local ↔ Flux Landscape

Flux Landscape ↔ family of S-curve

Red  enhanced confinement

Grey  normal confinement

• See also

– P.D., V.B. Lebedev, el. al., PRL ’97

– Lebedev, P.D., Phys. Plasmas ’98   (barrier propagation)



Current Issues



Ongoing Studies

• “Jamming” in Avalanches as SC mechanism 

{Kosuga, PD, Gurcan’13, also Qi + }

Phenomenology  c.f. Minjun Choi, this meeting

• Resiliency – how robust is S.C. ? (F. Ramirez, PD, PRE 2024)

• Physics of Spreading / Entrainment (Runlai Xu, PD) – address 

weakest link in model

*



Where to next?

N.B. Recall –

“Some models are too good to be true.

Other models are too true to be good.”



New Applications – ‘Stress Test’ the Model

• NL noise – incoherent mode coupling.  How represent in M.L.T. ?

– entrainment, as above

n.b. inhomogeneous mixing – inhomogeneous noise !?

c.f.: R. Singh, P.D. – PPCF 2021

includes 〈𝑛𝛻2𝜙〉 coherence

N.B. BLY already ‘flogged thru the fleet’, but…

Theory-Enhanced Model (but not too complicated!)

• Thermal Rossby / ITG    PV conservation broken (buoyancy)

….                                  ෤𝑣𝑟 ෨𝑇 - dynamic coherence in flux    New Twist

• Multi-scale: DW + ETG,  AE + DW + ZF*



• Dressed parcels – two component model (E. Spiegel, D. Gough “On taking 

i.e. ‘slug’ + waves mixing length theory seriously”)

 akin dressed test particle model (plasma) !?

But what is the gain ?

• Exploit Relation to Wave Kinetics (Vlasov Eqn. for wave packet)

𝑁 = 𝜔𝐸𝑊 ≈ Ω for zonal symmetry

WKE        stochastic: PD et. al.  ’05

coherent: Kaw, Garbet

• Easy to propose extensions, but may jeopardize the simplicity and clarity of BLY ‘98

Potential enstrophy



A Closer Look at

Turbulence Spreading



- Most of system in state of Selective Decay !

- Need Consider / Compare :

as diagnostic of “intensity spreading”.

Realize:

→  Forcing layer, localized

𝑉𝑦 𝛻2𝜑 2/2 →  Enstrophy Flux

𝑉𝑦 𝛻𝜑 2/2 →  Energy Flux

2D Fluid: Simplest Incarnation of Spreading
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Physical Measures of Spreading



- Dipoles, Filaments cluster

- Fractalized spreading front?!

At   Re ~ 2000  (marginal resolution):

⇒ What Happens
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PDF of spreading (vorticity) at given t.

Calculate enstrophy-weighted rms distance for each position X; plot histogram

Note skewed structure.

Results, cont’d

72

RMS Distance

Prob
Density

PDF of RMS Distance



Summary - 2D Fluid
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— Coherent structures - Dipole vortices -
mediate spreading of turbulent region

— Mixed region expands as 𝑤~𝑡, consistent with role of dipole. 

— No discernable “Front”, spreading is strongly intermittent. (space+time)

— Spreading PDF is non-trivial, exhibits tail.

— Turbulence spreading strongly non-diffusive.

— More at York Fest: Comparison 2D Hydro, 2D MHD, HM+ZF


