Transport Physics of Density Limits

P.H. Diamond

Newton Institute, DAMTP, Cambridge and U.C. San Diego

PPPL Seminar Feb. 8. 2024

→ Or...

"How the Birth and Death of Shear Layers Determines Confinement Evolution: From the L→H Transition to the Density Limit"

- → See as above, P.D. et al Phil Trans Roy Soc 381 (OV thru 2022)
- \rightarrow Many refs. throughout

• Collaborators:

Rameswar Singh, Ting Long, Rongjie Hong, Rui Ke, Zheng Yan, George Tynan, Rima Hajjar

• Ackn:

Peter Manz, Martin Greenwald, Thomas Eich, Lothar Schmitz,

Andrew Maris, ...

N.B. : Why Study Density Limits?

- Constraint on operating space
- Fusion power gain ~ n^2
- Attractive feedback loop ?! :

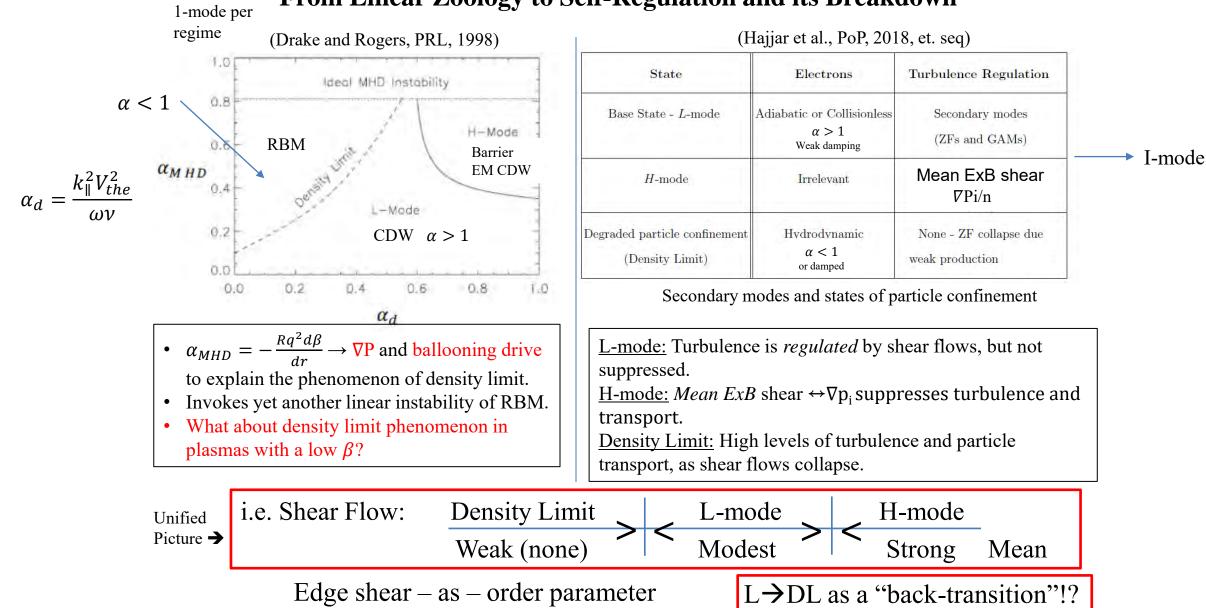
$$\left(\begin{array}{c}P_{fusion} \sim n^{2}\\n_{max} \sim P_{in}^{\alpha}\end{array}\right) \qquad (0 < \alpha < 1)$$

Caveat Emptor

- Dual/Mixed theoretical and experimental approach
- Emphasis on dynamics, micro ← → macro connection etc., not scalings
- Emphasis on L-mode density limit
- N.B. Negative Triangularity (NT) experiments open new roads forward (c.f. Sauter, Hong + DIII-D, submitted)
- DL as confinement transition $\leftarrow \rightarrow$ exploit L \rightarrow H experience

42 Years of H-mode – Lessons (1982 →)

- Saved MFE from Goldston scaling
- Introduced transport barrier, bifurcation \rightarrow state 'phases' and transitions
- Role of flow profile in confinement (BDT '90)
- Dynamical feedback loops → Predator-Prey cycles, Zonal flows, etc.
 (PD+'94,05; K-D '03)
- Consequences of marked transport reduction


→ Strong interest in turbulent pedestal states

• Applications elsewhere \rightarrow Density Limit

N.B. Inhibition of L \rightarrow H for sufficient NT poses challenge to L \rightarrow H model

Preview: A Developing Story

From Linear Zoology to Self-Regulation and its Breakdown

Outline

• Density Limit Phenomenology

 \leftarrow \rightarrow Phases and Transitions of Edge Plasma

• Some Theoretical Matters

 \leftarrow > Shear Layers and Their Degradation

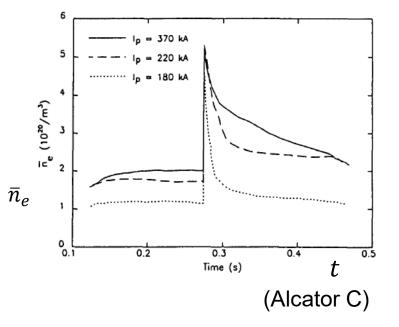
- Power \leftarrow > Separatrix Heat Flux Scaling of Density Limit: Dynamical Signatures
- Recent Developments
- To the Future

Phases and Transitions of the Edge Plasma

and

Density Limit Phenomenology

A <u>Brief</u> History of Density Limits → Conventional Wisdom


- Greenwald $\bar{n}_G \sim I_p / \pi a^2$ (dimensions?)
- High density \rightarrow edge cooling (transport?!)
- Cooling edge → MARFE (<u>M</u>ulti-faceted <u>A</u>xisymmetric <u>R</u>adiation from the <u>E</u>dge) by Earl <u>Mar</u>mar and Steve Wolfe

MARFE = Radiative Condensation Instability in Strong B_0

after G. Field '64, via J.F. Drake '87 : Anisotropic conduction is key

- MARFE → Contract J-profile → Tearing, Island ... → <u>Disruption</u> after: Rebut, Hugon '84, ..., Gates ...
- But: more than macroscopics going on...

- Conventional Wisdom: Radiation + MHD (Rebut \rightarrow Gates...)
- Argue: Edge Particle Transport is fundamental
 - 'Disruptive' scenarios <u>secondary</u> outcome, largely consequence of <u>edge cooling</u>,
 - following fueling vs. increased particle transport \rightarrow "Causality" issue
 - \bar{n}_g reflects fundamental limit imposed by particle transport
- An Important Experiment (Greenwald, et. al. '88)

Density decays without disruption after

shallow pellet injection

- \bar{n} asymptote scales with I_p
- Density limit enforced by transport-

induced relaxation

- Relaxation rate not studied
- Fluctuations?

Shear Layer in L-mode? – Universal Feature of Edges

- Shear layer impacts/regulates edge turbulence even in Ohmic/L-mode, enhanced in H-mode
- Ritz, et. al. 1990

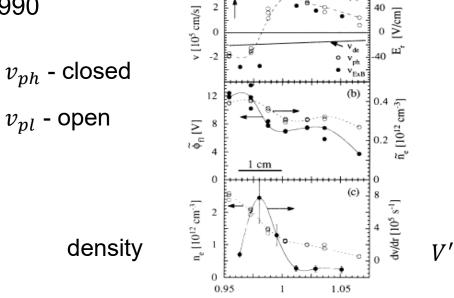
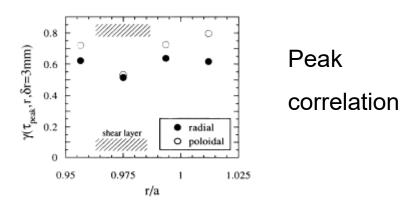
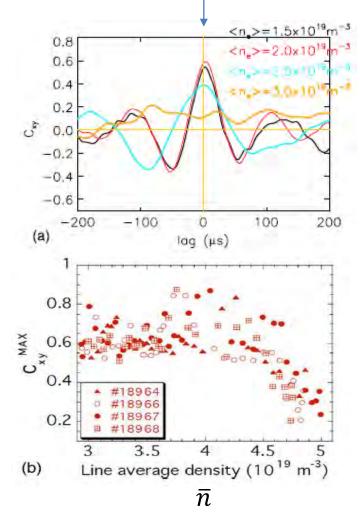


FIG. 1. Radial profiles for a discharge with $B_e = 2$ T, plasma current of 200 kA, and chord-averaged density of n_{chord} $= 2 \times 10^{13}$ cm⁻³. (a) Phase velocity of the fluctuations v_{ph} (closed circles), $v_{E_r \times B}$ plasma rotation (open circles), and drift velocity v_{de} . (b) Density and floating potential fluctuations. (c) Density and velocity shear. The statistical error for individual shots is of order the symbol size and shot-to-shot reproducibility is given by the individual symbols. The systematic error in the plasma position is 0.5 cm or $r/a \approx 0.02$.

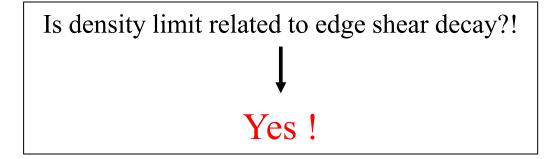
Shear layer




FIG. 3. Peak values of the normalized two-point correlation function for poloidally and radially separated probes with fixed separations of $\delta r = 3$ mm.

Title: "Evidence for Confinement Improvement by Velocity Shear Suppression of Edge Turbulence" n.b. not H-mode!

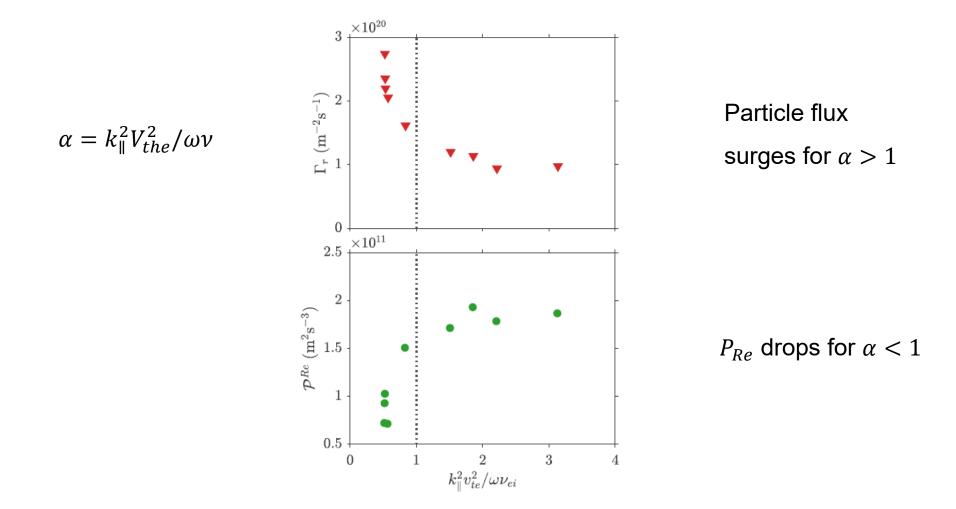
→ Role of Shear Layer in $L \rightarrow DL$?


Toward Microphysics: Recent Experiments - 1

(Y. Xu et al., NF, 2011)

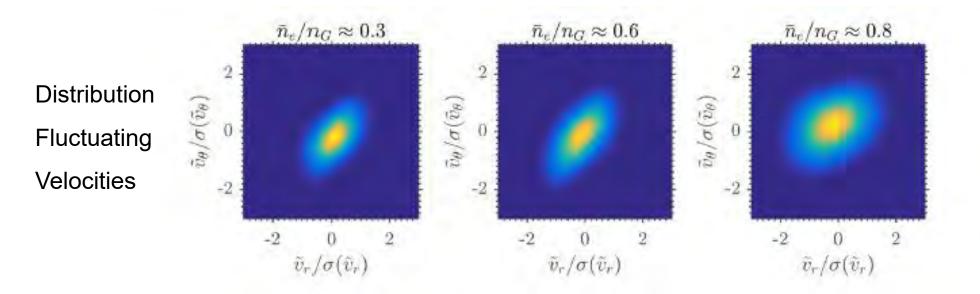
LRC vs \bar{n}

- Decrease in maximum correlation value of LRC (i.e. ZF strength) as line averaged density n
 increases at the edge (r/a=0.95) in both
 TEXTOR and TJ-II.
- The reduction in LRC due to increasing density is also accompanied by a reduction in edge mean radial electric field (Relation to ZFs).



See also: Pedrosa '07, Hidalgo '08 ...

Reynolds work (Flow production) drops as $n \rightarrow n_G$ (Hong+ '18)


Reynolds Power (Flow Production)

• Studies of $P_{Re} = -\langle \tilde{v}_r \tilde{v}_\theta \rangle \partial \langle V_E \rangle / \partial r \text{ vs } n/n_G$

Is DL evolution linked to degradation of edge shear layer ?

Fluctuation + $n/n_G scan$, R. Hong et. al. (NF 2018)

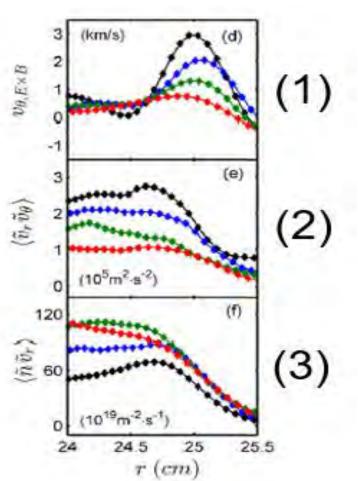
- Joint pdf of $\tilde{V}_r, \tilde{V}_\theta$ for 3 densities, $\bar{n} \to n_G$
- $r r_{sep} = -1cm$
- Note:

Tilt lost, symmetry restored as $\bar{n} \rightarrow \bar{n}_g$

Consistent with drop in P_{Re} observed

→ Weakened shear flow production by Reynolds stress as $n \rightarrow n_{c}$

An In-depth Look at More Recent Experiments


Ting Long, P.D. et. al. 2021 NF Rui Ke, P.D., T. Long et. al. 2022 NF

N.B. These experiments are 'theoretically motivated"

J-TEXT – Ohmic

•
$$B_T \sim 1.6 - 2.2 T$$
 $\frac{n}{n_G} \sim 0.7$ $n_G \sim 6.4 \rightarrow 9.3 \times 10^{19} m^{-3}$

- $I_p \sim 130 190 \, kA$ $\bar{n} \sim 2.0 5.3 \times 10^{19} m^{-3}$
- Principal Diagnostics: Langmuir Probes
 - Shear layer <u>collapses</u> as n/n_G increases (1)
 - Turbulence particle flux increases (3)
 - Reynolds stress decays (2)
 - Velocity fluctuation PdF \rightarrow symmetry

Black - $0.3n_G$

Blue - $0.34n_{G}$

Green - $0.6n_G$

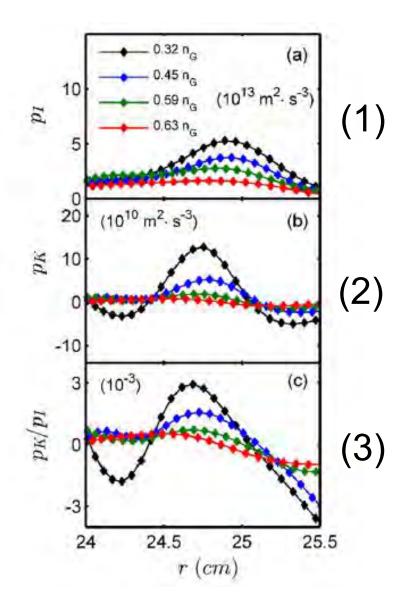
Red - $0.63n_{G}$

Mean-Turbulence Couplings

• In standard CDW model:

Production \equiv Input from ∇n

$$\delta n = \tilde{n}/n_0$$


$$P_{I} = -c_{s}^{2} \langle \tilde{V}_{r} \delta n \rangle \left(\frac{1}{n_{0}} \frac{\partial \langle n \rangle}{\partial r} \right)$$

Reynolds Power \equiv Coupling to Zonal Flow

 $P_k = -\langle \tilde{V}_r \tilde{V}_\theta \rangle \, \langle V_E \rangle'$

- Reynolds power drops as n/n_G rises (see Hong+,'18) (2)
- P_k/P_I drops as n/n_G rises (3)
- → Fate of the Energy ?

→Where does it go?

Fate of the Energy ?

Turbulence Energy Budget

$$\begin{array}{ll} \frac{\partial \varepsilon}{\partial t} + \frac{\partial}{\partial r} \langle v_r \varepsilon \rangle = P_I & - \text{Dissipation} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

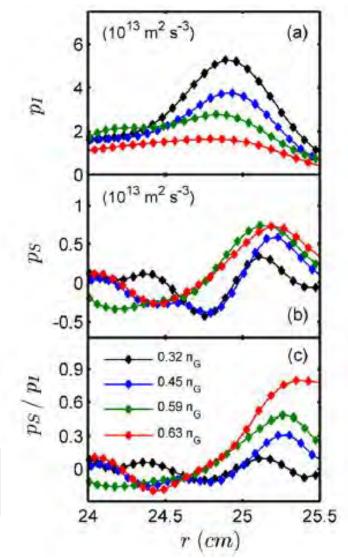
• Then $P_S \rightarrow$ Power coupled to fluctuation energy flux \rightarrow <u>Turbulence</u>

spreading

$$P_{S} = -\partial_{r} \langle \tilde{v}_{r} \varepsilon_{I} \rangle = -\partial_{r} \langle \tilde{v}_{r} \tilde{n}^{2} c_{s}^{2} \rangle / 2n^{2} \longrightarrow \text{Turbulence Spreading Power}$$

• Turbulence Spreading encompasses "Blob" and "Void" propagation

Fate of the Energy, Cont'd


- Turbulence Spreading !
 - Reynolds power drops
 - P_s increases; transitions $P_s < 0$ to $P_s > 0$
- Where does the shear layer energy go?

$$(P_k/P_I)_{peak} \times (P_s/P_I)_{peak} \sim 0.3, 0.5, 0.4, 0.4 \times 10^{-3} \text{ as } n/n_G \uparrow$$

 \approx constant

Energy diverted from shear layer to spreading at $L \rightarrow DL$

• N.B. Recent result (Long + 2024, submitted): δ (spreading flux) is more robust indicator of DL then δ (particle flux)

Characteristics of Spreading

- Low frequency content of ullet \tilde{I}_{sat}/I_{sat} increases (1)
- \tilde{I}_{sat} autocorrelation time increases (2)

Pdf \tilde{I}_{sat} developes positive

skewness as n/n_G increases (3)

auto correlation (a) 0.02 skewness: 0.2 $pow (\tilde{I}_{sat})$ p.d.f 0.01 10 -0.1 20 -0.2 0 f^{10}_{kHz} 100 Ĩ sat $\tau(\mu s)$ $0.63n_{G}$ 2) auto correlation kurtosis: 3.1 pow (\tilde{I}_{sat} / I_{sat} 1.0 0.02 skewness: 0.6 D.d. J 0.01 f(kHz)100

 $\tau (\mu s)$

Isat

 $0.32n_G$

(a)

02

0.2

(b)

0.1

Ĩ.ut

(3)

kurtosis: 3.3

-0.2

-0.1

See also T. Long, P.D.+ submitted 2023 for \tilde{n} skewness $\leftarrow \rightarrow$ spreading correlation and in \rightarrow out symmetry breaking

Characteristics of Spreading, Cont'd

- Enhanced turbulent particle transport events accompany $L \rightarrow DL$ back transition
- Events are quasi-coherent density fluctuations. Diffusive model of spreading

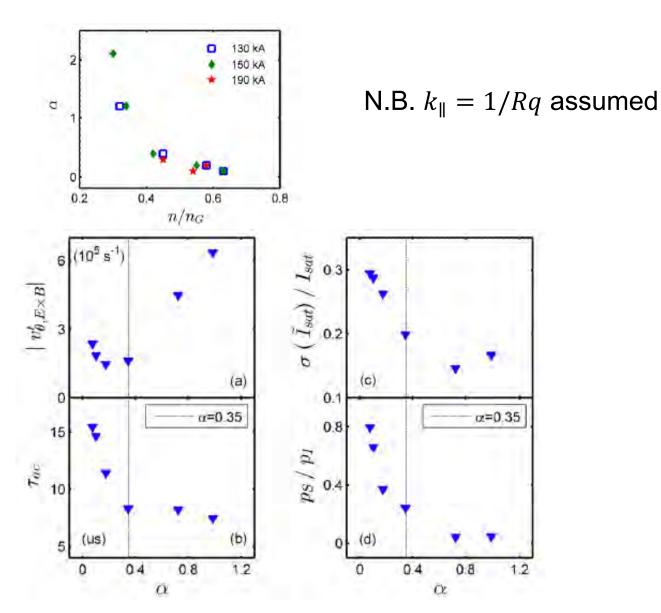
dubious

Localized over-turning events, small avalanches, "blobs", ...

N.B. "The limits of my language means the limits of my world."

- Ludwig Wittgenstein
- Blob ejection \rightarrow recycling \rightarrow cold neutral influx \rightarrow cooling + MHD trigger

Is there a key parameter? – Adiabaticity!

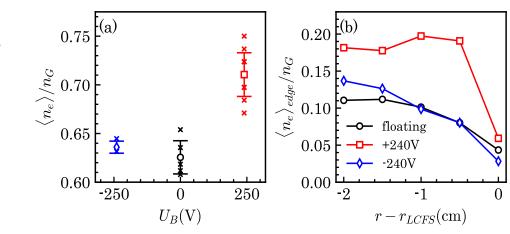

• Adiabaticity $\alpha = k_{\parallel}^2 V_{the}^2 / \omega v$

 α drops < 1 as n/n_G increases

- V'_E rises with $\alpha \uparrow$
 - τ_{ac} decreases with α \uparrow

 $\sigma(\tilde{I})/I$ decreases with $\alpha \uparrow$

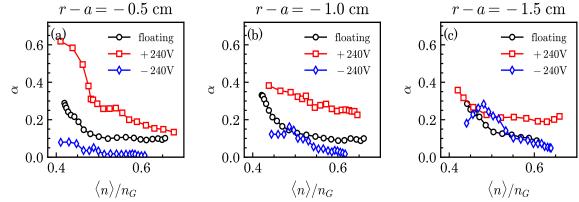
 P_s/P_I decreases with $\alpha \uparrow$



The Obvious Question

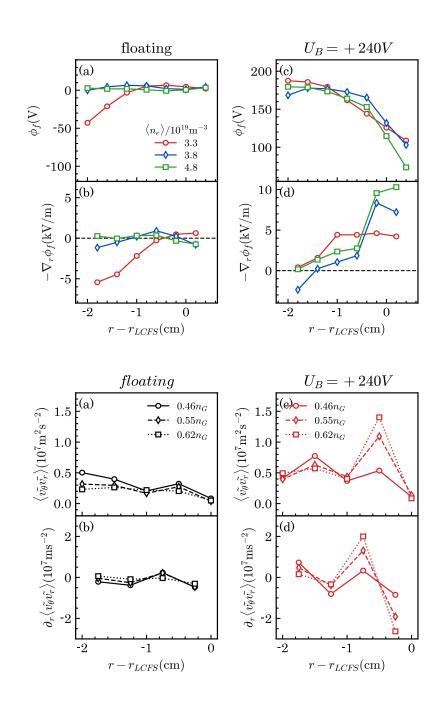
- Can <u>driving the shear layer</u> sustain high densities, where $L \rightarrow DL$, otherwise ?
- "Driving" ---- bias electrode here (J-TEXT). Not a conventional H-mode
- Long history of bias-driven shear layers in $L \rightarrow H$ saga R.J. Taylor, et. seq.
- Recent: Shesterikov, Xu et. al. 2013 Textor
- Electrode $\rightarrow J_r \rightarrow V_\theta \rightarrow V'_E$ etc.
- New Here?
 - High Density
 - Gas Puffing \rightarrow push on DL
 - Analysis
- c.f. Rui Ke, P.D. + NF 2022

The Answer – Looks Promising!


- Edge density <u>doubled</u> for +240V bias
- $\bar{n}_{\text{max,bias}} > \bar{n}_{\text{max,float}}$
- Note: $\bar{n}_{\text{max,float}} \sim 0.7 n_G$

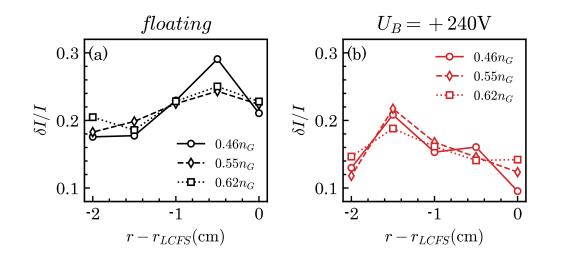
Experiment limited by graphite probe sputtering

- Key parameter?
 - $-\alpha$ systematically higher with +bias
 - $-\alpha \sim T^2/n$ Reduced transport \rightarrow higher T

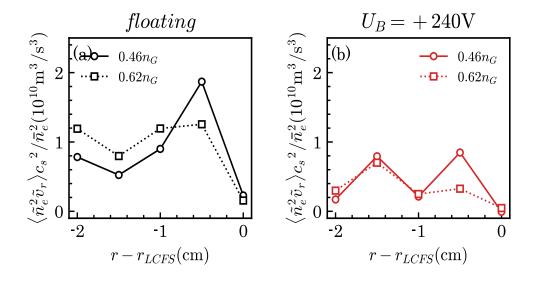

The Physics

• Edge Shear Layer produced for +bias

N.B. Not an E_r well


- Reynolds stress, force increase for +bias
- \leftarrow \rightarrow bias effect on eddy alignment

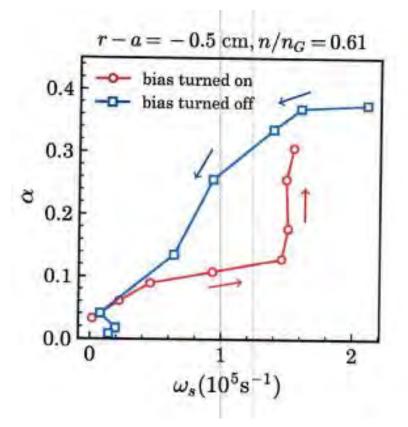
"Shearing" $\leftarrow \rightarrow$ interplay of bias and Reynolds stress



The Physics

• $\delta I/I \quad (\rightarrow \tilde{n}/n)$ fluctuations sharply reduced by +bias

• Turbulence spreading quenched by +bias



Key Parameter vs Control Parameters

- α vs ω_{shear} exhibits hysteresis loop
- Cntr clockwise rotation $\rightarrow \omega_{shear}$ 'leads' α
- Is α unique 'key parameter'?
- For drift waves, $\alpha \sim T^2/n$
 - \rightarrow shear $\uparrow \rightarrow$ turbulence $\downarrow \rightarrow$ heat transport \downarrow

 $\rightarrow \alpha$ increases

• Is ω_{shear} the control parameter?

Ongoing and Future Work

- Bias experiment with improved probe
- Ip scan vs n/n_G scan ? obvious 'Greenwald test' (Long+ 2024, submitted):

Ip ramp down explained via $\omega_{shear} \tau_{cor}$

- Physics of spreading (Long, PD+ 2023)
 - Spreading $\leftarrow \rightarrow$ Blob emission
 - Broken symmetry: "Spreading" dominated by large blobs

Some Theoretical Matters

→ Shear Layer Physics

- Degradation / Collapse
- Support \rightarrow Power

Step Back: Zonal Flows Ubiquitous! Why?

• Direct proportionality of wave group velocity and wave energy density flux to Reynolds stress $\leftarrow \rightarrow$ spectral correlation $\langle k_x k_y \rangle$

Causality $\leftarrow \rightarrow$ Eddy Tilting i.e. $\omega_k = -\beta k_x/k_\perp^2$: (Rossby) $\bullet \quad V_{q,\nu} = 2\beta \ k_x k_\nu / (k_\perp^2)^2$ $\rightarrow \quad \langle \tilde{V}_{v}\tilde{V}_{x}\rangle = -\sum_{k}k_{x}k_{v}|\phi_{k}|^{2}$ So: $V_q > 0 \ (\beta > 0) \bigstar k_x k_y > 0 \twoheadrightarrow \langle \tilde{V}_y \tilde{V}_x \rangle < 0$ Propagation $\leftarrow \rightarrow$ Stress

• Outgoing waves generate a <u>flow convergence</u>! → <u>Shear layer spin-up</u>

But NOT for hydro convective cells: (i.e. $\alpha < 1$)

•
$$\omega_r = \left[\frac{|\omega_{*e}|\hat{\alpha}|}{2k_{\perp}^2\rho_s^2}\right]^{1/2} \rightarrow \text{for convective cell of H-W (enveloped damped)}$$

• $V_{gr} = -\frac{2k_r\rho_s^2}{k_{\perp}^2\rho_s^2} \omega_r \quad \leftarrow ?? \rightarrow \quad \langle \tilde{V}_r\tilde{V}_\theta \rangle = -\langle k_rk_\theta \rangle; \text{ direct link broken!}$

- → Energy flux NOT simply proportional to Momentum flux →
- → Eddy tilting ($\langle k_r k_\theta \rangle$) does <u>not</u> arise as direct consequence of causality
- → ZF generation <u>not</u> 'natural' outcome in hydro regime!
- → <u>Physical</u> picture of shear flow collapse emerges, as change in branching ratio of vorticity flux to particle flux as α drops
- N.B. Generic mechanism, not linked to specific "mode"
- $\alpha < 1 \Rightarrow \mathsf{RBM}$

Simulations !?

- Extensive studies of Hasegawa-Wakatani system for $k_{\parallel}^2 V_{the}^2 / \omega \nu < 1$, > 1 regimes.
 - i.e. Numata, et al '07

Gamargo, et al '95

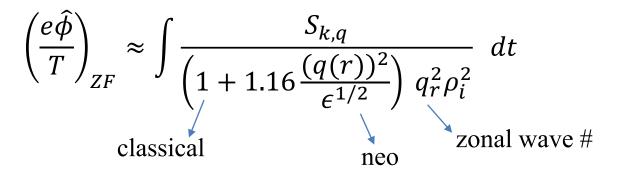
Ghantous and Gurcan '15

+ many others

- All note weakening or collapse of ordered shear flow in hydrodynamic regime $(k_{\parallel}^2 V_{the}^2 / \omega v < 1)$, which resembles 2D fluid/vortex turbulence i.e. $\alpha < 1$
- Physics of collapse left un-addressed, as adiabatic regime $(k_{\parallel}^2 V_{the}^2 / \omega v)$ dynamics of primary interest ZFs
- Shear Layer Collapse $\leftrightarrow \alpha < 1$ <u>Generic</u>

 \rightarrow

What of the Current Scaling?


- Obvious question: How does shear layer collapse scenario connect to Greenwald scaling $\bar{n} \sim I_p$?
- Key physics: shear/zonal flow response to drive is 'screened' by neoclassical dielectric
- i.e. $-\epsilon_{neo} = 1 + 4\pi\rho c^2/B_{\theta}^2$
 - $-\rho_{\theta}$ as screening length
 - effective ZF inertia lower for larger I_p

N.B.: Points to ZF response as key to stellarator.


Current Scaling, cont'd

- Shear flow drive: incoherent emission $S \Rightarrow \text{ polarization NL}$ $\frac{d}{dt} \left[\langle \left(\frac{e\phi}{T}\right)^2 \rangle_{ZF} \right] \approx \frac{\sum_k |S_{k,q}|^2 \tau_{c_{k,q}}}{|\epsilon_{neo}(q)|^2}$ Nonlinear Noise - Production $\leftarrow \Rightarrow$ beat drive
 - Response (neoclassical)
 - Rosenbluth-Hinton '97 et seq (extended)

Increasing I_p decreases ρ_{θ} and off-sets weaker ZF drive

Current Scaling, cont'd

Production $\leftrightarrow \tau_c$

- Higher current strengthens ZF shear, for fixed drive
- Can "prop-up" shear layer vs weaker production
- Collisionality? Edge of interest!?

Screening in the Plateau Regime!? (Relevant) N.B. Ions!

$$\left(\frac{\phi_k(\infty)}{\phi_k(0)}\right)^{ZF} = \frac{\epsilon^2/q(r)^2}{\left(\epsilon/q(r)\right)^2 + L} \approx \frac{\epsilon^2/q(r)^2}{L} = \frac{1}{L} \left(\frac{B_\theta}{B_T}\right)^2$$

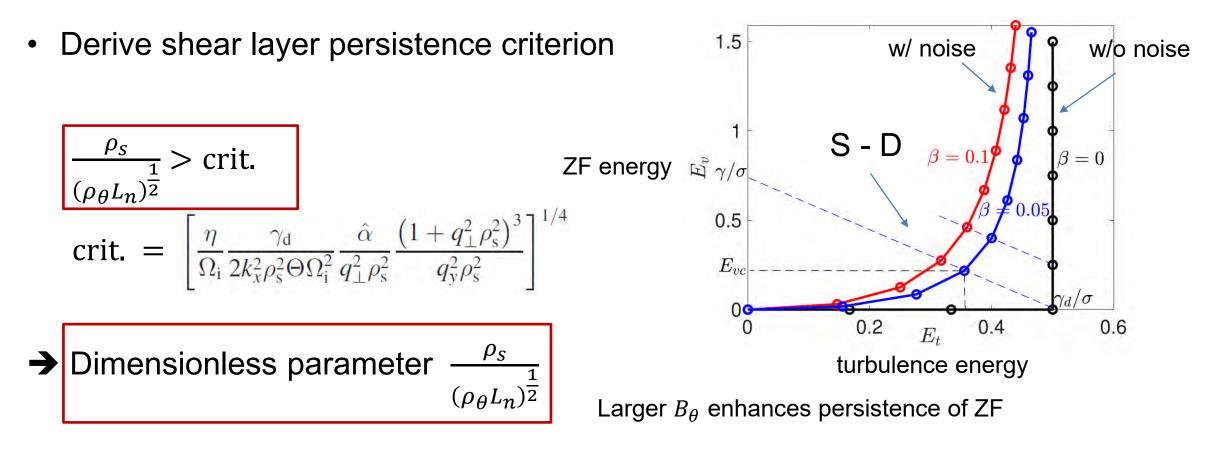
$$L = \frac{3}{2} \int_0^{1-\epsilon} d\lambda \frac{\int d\theta}{2\pi} h^2 \rho \approx 1 - \frac{4}{3\pi} (2\epsilon)^{3/2}$$

- Favorable I_p scaling of time asymptotic RH response persists in plateau regime. Robust trend.
- Compare to Banana (L = 1);

$$\left(\frac{\phi_k(\infty)}{\phi_k(0)}\right)^{ZF} = \left(\frac{B_\theta}{B_T}\right)^2 \quad \text{Current scaling but smaller ratio}$$

Revisiting Feedback in Reduced Model (c.f. Singh, P.D. PPCF '21)

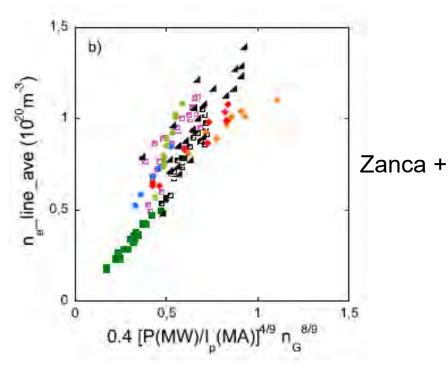
• How <u>combine</u> noise, neoclassical dielectric and feedback dynamics? → back to Predator-Prey...



- Zonal flow and turbulence <u>always</u> co-exist *
- Zonal flow energy increases with current
- Turbulence energy never reaches 'old' modulation threshold
- Zonal cross-correlation import TBD

cf: extends P.D. et. al. '94; Kim, PD '03

Criterion for Shear Layer Collapse


• For collapse limit, criterion without noise is viable approximation to with noise

Power Scaling and <u>Physics</u> of L-mode Density Limit (Singh, P.D. PPCF 2022)

- Power Scaling is an old story, keeps returning
- Zanca+ (2019) fits $\rightarrow \bar{n} \sim P^{0.4}$

- Giacomin+: Simulations recover power scaling
- Observe: $Q_i|_{bndry}$ will drive shear layer \rightarrow LH mechanism
- So: $P_{\text{scaling}} \leftrightarrow \text{shear layer physics: a natural connection}$

Expanded Kim-Diamond Model

- KD '03 useful model of L \rightarrow H dynamics (0D)
- See also Miki, P.D. et al '12, et. seq. (1D)
- Evolve ε , V_{ZF} , n, T_i , V'_E

\leftrightarrow

- Treats mean and zonal shearing
- Separates density and temperature contributions to P_i
- Heat and particle sources Q, S

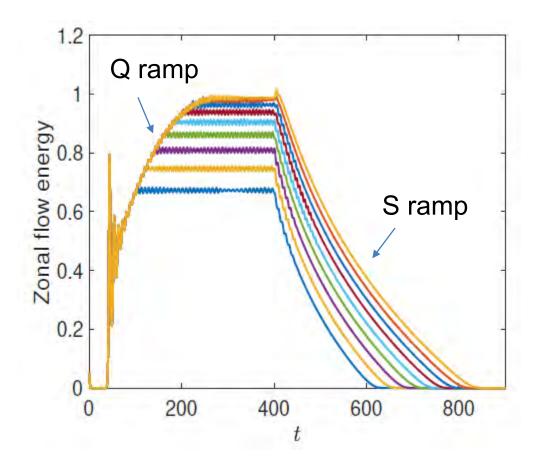
N.B. i) ZeroD → interpret as edge layer
 ii) Does not determine profiles
 iii) Coeffs for ITG
 heat flux

$rac{\partial \mathcal{E}}{\partial t} = rac{a_1 \gamma(\mathcal{N}, \mathcal{T}) \mathcal{E}}{1 + a_3 \mathcal{V}^2} - a_2 \mathcal{E}^2 - rac{a_4 v_z^2}{1 + b_2}$	ε Fluctuation Intensity
$\frac{\partial v_z^2}{\partial t} = \frac{b_1 \mathcal{E} v_z^2}{1 + b_2 \mathcal{V}^2} - b_3 n v_z^2 + b_4 \mathcal{E}^2$	Zonal Intensity
$\frac{\partial T}{\partial t} = -c_1 \frac{\mathcal{E}T}{1+c_2 \mathcal{V}^2} - c_3 \mathcal{T} + Q$ $\frac{\partial n}{\partial t} = -d_1 \frac{\mathcal{E}n}{1+d_2 \mathcal{V}^2} - d_3 n + S$	
$V'_E = -\rho_i v_{thi} L_n^{-1} (L_n^{-1} + L_T^{-1})$	shear Shear (mean)
$\mathcal{V} \equiv \frac{V'_E a}{\rho^* v_{thi}} = -\frac{n_0}{n} \mathcal{N} \left(\frac{n_0}{n} \mathcal{N} + \frac{T_0}{T}\right)$	(τ)

fueling

edge layer

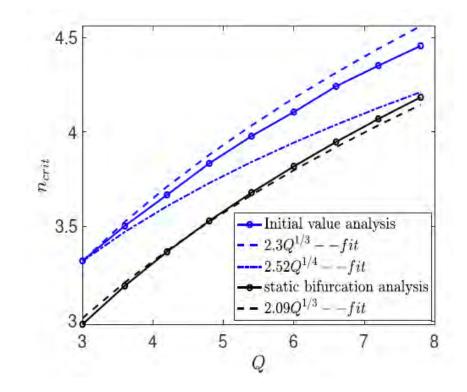
$L \rightarrow DL$ Studies: Shear Layer Physics $\leftarrow \rightarrow$ Power Scaling


- Look for shear layer collapse
- *Q* ramp-up to L-mode, followed by *S*

ramp-up

• Oscillations \rightarrow predator-prey cycles

• n for ZF collapse increases with Q


scaling of n_{crit} emerges

Power Scaling: LDL

- $n_{\rm crit} \sim Q^{1/3}$
- Distinct from Zanca, but close (model)
- In K-D, with neoclassical screening $n_{crit} \sim I_p \rightarrow I_P^2$
- Physics is $\gamma(Q)$ vs ZF damping

Shear layer drive underpins power scaling

Physics: $Q_i \rightarrow$ Turbulence \rightarrow Reynolds Stress \rightarrow ZF shear

Increased ZF damping \rightarrow Confinement degradation

NB: Unavoidable model dependence in scalings

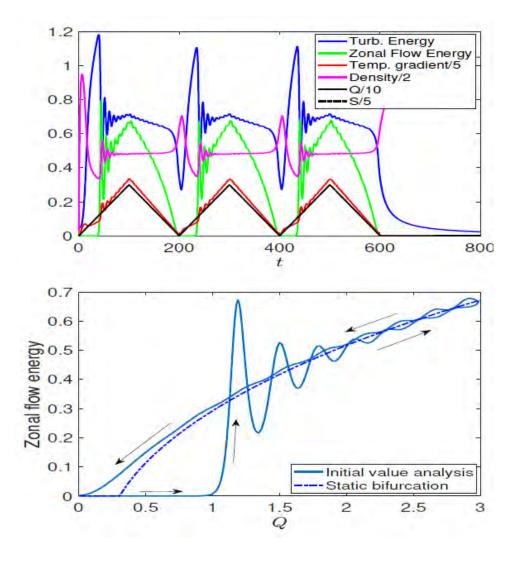
Beyond Scalings: L→DL 'Transition' Physics

"If it Flux Like a Duck... (M.N. Rosenbluth, after F. Wagner)"

• Hysteresis ! in ε_{ZF} vs Q

Critical slowing down effect

- Expected, given 2 states transport
- <u>Not</u> familiar bistability !
- Physics prediction ... beyond scaling


Also:

Is there torque effect of density limit,
 i.e. The torque P. K. 2

i.e. $\nabla P/n$ vs $B_{\theta}V_{\phi}$?

• Torque $\longleftrightarrow V'_E$ \checkmark Mean field

Reyn. stress coherence

Recent: NT Density Limit Studies (DIII-D) (Sauter, Hong+ 2023)

- $\bar{n} \sim 2 n_G$ achieved with ~ 10 MW NBI. No disruption
- NT greatly expands dynamic range of L-mode by preventing L→H transition. Allows separation LDL, HDL.
- \bar{n} , n_{edge} both scale as P^{α}

 $\overline{n} \rightarrow \alpha \sim 0.3$ $n_{edge} \rightarrow \alpha \sim 0.4$ Caveat Emptor

- Confinement degrades above n_G ? Major question...
- V'_E effects noted

NB: High β_p , peaked density DIII-D does not degrade τ_E above n_G (DIII-D; Ding, Garofalo+ ...)

Stay Tuned

From L-DL to H-DL

• H-mode density limit is back transition $H \rightarrow L$ at high density,

usually followed by progression to $n_{\rm Greenwald}$

- Key issue ! Gentle "pump-and-puff" (Mahdavi) has beat Greenwald
 ←→ strong shear layer...
- Candidates
 - AUG: α_{MHD} at separatrix (Eich, Manz)
 - Goldston, Brown: Conduction broadens SOL, reduces $V'_E \rightarrow$
- So instability calculated & inward spreading <u>hypothesized</u>
- Experiments needed!

c.f. Dog + Tail ? \rightarrow track inward spreading ?!

N.B. Physics of Back Transition is key to HDL. What degrades ExB shear, absent ELMs

$$\lambda: v_D * \left\{ \begin{array}{c} \tau_T \\ \tau_{\text{cond}} \end{array} \right.$$

$$\gamma = c_s/(\lambda R)^{1/2} - \phi/\lambda^2$$

Conclusions: V'_E as Edge Order Parameter

- Density limits as "back-transition" phenomena; V'_E physics crucial
- L-DL mechanism:
 - Shear layer degradation
 - Strong turbulence spreading \rightarrow Blob emission
- α is key parameter, but not only
- Scalings of L-DL emerge from zonal flow physics
 - − I_p scaling → neo dielectric
 - *P* scaling \rightarrow Reynolds stress, radial force balance
- Novel hysteresis evident in L-DL dynamics
- $H \rightarrow DL$ back transition trigger unclear. Back Transition is key.

Speculations / Questions

- Is H-DL due turbulent degradation of V'_E in pedestal? Mechanism?
- Can external means be used to enhance edge density?
- Is there a L-mode edge with $\alpha > 1$ and $n > n_G$?
- Collisionless regimes? ∇ n TEM.
- D-L-H triple point, ala' phase transitions?
- New states:
 - Neg. Tri. at high n, P? Features of edge plasma?
 - Power Density feedback loop in burning plasma?
- Origin of confinement degradation at high density?

Thank You !

Supported by U.S. Dept. of Energy under Award Number DE-FG02-04ER54738