# Gradient Relaxation Events -> Edge Fluctuations and SOL Broadening

P.H. Diamond, M. Cao UC San Diego

TTF 2023; Badger Hole, Wisc.

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

# or "Interesting Things come in Pairs"

#### **Profuse Thanks to:**

• F. Khabanov, T. Long (SWIP), R. Hong, G. Yu

G. Tynan, Z. Yan, G. McKee, Minjun Choi (KFE)

and

Frontiers/DIII-D Experiment Program

#### Introduction

- Turbulence spreading, propagation of great interest in context SOL broadening
  - CF M. Kobayashi +, 2022
    - Chu, P.D., Guo, 2022
    - P.D. TTF 2022
    - Nami Li, Zeyu Li → this meeting
- Idea: pedestal turbulence (includes ELMs, MHD) spreads into stable SOL, thus broadening SOL width. Penetration depth?
- Key Issue: Trade-off?  $\rightarrow$  Need broaden  $\lambda_q$  while maintain good confinement

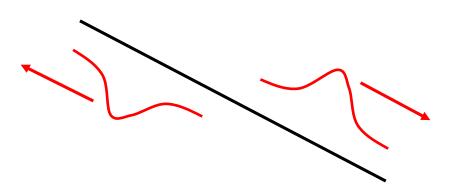
## Introduction, cont'd

Foundation: Phyiscs of turbulence spreading, avalanches, etc.

- Avalanches observed  $\begin{array}{c} \bullet \quad \text{M. Choi, 2018 (KSTAR) ECEI} \\ \bullet \quad \text{Spreading} \end{array}$  M. Choi, 2018 (KSTAR) ECEI velocimetry i.e.  $\langle \tilde{V}_r \tilde{n}^2 \rangle$

## Introduction, cont'd

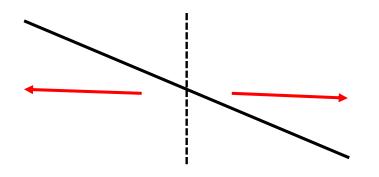
Avalanches → opposite propagation of bumps and voids



P.D. + Hahm '95 et seq.

N.B.: bump and void propagation observed → Choi, 2018

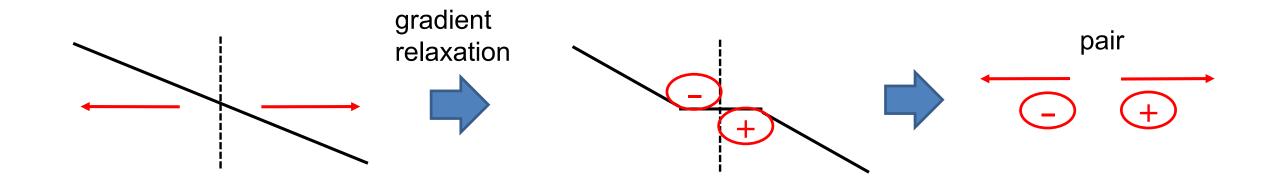
• Hint of opposite  $\langle \tilde{v}_r \tilde{n}^2 \rangle$  spreading pulses near sep.



Khabanov, this meeting

#### Introduction, cont'd

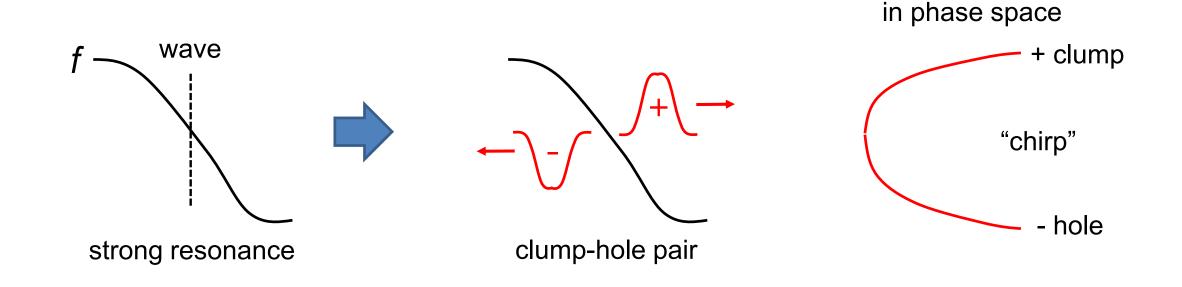
- Why the ?
- Edge gradient relaxation event (GRE)



- → inward propagating "void" or "hole"
- → outward propagating "clump" or "blob"
- ←→ Conservative advection

# Related: B+B Model (1996 $\rightarrow$ )

1D Vlasov mock up of EP resonant instability



turbulence spreading

- N.B. BB speak and draw "clump-hole pair" but <u>calculate</u> via 3 wave coupling
  - → coherence of structure ?!
- Common element: relaxation → structure pair production and propagation

#### **General Question:**

"Is there a connection between turbulence spreading and blob-void pairs of structures?"

# A) Spreading Pulses Experiments (Ting Long, SWIP) 1

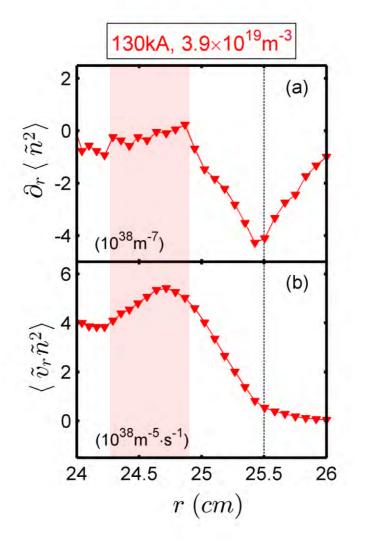
- HL-2A
- Aims:
  - Exploration of intensity flux intensity gradient relation in edge turbulence (exploits spreading, shear layer collapse and density limit studies Long + NF'21)
  - Physics of "Jet Velocity" profile

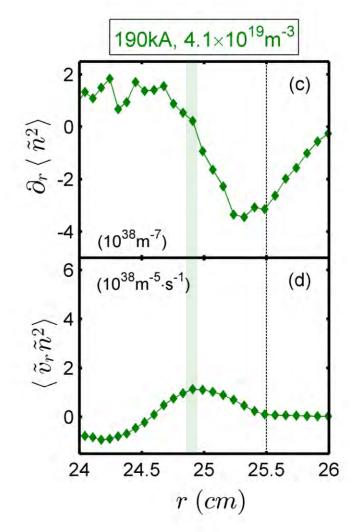
$$V_I = \langle \tilde{v}_r \tilde{n}^2 \rangle / \langle \tilde{n}^2 \rangle$$
 spreading flux, normalized

N.B. Identified by Townsend, 1949

#### **Experiments 2**

• There exits a region in plasma edge, where the turbulence spreading flux  $\langle \tilde{v}_r \tilde{n}^2 \rangle / 2$  is large, but the turbulence intensity gradient  $\partial_r \langle \tilde{n}^2 \rangle$  is near zero





#### For similar $\overline{n}_e$ values

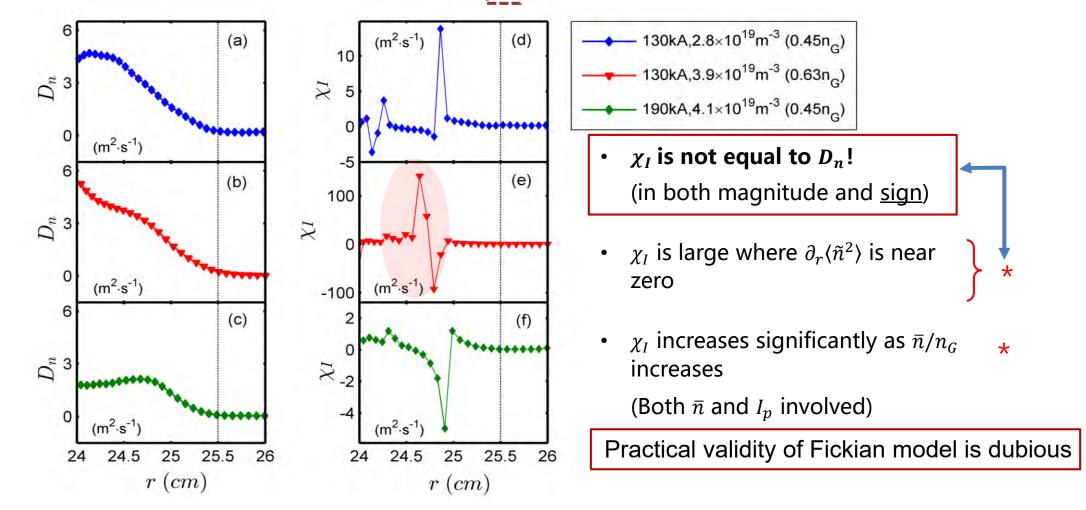
- Lower current, width of region is  $\sim 5 mm$  $(l_{cr} \sim 4.5 mm)$
- Higher current, width of region is < 1 mm  $(\rho_i \sim 0.25 mm)$
- Note: spreading diffusivity

$$\chi_I = -\frac{\langle \tilde{v}_r \tilde{n}^2 \rangle}{\partial_r \langle \tilde{n}^2 \rangle}$$

Conventional approach to spreading flux

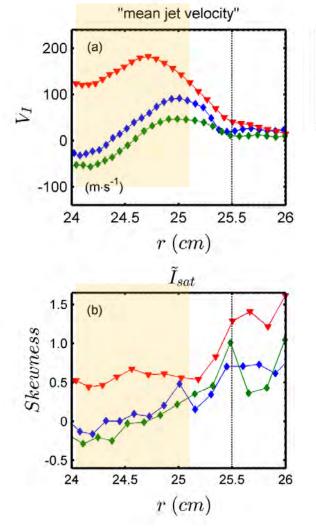
#### **Experiments 3**

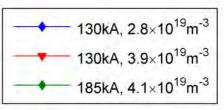
- Striking difference between particle diffusivity and energy spreading diffusivity
  - ightharpoonup Diffusivity of turbulent particle flux  $\langle \tilde{n}\tilde{v}_r \rangle = D_n \partial_r \langle n \rangle$
  - ightharpoonup Diffusivity of turbulence spreading  $\langle \tilde{v}_r \tilde{n}^2 \rangle = \chi_I \partial_r \langle \tilde{n}^2 \rangle$



#### **Experiments 4**

• The "mean jet velocity" of turbulence spreading  $V_I = \frac{\langle \tilde{v}_r \tilde{n}^2 \rangle}{\langle \tilde{n}^2 \rangle}$  and skewness of density fluctuations show strong correlation





- Their trends and signs are consistent
- More work is on the correlation between "blobs/holes" and turbulence spreading is suggested
- $V_I$  skewness trend follows joint reflection symmetry relation

← suggests that spreading flux is carried by pulses and structures

This all brings us to...

## A, Cont'd

- Theoretical Problem #1
  - –How formulate spreading model with pulse fluctuations?
  - -How do pulses interact with SOL environment?

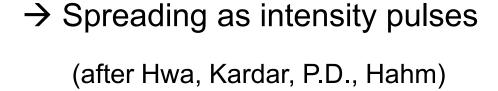
# **Spreading as Fluctuation Pulses**

- Edge turbulence intermittent:
  - Strong  $\langle V_E \rangle'$  → ~ marginal avalanching state
  - Weaker  $\langle V_E \rangle' \rightarrow$  'blobs', etc.  $\Gamma_e = \langle \Gamma_e \rangle + \tilde{\Gamma}_e$
- Pulses / Avalanches are natural description

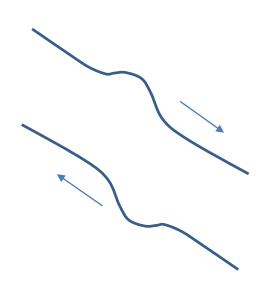
 $\delta P \equiv$  deviation of profile from criticality

$$\delta P \leftrightarrow (\nabla P - \nabla P_{crit})/P$$

Naturally:  $\delta P \sim \delta \varepsilon$ 



→ But what happens in SOL?



Pulse, void symmetry arguments etc.

# Fluctuation Energy Pulses, cont'd

- Generalized Burgers model coming
- Elements:
  - $-\delta P > 0$  turbulence ejected into SOL
    - $\delta \varepsilon > 0$  positive intensity fluctuation
  - $-V_D > 0$  mean drift out curvature
- Scale independent damping
  - $(1/\tau)\delta P$  due finite dwell time in SOL  $\rightarrow$  order parameter not conserved
  - "Noise" is b.c.
    - $-\tilde{\Gamma}_{0,e}|_{\text{sep}}$  drives system, space-time
    - Variability in sparatrix fluctuation energy flux is key

# Fluctuation Energy Pulses, cont'd

- Pulse model:

- 3 spreading



1 drift
2 dwell time decay
$$\partial_t \delta P + V_D \partial_x \delta P + \alpha \delta P \partial_x \delta P - D_0 \partial_x^2 \delta P + \frac{\delta P}{\tau} = 0$$
2 spreading

regularization

$$\delta P(0,t) \leftrightarrow \tilde{\Gamma}_{sep}(t)$$

- Some limits:
  - $-\varepsilon \to 0$  ,  $V_D \partial_x \delta P \sim \frac{\delta P}{\tau} \to \lambda \sim \lambda_{HD}$  scale 1 vs 2
  - For  $\varepsilon$  to matter:
    - $\alpha \delta P > V_D \rightarrow$  amplitude vs neo drift comparison 1
- Structure is Burgers + Krook → Crooked Burgers ?!

# Fluctuation Energy Pulses, cont'd

Predictions?

Structure formation → Shock Criterion!

i.e. Recall: 
$$\frac{d\delta P}{dt} = -\frac{\delta P}{\tau}$$
 ,  $\frac{dx}{dt} = \alpha \delta P$ 

Solve via characteristics:

$$x = \alpha \left[ z + \frac{\left(1 - e^{-\frac{t}{\tau}}\right)}{(1/\tau)} f(z) \right]$$

Shock for:  $f'(z) < -1/\tau$ 

 $\rightarrow$  inital slope must be sufficiently steep to shock before damped by  $1/\tau$ 

→ Relates pulse shape for shock to SOL dwell time

#### Spreading as Intensity Pulses, cont'd

- $\alpha \frac{\partial \delta P}{\partial x}|_{sep} < -\frac{1}{\tau}$   $\rightarrow$  pulse formation criterion  $\rightarrow$  intensity gradient at sep.
  - → dwell rate vs sep. intensity gradient

Fate ?





 $\alpha \delta P < V_D$   $\rightarrow$  defacto 'evaporation criterion'

- $\rightarrow$  defines penetration depth of pulse by  $\alpha \delta P \rightarrow V_D$  relaxation
- Aim to characterize <u>statistics</u> of pulses, penetration depth distribution... in terms  $Pdf(\tilde{\Gamma}_{0,e})$ . Challenging...
  - → Meaningful output for SOL broadening problem

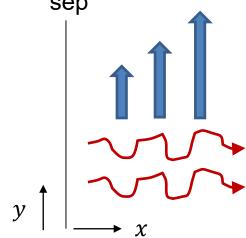
 $\delta P \gtrsim V_D/\alpha$  sets penetration depth  $\partial \delta P/\partial x|_{sep}$  is critical quantity

# Spreading as Intensity Pulses, cont'd

- ~ 2D Model
- How address shearing → c.f. P.D., Hahm '95 → "Double" Burgers

$$\partial_t \delta P + V_D \partial_x \delta P + V_E(x) \partial_y \delta P + \alpha \delta P \partial_x \delta P - D_0 (\partial_x^2 + \partial_y^2) \delta P = 0$$

$$\tilde{\Gamma}(x = 0, y, t) \text{ specified}$$



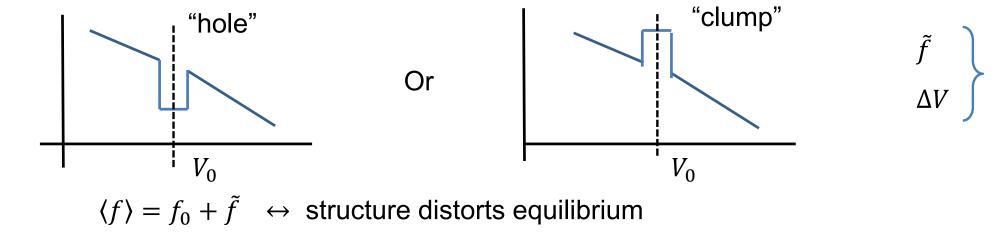
• Shearing + scattering will couple  $V_E(x)$  to  $\alpha \delta P \partial_x \delta P$ . Model required  $\rightarrow$  TBC...

В,

- Theoretical Problem #2
  - –What holds blob/void structures together especially in shear flow? → Physics of self-coherence?

## B) Blob-Void Pair: Basic Structure

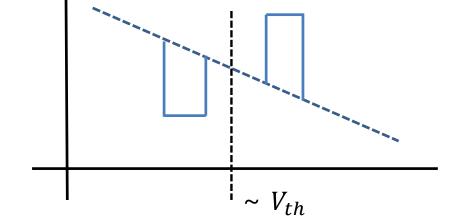
- What makes a coherent structure "coherent"?
- Clue: Vlasov Plasma



- then:  $-(\omega kv)\tilde{f} = -\frac{q}{m}k\hat{\phi}\frac{\partial}{\partial v}\left[f_0 + \tilde{f}\right]$  $\nabla^2\phi = -4\pi n_0 q \int f dv$
- and standard analysis, ala' 'waterbag model' collisionless gravitation cf: Berk +
   '60s, Dupree '82

$$\rightarrow (\omega - kV_0)^2 = \frac{2\omega_p^2}{k} \frac{\tilde{f}\Delta V}{\epsilon(k,kV_0)} + k^2(\Delta V)^2$$
 dispersion of structure screening

• key:  $\tilde{f}\Delta V \rightarrow$  strength/charge sign  $\tilde{f} \rightarrow \geq 0$  screening  $\epsilon(k, kV_0) \rightarrow \geq 0$ 



**-**

- "clump" :  $\epsilon < 0$  for  $\tilde{f} > 0 \rightarrow V_0 > V_{th}$
- "hole" :  $\epsilon > 0$  for  $\tilde{f} < 0 \rightarrow V_0 < V_{th}$
- N.B.: Coherence ←→ Self-field induced stability

Relevant example: Pressure Blob in Shear Flow

$$-i(\omega - kV_0)\hat{P} = -\hat{V}_r \frac{\partial}{\partial r} \left[ \langle P_0 \rangle + \delta P \right] \quad \delta P \text{ in shear flow}$$

$$-i(\omega - kV_0)\nabla_\perp^2 \hat{\phi} = -\kappa \nabla_y \hat{P}$$

$$\nabla_\perp^2 \hat{\phi} \quad - \frac{\kappa \nabla_y \tilde{V}_r \partial_r P_0}{(\omega - kV_0)^2} = \frac{\kappa \nabla_y \tilde{V}_r \partial_r \delta P}{(\omega - kV_0)^2}$$

 $\chi_0$ 

$$\hat{\phi} = \int dx' \ G(x, x') \ \frac{\kappa k^2 \ \hat{\phi} \delta P(x')}{\left(\omega - k V_0(x')\right)^2}$$
 N.B. After Taylor-Goldstein Eqn.

- > screened structure. Base state need not be unstable
- → with box model, considerable simplification possible

• So for  $x \sim x_0$ :

$$(\omega - kV_0)^2 = k^2 V_0'^2 (\Delta x)^2 - \left[ 2G\kappa k^2 (\delta P) (V_{ph} - V_0) k^2 V_0' \Delta x \right]^{\frac{1}{2}}$$

- Competition:
  - Shear across structure ←→ dispersion (1)

  - δP → strength
    G → screening by system
  - Does blob hold itself? together vs shear? → key question

The critical balance:

$$G \kappa \delta P \left(V_{ph} - V_0\right) \text{ vs } V_0^{\prime 2}(\Delta x)V_0^{\prime}$$

$$\frac{G\kappa\delta P/\Delta x}{V_0'^2} \text{ vs } \left[ \left( V_{ph} - V_0 \right)^{-1} V_0' \Delta x \right] \sim O(1)$$

←→ Richardson # (screened) for blob ~ 1

- Ri =  $\omega_B^2/V'^2$   $\rightarrow$  buoy energy vs shear
- Consistent with qualitative expectations of marginality. Note screening enters!
- Blob vs Void  $\rightarrow$  sign G! (screening)
  - $\leftarrow \rightarrow$  location relative to shear layer  $(V_{ph} = \omega/k \text{ vs } V_0(x))$
  - N.B.: Begs question of SOL blob data vs Ri
  - N.B.: Boedo 2003, et. seq noted pronounced effect of shearing on blob population

- Message: Can formulate physically meaningful coherecy or 'self-binding' criterion for blobs, voids in base state
- ~ Richardson # criterion interesting
  - amplidute  $\delta P$  and extent  $\Delta x$  combine vs shear  $\rightarrow$  minimal structural characterization. Screening enters.
  - how does it fare vs data?
- Need better understanding of role of resonance between  $V_{ph}$  and  $V_0(x)$

# From "Blobs" to "Bump"

- Samantha Chen +, this meeting
  - density bump in disk

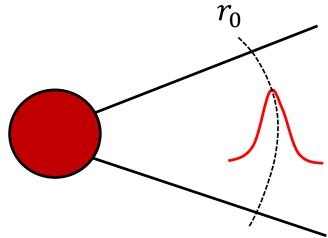






• i.e. 
$$\omega = -k_x \beta/k^2$$
 now  $\beta \to \beta + \delta \beta(x)$  localized defect. Persistence?

• so 
$$(\omega - kV_0(x))k_{\perp}^2\phi = -k_x(\beta + \delta\beta(x_0))\phi$$



# From "Blobs" to "Bump", cont'd

Similar analysis →

$$(\omega - kV_0)^2 = (k_x V_0' \Delta x)^2 + G k_x^2 V_0' \delta \beta \Delta x$$
 (shearing) (self-field of bump)

• Critical competition:

$$V_0'$$
 vs  $G\delta\beta/\Delta x$  set bump size, scale

Reminiscent of shearing vs vorticity gradient drive

# **Thoughts for Experiment and Analysis**

- Pulse propagation studies in SOL environments, i.e. Tubes?
- Track blob-void:
  - Pair size distribution. Plot vs GRE strength
  - Separation speed and growth. Plot vs. GRE strength
    - → momentum relation?
- Test Ri,s scaling of ejected blob distribution via electrode bias-driven shear layer (JTEXT)

# **A Concluding Thought**



Supported by U.S. Dept. of

Energy under Award Number

DE-FG02-04ER54738