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Wake-Classic Example of Turbulence Spreading

—> Similarity Theory
Mixing Length Theory }
W~(Fd/pU2)1/3X1/3,
Fy;~CppU?A,

C, independent of viscosity at high Re

=>  Physics: Entrainment of laminar region by expanding turbulent region.

Key is turbulent mixing. => Wake expands .
Turbulence Spreading

=>  Townsend '49:

— Distinction between momentum transport — eddy viscosity—and fluctuation

energy transport
— Failure of eddy viscosity to parametrize spreading
<Vperp*V?2>

<V2>

— Jet Velocity: V = —> spreading flux FOM



Forced Hasegawa — Mima + Zonal Flows




H-M + Zonal Flow System

— System: PV forced
3 l
(qb pIVi ) + v. —('b + v*ua—d) :E p2(5,.V2P) + vV2V2(P) + F -Waves, Eddys
d 0
dt ot

—qubz (vrvlqb) + uVZ¢, = 0 -Zonal Flow (Axisymmetric)
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N.B. ¢,=¢,(x), only. N.B. : Electrons Boltzmann for waves, not for Zonal Flow

— viscosity controls small scales
— drag controls zonal flow - u
— conserved: Energy—><qu2 + p? (v«ﬁ)z +< p2(Vg,)? >
Potential Enstrophy —> <(<13 - pfvch)) > +< (p2V2¢,)? >
¥

Waves ZF
N.B. Energy, Pot Enstr. exchange between Waves and ZF possible.



Spreading Studies - Numerical Experiments

—> 2D Box, Localized Stirring Zone
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—>[_Comparison|of:

: Selective Decay, Vortices
AP AL How to Measure Spreading?

2D MHD with weak B, perp. Alfvenization, Vortex
— Bursting, Zeldovich number

Waves + Eddies + ZF
Multiple regimes and Mechanisms

N.B. Clear distinction between “spreading” and “avalanching”

Forced Hasegawa-Mima with Zonal Flow



Numerics: 2D Dedalus simulation

Box Characteristics: - Dedalus  Framework

- Grid Size: 512x512
- beach regulates expansion

Forcing Characteristics:

Superposition of Sinusoidal Forcing, vorticity

Spectrum: Constant E(k), ensuring uniform energy distribution across wave numbers.
Correlation Length: Approximately 1/10 of the box scale, some room for dual cascade.
Localized through a Heaviside step function.

Phase of forcing randomized every typical eddy turnover time



H-M + Zonal Flow System, cont’d - channels

— Now: waves o = w./(1+kip?), vy
eddies ¥ {ﬁ Vs v, —
zonal mode (symmetry) | mixing length

Yk Vgr (k)& — 2nd order in eg/T

ie. = Energy Flux has { o
(t7.&) —» 3 order in ep/T

two components:

Waves/Wave transport

N.B. 2 channels for “turbulence spreading”
Turbulent mixing

-Branching ratio, vs. Ku number ?



Channels, cont’d

—> Spreading in presence of fixed, externally prescribed shear layer
Waves
Eddies

. [forcing (¥, Re) + drag = control parameters

—> Here: — Forcing —>{ } — Zonal flow (self-generated)

= “weak” and “strong” Turbulence Regimes

/ coherency factor
Vyr VS U — Ord) Pt Ku < 2nd vs 3 order energy flux
g L Vgr(k)Sk Ac
o N
Ac~Vgr T,

—> Ku < 1 - wave dominated spreading

Ku > 1 - mixing dominated spreading —— ~ 2D fluid



Channels, cont’d

But —» Enter the Zonal Flow

— Multiple channels for NL interaction
— But with ZF <= eddy, wave coupling to ZF dominant

Waves:

9 ~
— (1 + kZp®)p=......
— ZF is the mode of minimal inertia, damping, transport ZE- ot i

= energy coupled to ZF (7, = 0) cannot “spread”, %(kﬁpﬁ)cﬁz =
unless recoupled to waves

> ¥ ¥ ¥ ¥
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— Degradation of ZF (back transfer) is crucial to spreading
~ u must regulate spreading. What of u — 0 regimes?

— Revisit collisionless NL dissipation problem



FOM — Fluctuation Potential Enstrophy Flux

Results

: averaged spatially and
temporally

Turbulent Mixing
“Dimits” Regime ses=¥ A u

— Potential enstrophy flux generally increases as drag increases. “Dimits regime”
for turbulence spreading. Spreading diminishes with power coupled to Z.F. (Fixed,
spatially)

— Z.F. is self-generated barrier to spreading

— For Aincreasing, PE flux rises sharply for weak ZF damping. Fate of ZF?
“KH-type” mechanism loss of Dimits regime at higher A? Characterization??

N.B. “Dimits Regime”= Condensation of energy into ZF for weaker forcing. 12



Results
Wave Enerqy Flux

¢
Wave Energy Flux < - Vo > =3, v, (K)Ey

for drift waves
— Dimits regime at low forcing and ZF damping

—Increases with ZF damping and forcing amplitude vs. Ku ?

— Dominant K, increases due ZF decorrelation
— Spectrum condensation towards low k with inverse cascade

!

implication for vy, and X, vy, (k) Ej

— Take note of increasing W.E. fluxas u — 0,
A increases.
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Results, Cont’d

DTl \where Ac~ < Ki >71/2

Cc

Fluctuation intensity increases Zonal velocity decreases with increasing drag
as drag increases (clear)
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—Spreading and Fate of Zonal Flows

— Spreading rises for increased
forcing, even foru - 0

— Dimits regime destroyed. How?

= Seems necessary for spreading in
systems with ZF

— Animal Hunt for linear instabilities(KH, Tertiary ...) seems pointless in turbulence

e VA
> Instead, Pre = —(VaVy)- 6_; Power transfer [fluctuations — flow]
Pr. < 0 : Wave — ZF transfer

Pg. > 0 : ZF - Wave transfer = ZF decay 12




Aside:

— Of course, evokes ‘happy memories’ of studies of limitation of Dimits shift in G.K.

) 3

— But identification of ‘Tertiary Instability’, “R-K.” etc not useful alone-effective noise !?

— Seek insight to and quantification of return of energy from Z.F. to turbulence, as control
parameters scanned = Reynolds Power density

— Goal is nonlinear ZF decay model for improved Predator-Prey system

— N.B. Reynolds power density used widely in data analysis



Quantifying Wave-ZF Power transfer

2

1/2 % L :wz<?)§?)];>—drag*1_/y

ot

Reynolds power

We quantify ZF - Waves Power Transfer as
the ratio of the area above the axis to mean
work done on the zonal flow.

N.B.:

e Wiy
Pre = —(VaVy) - ——= > D,(8V, /9x)*?

Mixing length model fails capture 2 signs

— Reynolds Power
— — Average Reynolds Power

Reynolds power vs time
Pr. < 0 = Wave - ZF transfer

P, > 0 = ZF - Wave transfer

Area above axis

Return Fraction =
Area of mean
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Results, Cont’d

Pp. ratio vs ZF damping

-~

Dimits Regime

— The ratio generally decreases as a function of ZF damping
< Damped Zonal Flow More Stable.
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Results, Cont’d, P, Ratio vs Forcing Strength

Pp. ratio vs forcing amplitude o
Preliminary

— Explore other FOMs

— Indicates that re-coupling of ZF energy to turbulence increases for stronger forcing
— This approach avoids instability morass === amenable to parametrization

— Significant nonlinear recoupling energy to waves 16



Results, Cont’d

— Potential Enstrophy Flux vs. Energy Return Fraction

— Potential Enstrophy Flux rises rapidly
with fraction of energy return from zonal flow

— Turbulence spreading closely related to zonal flow relaxation



Related Problem: Jet Migration(Laura Cope)

i.e. - Here:

— turbulence patch propagates,
drags ZF/Jet along

- There:

—> Jetmigrates

but Migration enabled by dynamics of fluctuation
field

—> Zonon
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So Jet Velocity !?

— As waves/eddys drag along zonal flow, Jet velocity(ala’ Townsend) is related to

Jet Migration.
SO
— Enstrophy Jet Velocity?!

- Now familiar trends

- Seems semi-quantitatively consistent with Cope results.
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Summary - Drift Wave Turbulence

— Spreading fluxes mapped in forcing, ZF damping parameter space

— Dominant mechanism «—Ku (waves vs mixing) , Both waves and mixings in play.

— Dimits-like regime discovered. Fixed ZF pattern.

— ZF quenching intimately linked to spreading

— Pg. > 0 bursts track breakdown of Dimits regime and onset turbulent mixing
Spreading increases.
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—General Summary

— In DWT, wave propagation and turbulent mixing both drive spreading

— ZF quenching critical to spreading in DWT. Power
coupling most useful to describe ZF quench.
— Closely related to jet migration.
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—Future Plans

— High resolution studies

— Understand ZF quenching physics and calculate power recoupling-general case, GK
formulation?

— What is physics of P,,>0 bursts? - shedding?

— Spreading in Avalanching. Relative Efficiency? Spreading and Transport?
Flux-driven H-W System. Potential Enstrophy Flux!?

More general:
— |s spreading mechanism universal? Seems unlikely
— Towards a model, models... Ku~1 is an interesting challenge
— Relation/connection of DW+ZF spreading and Jet Migration (L. Cope)
— |s Directed Percolation of any use in this?
Ideas, Approaches-yes?! Details-??
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