SOL Broadening by Edge Turbulence:

Experiment and Theory

P.H. Diamond

Newton Institute, Cambridge

and

Depts. Astronomy & Astrophysics and Physics, UC San Diego

Tokamak Energy 4/29/2024

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DEFG02-04ER54738.

Collaborators

- Theory: Xu Chu, Mingyun Cao, Z.B. Guo, Zeyu Li; (UCSD, PPPL, PKU, GA)
- Computation: Nami Li, X.-Q. Xu; (LLNL)
- Experiment: Ting Long, Ting Wu (SWIP), Filipp Khabanov, Rongjie Hong, G. Mckee,
 Zheng Yan, G. Yu, G. Tynan (DIII-D → Frontiers Exp.), Xi Chen (GA)

Outline

- Brief Primer on the Edge and SOL
- SOL Width Problem and the Physics of the Plasma Boundary Layer
- Some Data: Turbulence Production Ratio and its Implications
- Some Theory: Calculating the Scale of the Spreading-Driven SOL
- Some Computation: A Closer Look at Turbulence Spreading
- Open Issues and Future Plans

Primer (Brief)

• All confinement devices have an <u>edge</u> and SOL (scrape-off layer)

B - SOL

- Fueling at Edge
- Define: •
 - Confined plasma boundary
 - Connection to plasma facing components
 - SOL as confined plasma 'boundary layer'

NB: Magnetic field lines are perp to plane, with slight tilt

Primer, cont'd

• SOL:
$$\nabla \cdot \vec{\Gamma} = \nabla \cdot \vec{Q} = 0$$
 (open lines)
 $\Gamma_{\perp} \approx -D\partial_r n$ (?) $\nabla_{\perp} \sim \partial_r \sim 1/\lambda_{\perp}$
 $\Gamma_{\parallel} \approx \alpha c_s n$ $\nabla_{\parallel} \sim 1/L_c \sim 1/Rq$
 $\Rightarrow D \partial_r^2 n \sim \alpha n/L_c$ $\tau_{\parallel} \approx Rq/c_s$
 $\lambda_{\perp} \sim (D\tau_{\parallel})^{1/2} \sim \text{crude SOL width}$
 $\bigstar 1/\tau_{\parallel} \sim \chi_{\parallel}/L_c^2$ conduction, high density

Background

• Conventional Wisdom of SOL:

(cf: Stangeby...)

- Turbulent Boundary Layer, ala' Blasius, with D due turbulence
- $\ \delta \sim (D\tau)^{1/2}, \tau \approx L_c/V_{th}$
- $D \leftrightarrow$ local production by SOL instability process
 - \rightarrow familiar approach, D ala' QL, ...
- Features:
 - Open magnetic lines → dwell time τ limited by transit,
 conduction, ala' Blasius
 - Intermittency \rightarrow "Blobs" etc. Observed. Physics?

Fluid Mechanics 2nd edition Landau and Lifshitz Course of Theoretical Physics Volume 6

L.D. Landau and E.M. Lifshitz Institute of Physical Problems, USSR Academy of Sciences, Moscow

Background, cont'd

• But... Heuristic Drift (HD) Model (Goldston +)

$$- V \sim V_{\text{curv}}$$
, $\tau \sim L_c/V_{thi}$, $\lambda \sim \epsilon \rho_{\theta i} \rightarrow \text{SOL width}$

- Pathetically small
- Pessimistic B_{θ} scaling, yet high I_p for confinement
- Fits lots of data.... (Brunner '18, Silvagni '20)

• Why does neoclassical work? \rightarrow ExB shear suppresses SOL modes i.e.

$$\gamma_{\text{interchange}} \sim \frac{c_s}{(R_c \lambda)^{\frac{1}{2}}} - \frac{3T_{edge}}{|e|\lambda^2}$$

shearing $\leftarrow \rightarrow$ strong λ^{-2} scaling

from:
$$\frac{c_s}{(R_c\lambda)^{\frac{1}{2}}} - \langle V_E \rangle'$$

Feedback Loop:
$$\lambda \downarrow \rightarrow \gamma \downarrow \rightarrow D \downarrow$$

Background: HD Works in H-mode

HD is Bad News...

Background, cont'd

• THE Existential Problem... (Kikuchi, Sonoma TTF):

```
∠Confinement \rightarrow H-mode \leftarrow \rightarrow ExB shear
```

Desire <

Power Handling \rightarrow broader heat load, etc

How reconcile? – Pay for power mgmt with confinement ?!

- Spurred:
 - Exploration of turbulent boundary states with improved confinement: Grassy ELM, WPQHM,
 I-mode, Neg. D ... N.B. What of ITB + L-mode edge?

 \rightarrow <u>Both</u> to be good !

- SOL width now key part of the story
- Simulations, Visualizations (XGC, BOUT...) ~ "Go" to ITER and all be well
- But... What's the Physics ?? <u>How</u> is the SOL broadened?

SOL Boundary Layer:

Turbulence Production Rate and

the Role of Spreading

SOL BL Problem

- Classic flux-driven BL problem
 - Heat flux at surface drives
 - Production = $gQ \quad \tilde{V}_E \sim (gQz)^{1/3}$ etc
 - Plumes
 - Adapt to SOL?
- SOL
 - Open field lines
 - Turbulent energy flux and heat flux, etc drive
 - Turbulence spreading (Garbet, P.D., Hahm, …)
 - Includes 'blobs' c.f. Manz, 2015

SOL BL Problem

- SOL Excitation
 - Local production (SOL instabililties)
 - Turbulence energy influx from pedestal
- Key Questions:
 - Local drive vs spreading ratio $\rightarrow Ra$
 - Is the SOL usually dominated by turbulence spreading?
 - How far can entrainment penetrate a stable SOL \rightarrow SOL broadening?
 - Effects ExB shear, role structures ?

Physics Issues – Part I

- Measure and Characterize Turbulence Energy Flux at LCFS
- Determine Relative Contributions of :
 - Influx/Spreading thru LCFS
 - SOL Production

$$R_a \rightarrow Production Ratio$$

- Trends in λ_q and R_a vs : ExB shear, 'Blob' Fraction...
- Question: To what extent is SOL turbulence usually spreading driven?
- \rightarrow Phenomenology... (see Ting Wu +, NF 2023)

Experiments and Data Set

- HL-2A limited OH plasmas classic "boring plasmas"
- Reciprocating probe array $\leftarrow \rightarrow$ Outboard mid-plane
- $q_{\parallel} = \gamma J_{sat} T_e$, $\gamma \equiv$ sheath transmission coefficient
- Database: 'Garden Variety OH' ~ 150 kA, 1.4T
- 4 parameter subgroups O +
- Similar, with $\lambda_q \gg \lambda_{HD}$, except: black triangles Δ

$$-\lambda_q>\lambda_{HD}$$
 , not \gg

− Significant GAM activity \rightarrow stronger ExB shear

N.B.: $\lambda_q \rightarrow \text{SOL width}$

black triangle

green diamond

 $\lambda_{n_e} \sim \lambda_{T_e} \sim \lambda_{P_e}$

All SOL profiles scales comparable

λ_q Trends 1 – Fluctuation Levels and Shearing

- λ_q increases for increasing fluctuation intensity at <u>lcfs</u>
- λ_q decreases for increasing ExB shear at <u>lcfs</u>
- Max $\omega_{E \times B}$ at shear layer ~ lcfs

 λ_q Trends 2 – Particle Flux and Diffusion

- λ_q increases for increasing <u>edge</u> Γ_n
- λ_q increases for increasing <u>edge</u> D
- ? Saturation might expect $\lambda \sim (D\tau)^{1/2}$ scaling ...

 λ_q Trends 3 – Spreading !

- $\Gamma_{\varepsilon} = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \rightarrow \text{flux of turbulence internal energy thru lcfs}$
- Direct measurement of <u>local</u> spreading flux

• Consistent with expected trend of expanded SOL width due to increasing spreading across lcfs

SOL Fluctuation Energy – Production Ratio

$$\frac{1 \text{ Fluid}}{P} \bullet \rho \left(\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} \right) = -\nabla P + \frac{1}{c} \vec{J} \times \vec{B} + \rho g \hat{r}$$

$$\vec{V} = 0, \quad \vec{P} + \frac{\vec{B}_0 \cdot \vec{B}}{4\pi} \approx 0$$
SOL interchange

•
$$\partial_t (KE)_{SOL} = -\int_0^\lambda dr \, \nabla \cdot \Gamma_E + \int_0^\lambda dr \left[\frac{c_s^2}{R} \left\langle \frac{\widetilde{V}_r \widetilde{n}}{n_0} \right\rangle - \left\langle \widetilde{V}_r \widetilde{V}_\perp \right\rangle \frac{\partial}{\partial r} \left\langle V_\perp \right\rangle \right]$$

= $-\Gamma_E |_{\lambda_q} + \Gamma_E |_{1Cfs} + [SOL Integrated local production]$
Fluctuation Energy Influx to SOL

• $\Gamma_E = \langle \tilde{V}_r \tilde{V}^2 \rangle \approx c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \rightarrow \text{amenable to measurement}$ Take: KE flux ~ Int. Energy Flux (\checkmark for drift-interchange)

this gives ...

Aside: On Calculating the Spreading...

- Why perturbed pressure balance?
 - Else, $\langle \vec{V} \cdot \nabla P \rangle$ and $\langle \rho \nabla \cdot \vec{V} \rangle$ enter energy balance. Acoustic energy propagation irrelevant on $\tau \gg \tau_{MS}$
 - Can eliminate via vorticity eqn, $\vec{V} = \vec{E} \times \vec{B}$ etc.
- Interchange drive: $\kappa P \rightarrow \kappa \langle \tilde{V}_r \tilde{P} \rangle \approx g c_s^2 \langle \tilde{V}_r \tilde{n} \rangle$

as cannot measure \tilde{P} fluctuations

Production Ratio, Cont'd

$$R_a = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle \Big|_{\text{lcfs}} / \int_0^\lambda dr \frac{c_s^2}{R} \langle \tilde{V}_r \tilde{n}/n_0 \rangle$$

- Ratio of fluctuation energy influx from edge i.e. spreading drive to net production in SOL
- $-R_a < 1 \rightarrow$ SOL locally driven
- $-R_a \gg 1 \rightarrow$ SOL is spreading driven
- Quantitative measurement by Langmuir probes
- N.B. very simple; likely lower bound, as local production smaller

Production Ratio - Measurements

 $R_a = \frac{\text{Fluctuation Energy Influx}}{\text{SOL Local Production}}$

- Observe:
 - $-\lambda_q$ increases with R_a
 - Most cases $R_a > 1$
 - Broad distribution R_a values
 - Low R_a values \leftrightarrow strong ExB shear

N.B. Non-trivial, as shear enters production, also via cross phase

- Also:
 - − Some $R_a < 0$ cases → inward spreading ↔ local measurement trend outward
 - Some <u>very</u> large R_a values

What is happening?

Production Ratio vs ExB Shear 1

- Low values of $|R_a|$ at high V'_E
- But why?

$$R_a = c_s^2 \langle \tilde{V}_r (\tilde{n}/n_0)^2 \rangle |_{\text{lcfs}} / \int_0^\lambda dr \frac{c_s^2}{R} \langle \tilde{V}_r \tilde{n}/n_0 \rangle$$

- → Expect shear inhibits <u>both</u> spreading and transport flux?
- $\leftarrow \rightarrow$ ExB shear enters phase relation in both

Production Ratio vs ExB Shear, cont'd

- Both spreading and local production drop due high V'_E
- But spreading x (1/10) vs Production x (1/2)

→ Spreading flux significantly more sensitive to V'_E than transport flux

 \leftarrow > Triplet vs quadratic > Phases?

Large $R_a \rightarrow$ 'Blobs' ?!

- What of the large R_a values?
- Suspect Structure Emission i.e. "blobs" !?
- Test:

- Conditional averaging (i.e. threshold $\tilde{n} > 2\tilde{n}_{rms} \rightarrow$ "blob")
- Threshold arbitrary \rightarrow setting based upon previous studies
- Compute R_a , Γ etc. with conditionally averaged quantities

Especially: $\Gamma_{blob} / \Gamma_{total}$

Flux carried by "blobs"

Large $R_a \rightarrow \lambda_q$ increases with 'blob' fraction

• Large R_a cases $\leftarrow \rightarrow$ larger 'blob fraction' of flux

 \leftrightarrow spreading encompasses 'blobs' (c.f. Manz +) $\rightarrow \langle \tilde{V}_r \tilde{n}^2 \rangle$

• λ_q increases with Γ_b/Γ_{Tot}

 High ExB shear cases → low 'blob' fraction (Consistent with Bodeo+, '03)

Time Scales

- Spreading rates: $\omega_s \approx -\partial_r \langle \tilde{V}_r \tilde{n} \tilde{n} \rangle / \langle \tilde{n}^2 \rangle$
 - characteristic rate of spreading (Manz +)
- Shearing rate V'_E

- λ_q broadens for large ω_s
- Stronger shear reduces spreading rate

Partial Summary

- Significant, mostly outward, spreading measured at lcfs
- Identified and calculated production ratio

 R_a = (spreading influx) / (local production)

- Most cases: $R_a > 1 \rightarrow$ spreading dominant player in SOL energetics
- ExB shear reduces $R_a \leftarrow \Rightarrow$ spreading more sensitive to V'_E than transport and production – phases ?
- High R_a spreading $\leftarrow \rightarrow$ 'blob' dominated dynamics \rightarrow how calculate?

YES → SOL turbulence usually spreading driven!

"The conventional wisdom is little more than convention" - JKG

N.B. No use of closure of spreading flux

Calculating the Width of

the Spreading-Driven SOL

Physics Issues – Part II

[C.f. Chu, P.D., Guo, NF 2022

P.D.+ IAEA '23]

- How <u>calculate</u> SOL width for turbulent pedestal but a locally <u>stable</u> SOL?
 - -spreading penetration depth
 - must recover HD in WTT limit
- Scaling and cross-over of λ_q relative HD model
- What is effect/impact of barrier on spreading mechanism?
 - Can SOL broadening and good confinement be reconciled ?

Model 1 – Stable SOL – Linear Theory

 Standard drift-interchange with sheath boundary conditions + ExB shear (after Myra + Krash.)

Linear Growth Rate of a specific mode (fixed k_y) v.s. $E \times B$ shear at $q = 5, \beta = 0.001, k_y \cdot \lambda_{HD} = 1.58$.

- Relevant H-mode ExB shear strongly stabilizing $\gamma_{HD} = c_s / (\lambda_{HD} R)^{1/2}$
- Need λ/λ_{HD} well above unity for SOL instability. $V'_E \approx \frac{3T_e}{|e|\lambda^2} \rightarrow$ layer width sets shear

Model 2 – Two Multiple Adjacent Regions

• "Box Model" – after Z.B. Guo, P.D.

Illustration of Two Box Model: SOL driven by particle flux, heat flux and intensity flux (Γ_e) from the pedestal. The horizontal axis is the radial direction, and vertical axis is the poloidal direction.

- Key Point:
 - Spreading flux from pedestal can enter stable SOL
 - Depth of penetration
 → extent of SOL broadening

➔ Problem in one of entrainment/penetration

Width of Stable SOL

- How compute ε ? \rightarrow turbulence energy in SOL. Need relate to pedestal
- N.B. Can write: $\lambda = [\lambda_{HD}^2 + \lambda_e^2]^{1/2} \quad \lambda_e$ is turbulent width

Calculating the SOL Turbulence Energy 1

- Need compute Γ_e effect on SOL levels
- $K \epsilon$ type model, mean field approach (c.f. Gurcan, P.D. '05 et seq)
 - Can treat various NL processes via σ, κ
 - Exploit conservative form model

•
$$\partial_t \varepsilon = \gamma \varepsilon - \sigma \varepsilon^{1+\kappa} - \partial_x \Gamma_e \longrightarrow$$
 Spreading, turbulence energy flux
Growth $\gamma < 0$ NL transfer $\gamma_{NL} \sim \sigma \varepsilon^{\kappa}$
here contains shear + sheath

- → N.B.: No Fickian model of Γ_e employed, yet
 - Readily extended to 2D, improved production model, etc.

Calculating the SOL Turbulence Energy 2

- Integrate ε equation \int_0^{λ} ; "constant e" approximation
- Take quantities = layer average

•
$$\Gamma_{e,0} + \lambda_e \gamma \varepsilon = \lambda_e \sigma \varepsilon^{1+\kappa}$$

Separatrix fluctuation energy flux \longrightarrow Single parameter characterizing spreading

So for $\gamma < 0$,

 λ_e = layer width for ε

 $\Gamma_{e,0} = \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa}$

 $\Gamma_{e,0}$ vs linear + nonlinear damping

• Ultimately leads to recursive calculation of Γ_e

Calculating the SOL Turbulence Energy 3

[Mean Field Theory]

• Full system:

$$\begin{split} \Gamma_{e,0} &= \lambda_e |\gamma| \varepsilon + \sigma \lambda_e \varepsilon^{1+\kappa} \\ \lambda_e &= \left[\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2 \right]^{1/2} \end{split}$$

Simple model of turbulent SOL broadening

• $\Gamma_{0,e}$ is single control parameter characterizing spreading

•
$$\tilde{\Gamma}_{0,e}$$
 ? Expect $\tilde{\Gamma}_e \sim \Gamma_0$

SOL width Broadening vs $\Gamma_{e,0}$

• SOL width broadens due spreading

 λ/λ_{HD} plotted against the intensity flux Γ_{e0} from the pedestal at $q = 4, \beta = 0.001, \kappa = 0.5, \sigma = 0.6$

Variation indicates need for detailed scaling analysis

- Clear decomposition into
 - <u>Weak</u> broadening regime \rightarrow shear dominated

relevant

- <u>Cross-over</u> regime
- <u>Strong</u> broadening regime
- → NL damping vs spreading

- Cross-over for:
 - $\langle \tilde{V}^2 \rangle \sim V_D^2 \rightarrow \text{cross-over } \Gamma_{0,e}$
- Cross-over for $\tilde{V} \sim O(\epsilon) V_*$

SOL Width: Some Analysis

Have
$$\Gamma_{e,0} = |\gamma|e\lambda_e + \lambda_e\sigma e^{1+\kappa}$$

a) Damping dominated

$$\Gamma_e \approx |\gamma| \, \lambda_e \, e \qquad \qquad \lambda_q^2 = \lambda_e^2 + \lambda_{HD}^2$$

$$\lambda_q = \left[\lambda_{HD}^2 + \left(\frac{\Gamma_e \tau_{\parallel}^2}{|\gamma|} \right)^{2/3} \right]^{1/2}$$

- Spreading enters only via Γ_e at sep.
- Shearing via $|\gamma|$

$$-\tau$$
 scalings $\rightarrow \tau_{\parallel}$ vs $\tau_{\parallel}^{2/3} \rightarrow$ current scaling of λ_e weaker

SOL Width: Some Analysis, Cont'd

b) NL dominated

$$\Gamma_e \approx \lambda_e \; \sigma \; e^{1+\kappa} \qquad \lambda_q^2 = \lambda_e^2 + \lambda_{HD}^2$$

$$\lambda_q = \left[\lambda_{HD}^2 + \left(\frac{\Gamma_e}{\sigma}\right)^{2/(3+4\kappa)} \tau_{\parallel}^{[4(1+\kappa)/(3+2\kappa)]}\right]^{1/2}$$

– weaker Γ_e scaling, $\lambda_q \sim (\Gamma_e/\sigma)^{1/5}$; STT

$$-\tau_{\parallel}^{3/4}$$
 vs $\tau_{\parallel} \rightarrow$ weaker current scaling

- Need consider pedestal to actually compute $\Gamma_{e,0}$
- Two elements

Does another trade-off loom? -- Pedestal Turbulence: Drift wave? Ballooning? -- Effect of transport barrier $\leftarrow \rightarrow$ ExB shear layer \rightarrow barrier permiability!?

• Key Point: shearing limits correlation in turbulent energy flux

i.e.
$$\Gamma_{e,0} \approx -\tau_c I \partial_x I \approx \tau_c I^2 / w_{ped}$$
 (Hahm, PD +)
ped turbulence correlation time \rightarrow strongly sensitive to shearing

N.B. Caveat Emptor re: intensity flux closure !

• Familiar analysis for $D \rightarrow Kubo$

•

$$D = \int_0^\infty d\tau \, \langle V(0)V(\tau) \rangle = \int_0^\infty d\tau \, \sum_k \left| \tilde{V}_k \right|^2 \exp\left[-k_y^2 \omega_s^2 D\tau^3 - k^2 D\tau \right]$$

Strong shear (relevant) $\tau_c = \tau_t^{1/2} \omega_s^{-1/2}$
 $\tau_t \sim 1 / k \tilde{V}, \quad \omega_s \sim V'_E$

Here, via RFB
$$\rightarrow \omega_s = \partial_r \frac{\nabla P_i}{n|e|} \sim \frac{\rho^2}{w_{ped}^2} \Omega_{ci}$$

- $\tau_c + w_{ped}$ + turbulence intensity in pedestal gives $\Gamma_{e,0} \approx \tau_c I^2 / w_{ped}$
- Need $\Gamma_{e,0} \ge \Gamma_{e,\min} \approx |\gamma| \lambda_{HD}^3 \tau_{\parallel}^{-2}$

- Pedestal → Drift wave Turbulence
- Necessary turbulence level:
 - Weak Shear $\frac{\delta V}{c_s} \sim \left(\frac{\rho}{R}\right)^{1/2} q^{-1/4}$

- → λ/λ_{HD} vs $|e|\hat{\phi}/T_e$ in pedestal
- → ρ/R is key parameter
- Broadens layer at acceptable fluctuation level

- Pedestal → Ballooning modes → Grassy ELMs
- Necessary relate turbulence to $L_{P,crit} / L_P 1$
- Strong shear:

$$\frac{L_{P_c}}{L_P} - 1 \sim \left(\frac{q\rho}{R}\right)^{\frac{10}{7}} \left(\frac{R}{w_{ped}}\right)^{\frac{16}{7}} \left(\frac{w_{ped}}{\Delta_r}\right)^{\frac{16}{7}} \beta$$

• Supercriticality scales with $\frac{\rho}{R}$, β_t

Figure 10. Typical cases for ballooning. The normalized pedestal width $\lambda/\lambda_{\rm HD}$ is plotted against supercriticality $L_{\rm pc}/L_{\rm p} - 1$ at different mode width $\Delta/L_{\rm p}$.

Computing the Turbulence Energy Flux 5 → Bottom Line

- SOL broadening to $\lambda > \lambda_{HD}$ achieveable at tolerable pedestal fluctuation levels
- DW levels scale ~ $\left(\frac{\rho}{R}\right)^{1/2}$
- Ballooning supercritical scale ~ $\left(\frac{\rho}{R}\right)^{10/7} \beta$
- 'Grassy ELM' state promising
- Sensitivity analysis \rightarrow Cross over ε determined primarily by linear damping (shear). Conclusion ~ insensitive to NL saturation

Partial Summary

• Turbulent scattering broadens stable SOL

 $\lambda = \left(\lambda_{HD}^2 + \varepsilon \tau_{\parallel}^2\right)^{1/2}$

Separatrix turbulence energy flux specifies SOL turbulence drive

$$\Gamma_{0,e} = \lambda_e |\gamma|\varepsilon + \lambda \sigma \varepsilon^{1+\kappa}$$

Broadening increases with $\Gamma_{0,e}$ cross-over for $\langle \tilde{V}^2 \rangle \sim V_D^2$

Non-trivial dependence

- $\Gamma_{0,e}$ must overcome shear layer barrier
- Yes can broaden SOL to $\lambda/\lambda_{MHD} > 1$ at tolerable fluctuation levels Further analysis needed

Some Simulation Results

(cf. Nami Li, X.-Q. Xu, P.D.; N.F.(Lett) '23)

→ BOUT++ → pedestal + SOL

➔ 6 field model ("Braginskii for 21st century")

→ Focus on weak peeling mode turbulence in pedestal

 \rightarrow MHD turbulence state \rightarrow small/grassy ELM, also WPQHM

3D Counterpart of Brunner (λ_q vs B_{θ} **)**

Fig. 3. (a) 3D plot of heat flux width λ_q vs poloidal magnetic field B_p and fluctuation energy density flux Γ_{ε} ; (b) 2D plot of heat flux width λ_q vs poloidal magnetic field B_p (b1) and fluctuation energy density flux Γ_{ε} (b2).

3D Brunner Plot – Comments

- λ_q rises with Γ_e
- Low Γ_e , λ_q tracks hyperbola
- Large Γ_e , λ_q rises above Brunner/Goldston hyperbola
- λ_q grows with Γ_e

Spreading as Mixing Process ?

• Conjecture that λ_q should increase with <u>pedestal</u> mixing length $\rightarrow \Gamma_e$

- Note division into
 - drift dominated
 - cross-over (blue)

Fig 4. Radial correlation length of pressure near the separatrix vs. heat flux width λ_q .

- turbulent

Relate Spreading to Pedestal Conditions

N.B.

- Γ_e rises with pedestal $\nabla P_0 \leftarrow \rightarrow$ increased drive
- Collisionality dependence Γ_e :
 - − high → no bootstrap current →
 - ballooning \rightarrow smaller l_{mix}
 - low → strong bootstrap → peeling
 → larger l_{mix}

Fig. 7. 3D plot of fluctuation energy density flux Γ_{ε} vs pedestal peak pressure gradient ∇P_0 and v_{ped}^* ; black curves are ∇P_0 scan with low collisionality $v_{ped}^* = 0.108$ (solid curve) and high collisionality $v_{ped}^* = 1$ (dashed curve); red curves are v_{ped}^* scan with small $\nabla P_0 \sim 200 \ kPa/m$ (solid curve) and large $\nabla P_0 \sim 400 \ kPa/m$ (dashed curve).

Fundamental Physics of Γ_e

Fig. 6 Radial profiles of normalized fluctuation energy density flux Γ_{ε} (blue) and skewness (red) for without (a) and with (b) drift-Alfvén instability. Here fluctuation energy density flux is normalized to the max value for each case.

- Γ_e spreading tracks \tilde{P} skewness
 - <u>Outward</u> for s > 0 → "blobs"
 - − <u>Inward</u> for $s < 0 \rightarrow$ "voids"
- Zero-crossings Γ_e , *s* in excellent agreement

Fundamental Physics of Γ_e , cont'd

- Spreading appears likely linked to "coherent structures"
- Likely intermittent (skewness, kurtosis related)
- Related study (Z. Li); $Ku \sim 0.4$, so \rightarrow if Fokker-Planck analysis

$$\frac{\partial e}{\partial t} = -\frac{\partial}{\partial x} (Ve) + \frac{\partial^2}{\partial x^2} (De) \quad \text{Convective !?}$$

Relate V to pedestal gradient relaxation event (GRE) ?!

Broader Messages

- Turbulence spreading is important even dominant process in setting SOL width. $\Gamma_{0,e}$ is critical element. $\lambda = \lambda(\Gamma_{0,e}, \text{ parameters})$
- Production Ratio R_a merits study and characterization
- Spreading is important saturation meachanism for pedestal turbulence
 - Simulation should stress calculation and characterization of turbulence energy flux over visualizations and front propagation studies.
 - Critical questions include local vs FS avg, channels and barrier interaction, Turbulence 'Avalanches'
- Turbulent pedestal states attractive for head load management

Open Issues

• Quantify
$$\lambda = \lambda \left(\frac{|e|\hat{\phi}|}{T} \Big|_{ped} \right)$$
 dependence

- Structure of Flux-Gradient relation for turbulence energy?
 - Phase relation physics for intensity flux? crucial to ExB shear effects
 - Kinetics $\rightarrow \langle \tilde{V}_r \delta f \delta f \rangle$, Local vs Flux-Surface Average, EM
 - SOL Diffusive? → Intermittency('Blob'), Dwell Time ?
 - SOL \rightarrow Pedestal Spreading ? $\leftarrow \rightarrow$ HDL (Goldston) ?

i.e. Tail wags Dog ? Both wagging ? \rightarrow Basic simulation, experiment ?

Counter-propagating pulses ?

Concluding Philosophy

- MFE relevant questions within reach in near future. Great attention to λ_a problem (c.f. Samuel Johnson)
- Unreasonable for tokamak experiments to probe ~ critical dynamics so as to elucidate basic questions. Simulations???
- Well diagnosed, basic experiment with some relevant features are sorely needed – akin to 'Tube' studies of flows, ala' CSDX
- How?

Thanks for Attention !

Supported by U.S. Dept. of Energy under Award Number DE-FG02-04ER54738