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* Nuclear fusion: option for generating large
amounts of carbon-free energy — “30 years in the
future and always will be...

* Challenge: ignition -- reaction release more energy
than the input energy

Lawson criterion:

n;TeT; > 3x10°'m3skeV.

t W
— confinement Tp ~ —

— turbulent transport

e Turbulence: instabilities and collective oscillations

- low frequency modes dominate the
transport (w < Q)

* Key problem: Confinement, especially scaling



A Simpler Problem:
- Drag in Turbulent Pipe Flow



e Essence of confinement:

— given device, sources; what profile is achieved?

— 15 =W/P;, How optimize W, stored energy

« Related problem: Pipe flow - drag <+ momentum flux

AP -> pressure drop

® O

[

APma? = pV,*2mal
- friction velocity V, e u
Balance: momentum transport to wall
(Reynolds stress) vs AP

> Flow velocity profile
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Turbulent

Laminar
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_ 2aAP/l
-~ 1/2pu?




(Core)

u
inertial sublayer - ~ logarithmic (~ universal)
—> viscous sublayer (linear)
0 +— « Problem: physics of ~ universal
logarithmic profile?
Wall « Universality - scale invariance

« Prandtl Mixing Length Theory (1932)

ou V, Spatial counterpart
_ = pV2 = — L — ~ = —
Wall stress = pV, pV‘T\au/ax or: =~~~ of K41

eddy viscosity

— Absence of characteristic scale -
vy ~ Vox { x = mixing length, distance from wall
u ~ Vn(x/xo) Analogy with kinetic theory ...

Vr =V = X, Viscous layer 2 x, =v/V,



Some key elements:

Momentum flux driven process
Turbulent diffusion model of transport - eddy viscosity
Mixing length — scale selection
~ X > macroscopic, eddys span system x, <x <a
- ~ flat profile — strong mixing
Self-similarity 2 x < no scale, within [x,, a]
Reduce drag by creation of buffer layer i.e. steeper gradient than

inertial sublayer (by polymer) — enhanced confinement



Without vs With Polymers
Comparison = NYCFD 1969



[I) The System:
What is a Tokamak?

How does confinement work?



Primer on Turbulence in Tokamaks I

« Strongly magnetized

— Quasi 2D cells, Low Rossby #

« — Localized by k-B=0 (resonance) - pinning
« V. =+<Ex3 -+ ~R,«1
L= Tp ST 0

« VT,, VT;, Vn driven
« AKkin to thermal convection with: g - magnetic curvature

« Re = VL /v ill defined

« Resembles wave turbulence, not high Re Navier-Stokes turbulence
e K~Vrt./A~1>Kubo#=~1

 Broad dynamic range, due electron and ion scales, i.e. a, p;, p,



Primer on Turbulence in Tokamaks II

« Characteristic scale ~ few p; 2 “mixing

length”
N « Characteristic velocity v; ~ p.cq

« Transport scaling: Dgg ~pVy ~ p. Dg

Key: Dy ~ pcs ~T/B

2 scales: - i.e. Bigger is better! = sets profile scale via heat

balance (Why ITER is huge...)

p = gyro-radius

a = cross-section
p. = p/a <> key ratio e Reality: D ~p% Dy, a <1 = 'Gyro-Bohm break’
P, K1

2 Scales, p, < 1 =» key contrast to pipe flow




The System Fundamentals: R, « 1 Fluids (Q o Q)

- Kelvin’s Theorem for rotating system

w — w + 282 %v-dlzfda-(w-i—ZQ)EC
7\ —_— ‘
relative planetary C =0

- Ro = V/(ZQL) < 1 — V-V, px 2/(29) geostrophic balance

— 2D dynamics 2

<%
- Displacement on beta plane
: d 202 dA
= — —w-—""s§infy—
C=0 r T ) sin 6 7

dt
72
w= V"¢ B =20sinby/R




Fundamentals I

- Q.G. equation %(w + By) =0
n.b. topography
- Locally Conserved PV ¢ = w + By

g =w/H+ By
- Latitudinal displacement — change in relative
vorticity
- Linear consequence — Rossby \Wave
w = —PBks [k’ w = 0 = zonal flow

observe: wv,, = 2Bkzk,/(k?)?
|—> Rossby wave intimately connected to momentum transport

- Latitudinal PV Flux — circulation



— Isn’t this Talk re: Plasma?

a.) Hasegawa-Wakatani (collisional drift inst.)
b.) Hasegawa-Mima (DW)

— 2 Simple Models

C

a.) V = Eﬁ X V¢+Vpol
— Mg

L>Ap — V-J=0 —>VJ_'J_1_=—V||J||

Ji =nle|V) / b,

e.

S.
b.) dn./dt=0 / DW:  V|pe vs. V¢
dn. . VIJ)_

— =
dt = —nole




So H-W

d . N A
pgav2¢ — —D“Vﬁ (¢ — N /ng) + VV2V2¢
) Dy kf fw
i DyV*# = =D Vi(¢ — fi/no) is key parameter
— (17,43) #* 0

) and instability
b.) D”kﬁ/w > 1 n/ng~ ed/Te (m,n # 0)

d
- (¢ — piV3P) +v.0,0 =0 — H-M

b PV=¢- V6 +Inno(z) o (PV)=0

An infinity of technical models follows ...



III) Patterns in Turbulence

- Avalanches

- Zonal Flows

=» Spatial structure of turbulence profile



- “Truth is never pure and rarely simple” (Oscar Wilde)

Transport: Local or Non-local?

40 years of fusion plasma modeling
— local, diffusive transport

Q=-—ny(rVT, x<>Dg
1995 — increasing evidence for:

— transport by avalanches, as in sand pile/SOCs

— turbulence propagation and invasion fronts

— “non-locality of transport”
O=— j x(r, ¥V T )dr!
x(r, r’) ~ S, /[(r — r’)2 + A2]
Physics:
- Levy flights, SOC, turbulence fronts...

Fusion:
— gyro-Bohm breaking
(ITER: significant p. extension)

Kernel width: A/ p;

50 1.

-
o

— fundamentals of turbulent transport modeling??
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‘Avalanches’ form! — flux drive + geometrical ‘pinning’
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(Heat Flux Spectrum) (Idomura NFQ09)

Avalanching is a likely cause of ‘gyro-Bohm breaking’ = Intermittent Bursts

=» localized cells self-organize to form transient, extended transport events

Akin domino toppling:
Natural route to scale

invariance on [a, A.~p;]

Toppling front can
penetrate beyond region
of local stability



Origin:

« Cells “pinned” by magnetic geometry - resonances

TABLE I. Analogies between the sandpile transport model and a turbulent transport model.

¢ Re ma rka b | e Turbulent transport in toroidal

plasmas Sandpile model
S Im |I arlty Localized fluctuation (edc_ly) Grid site (cell)
Local turbulence mechanism: Automata rules:
Critical gradient for local instability Critical sandpile slope (Z ;)
Local eddy-induced transport Number of grains moved if unstable (Ny)
Total energy/particle content Total number of grains (total mass)
Heating noise/background fluctuations Random rain of grains
Energy/particle flux Sand flux
Mean temperature/density profiles Average slope of sandpile
Transport event Avalanche
Sheared electric field Sheared flow (sheared wind)
&
: h,
Automaton toppling and can cooperate!
< Cell/eddy overturning
Y
- Avalanches happen! FIG. 1. A cartoon representation of the simple cellular automata rules used

to model the sandpile.



« GYSELA Simulation Results: Avalanches Do ‘matter’

GYSELA, rhostar=1/512

Heat flux [gyro-Bohm units]

0.3

#* GYSELA
(p-=1/512)

05
Normalized radius p=rfa

0.7

Fraction of total local flux

[Sarazin et al,, NF 51 (2011) 103023]

[

osof BompEE T

| A 0.39<p<0. ALse

[ % 0.48<p<0.56 | %\

| @ 056<p<065 ® g A . /

} P o

[ ]

0.45 =
0.40 _[ | I | | | | / | | | |

0.3 0.4 0.5
Large bursts: time fraction of total signal

Figure 2. Fraction of the local radial turbulent heat flux carried out
by a certain fraction of the largest scale bursts, as estimated from
figure 1(a) (GYSELA data). Each point refers to one specific radial
location. The colours allow one to distinguish four different radial

domains. The considered time series ranges from w.of = 56 000 to
Wl = 163 000.



e Distribution of Flux Excursion and Shear Variation

GYSELA, rhostar=1/64 [Sarazin et al., NF 50 (2010) 054004]
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Figure 7. (Left) histogram of the turbulent heat flux Q. at p = 0.5 for two magnitudes of the source (p, = 1/64). § Q.+ stands for the

difference between Qb and its time average, taken over the entire non-linear saturation phase. (Right) corresponding PDF of the
fluctuations of the radial component of the electric drift. (Colour online.)
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Figure 8. Frequency Fourier spectrum of the turbulent heat flux at
p = 0.65 for two magnitudes of the source (p, = 1/64). (Colour



But: Shear Flows Also ‘Natural’ to Tokamaks

« Zonal Flows Ubiquitous for:

~ 2D fluids / plasmas R, <1
Rotation Q, Magnetization B Stratification

Ex: MFE devices, giant planets, stars...

23



Shear Flows !? — Significance?
How is transport affected?

G

=» shear decorrelation!

Back to sandpile model:
Closed end

2D pile +

sheared flow of

grains
l

Shearing flow ._
|
decorrelates
Toppling sequence e
Open End

FIG. 10. A cartoon of the sandpile with a shear flow zone. The whole pile 1s
flowing to the right at the top and to the left at the bottom connected by a
variable sized region of sheared flow.

(b) e p——

FIG. 11. Time evolution of the overtuming sites (like Fig. 4). The ava-

lanches do not appear continous in time becagsc only every 5g0‘th time step is Ava I a n Ch e CO h e re n Ce d eStroyed by S h ea r ﬂ OW
shown. (a) The shear-free case shows avalanches of all lengths over the

entire radius. (b) The case with sheared flow shows the coherent avalanches

being decorrelated in the shear zone in the middle of the pile.



* |Implications:
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FIG. 14. The slopes of a sandpile with a shear region in the middle, includ-
ing all the shear effects (diamonds) and just the transport decorrelation and
the linear effect (circles).

FIG. 11. Time evolution of the overturning sites (like Fig. 4). The ava-
lanches do not appear continous in time because only every 50th time step 15
shown. (a) The shear-free case shows avalanches of all lengths over the
entire radius. (b) The case with sheared flow shows the coherent avalanches
being decorrelated in the shear zone in the middle of the pile.



- How do Zonal Flow Form?

Simple Example: Zonally Averaged Mid-Latitude Circulation

» classic GFD example: Rossby waves + Zonal flow

(c.f. Vallis '07, Held '01)
» Key Physics:

energy rz:jiaticg
l D
1<

r3 velac ty

Rossby waves
break & dissipate Momentum

divergence

Momenlum
oonve’rgence

Stirring =

Momentum
divargance
A

Rossby waves
break & dissipate

\ 4

momentum
convergence

Rossby Wave:
Bk
k kJZ_
Kk Y ~ 12
= 2,8( J_;; ; (vax> = Z% _kxky|¢§|

" VgyUpny < 0 = Backward wave!

=» Momentum convergence
at stirring location




» ..."the central result that a rapidly rotating flow, when stirred
in a localized region, will converge angular momentum into
this region.” (l. Held, '01)

» Outgoing waves = incoming wave momentum flux

viscous damping |

P ( <:,\ zonal
X X X X source — \ shear layer

> 7 fermation

viscous damping

» Local Flow Direction (northern hemisphere):
» eastward in source region
» westward in sink region
» set by >0

» Some similarity to spinodal decomposition phenomena
- Both ‘negative diffusion’ phenomena



Wave-Flows In Plasmas

MFE perspective on Wave Transport in DW Turbulence
 |ocalized source/instability drive intrinsic to drift wave structure

— couple to damping < outgoing wave

X .
X Emission Absorption
X A N
- L = I
X ek x>0 = v, >0
X _vgr:_zlos2 92rV*22 x<0 = v, <0
x=0 (ko) 0 ;’;k 0
. Ve < >
radial structure VeV ) = —% 4. P ke, <0 Y

« outgoing wave energy flux — incoming wave momentum flux
— counter flow spin-up!
v, 4l \ Iy,

« zonal flow layers form at excitation regions

28



Plasma Zonal Flows |

What is a Zonal Flow? — Description”?
— n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)

— toroidally, poloidally symmetric ExB shear flow

 Why are Z.F.’s important?

— Zonal flows are secondary (nonlinearly driven):
« modes of minimal inertia (Hasegawa et. al.; Sagdeey, et. al. ‘'78)
« modes of minimal damping (Rosenbluth, Hinton ‘98)

 drive zero transport (n = 0)
— natural predators to feed off and retain energy released by

gradient-driven microturbulence
l.e. ZF's soak up turbulence energy



Plasma Zonal Flows 11

* Fundamental Idea:

— Potential vorticity transport + 1 direction of translation symmetry
— Zonal flow in magnetized plasma / QG fluid

— Kelvin’s theorem is ultimate foundation

« Charge Balance — polarization charge flux — Reynolds force

— Polarization charge s .pZW —:nl (P —n(9)

polarization length scale J ion GC electron density

— SO, ;o #2[, mmp p2<\7,,EVi$>¢O @) PV transport’
L— polarization flux — What sets cross-phase?
— If 1 direction of symmetry (or near symmetry):

~p*(V,Vi4)=-0,(3,V,) (Taylor, 1915)
—0,(V.;v,,) =) Reynolds force mmp Flow



Zonal Flows Shear Eddys |

» Coherent shearing: (Kelvin, G.l. Taylor, Dupree’66, BDT'90)

— radial scattering + (V,)’ — hybrid decorrelation

> _»
_ BD, — (V) D, 3" =1, O O ﬁ

=» shearing restricts mixing scale!

Time

» Other shearing effects (linear): Response shift
and dispersion =g

— spatial resonance dispersion: o—ky, = o—ky, —k,(V;) (r—r,)

— differential response rotation — especially for kinetic curvature

effects



Shearing II — Eddy Population

« Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)
Coherent interaction approach (L. Chen et. al.)
e dk. /dt=—-0(w+k)V.)/ Or; VE:<VE>+VE

v, Ay

Mean : 0 ' y
shearin b=k i / A\ H Mm”“
g
=
Zonal <é7€2> D,z X X
Random
shearing D, Zkz‘VE 7| Tk.q — Wave ray chaos (not shear RPA)

underlies D, — induced diffusion
« Mean Field Wave Kinetics

— Induces wave packet dispersion

— Applicable to ZFs and GAMs

aa—];[+(V +7)- VN——(a) kV,.)- ]]Z—ykN C{N}

0 0 0
NY=—2-D, > (N) =y (N)—{(CIN}) | «— i
8t< ) o akr< ) =7 (N)—(C{N}) Zonal shearing

—
—

- Evolves population in response to shearing



Shearing III

Energetics: Books must Balance for Reynolds Stress-Driven Flows!

Fluctuation Energy Evolution — Z.F. shearing

. 2

[ dke 9Ny D, 2Ny | = L) =- [ dkv,, (k)D, Iwy oy, =K

ot ok~ ok, ot ¢ ok (1+£2p2)
Point: For d<Q>/dkr <0, Z.F. shearing damps wave energy
Fate of the Energy: Reynolds work on Zonal Flow
Modulational 9.9V, +3(5<I7J79 >)/3’” = yoV,
Instability — k k,ON N.B.: Wave decorrelation essential:

S(V.V,) ~ TPy Equivalent to PV transport

Bottom Line: (c.f. Gurcan et. al. 2010)

— Z.F. growth due to shearing of waves
— “Reynolds work” and “flow shearing” as relabeling — books balance

— Z.F. damping emerges as critical; MNR ‘97



Feedback Loops

flow dampin flow damping

e energy
Zonal flows ]—@ID

SUPPRESS * *DRIVE

Inhomoge- Drift wave
neity turbulence

DRIVE

« Closing the loop of shearing and Reynolds work Collisional ] SUPPRFﬂNonlinear

« Spectral ‘Predator-Prey’ Model

Prey — Drift waves, <N>

: o 8 AG
CNY =L D, (NY =y (N) - 2% (N
o V) i Do i W = 7N )= )

Predator — Zonal flow, |@,|2

0 2 6<N> 2 _ 2 _ 2 g
(’91|¢q|_rq|: 6/@ :||¢q| yd|¢q| yNL[|¢q|]|¢q|

- Self-regulating system - “ecology”

- Mixing scale regulated



Feedback Loops 11

Recovering the ‘dual cascade’:

— Prey —» <N>~ <Q> = induced diffusion to high k. {

Predator — | ¢, |~ <VEz’6,> {

Mean Field Predator-Prey Model

(P.

0

ot
0

Ot

D. et. al. '94, DI’H ‘05)

— N=yN—-—aV’N—-AwN"

V:=aNV’ _7/de _7/NL(V2)V2

= Analogous — forward potential

enstrophy cascade; PV transport

= Analogous — inverse energy cascade

System Status

= growth of n=0, m=0 Z.F. by turbulent Reynolds work

State No flow Flow (a2 = 0) Flow (a2 # 0)
) 5 Yd Yd + o2 yaf"]
N (drift wave AL o i il R
o o o + Awara~!
turbulence level)
Aw — Awyqa~!
V2 (mean square 0 £ = ayd Ol 1
« a“ o+ Awara™

flow)
Drive/excitation
mechanism

Regulation/inhibition
mechanism

5

Branching ratio tT

Threshold (without noise)

Linear growth

Self-interaction
of turbulence

0

y >0

Linear growth

Random shearing,

self-interaction
1

Yy — Aopga™
Yd
y > Awyga™!

Linear growth
Nonlinear
damping
of flow
Random shearing,
self-interaction
y — Awyga™
ya + ooy~

y > Awyga™!




The Crux of the Matter, ...




IV) Pattern Competition!

* Two secondary structures at work:

— Zonal flow - quasi-coherent, regulates transport via

shearing, self-generated, limits scale

— Avalanche - stochastic, induces extended transport

events, enhances scale
« Both flux driven... by relaxation VT, Vn, ec

 Nature of co-existence?? — who wins?




IV) Staircases
Single Layer -

Lattice of Layers + Avalanches



Motivation: ExB staircase formation

e ExB flows often observed to self-organize in magnetized plasmas

e ExB staircase’ is observed to form
GvsEA]

Turbulence dnve: RA,

S

]

ok

ﬂY

“ExB statrcase ’\ A

of shear flows p*-A—P’ \ \
I I \/ Jl

e B (LY B &> a0

Nom\ansed radius rip,

Atmospheric Jets

/

lfrb'rn Dunkerton et al. 2008)

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. "10)
flux driven, full f simulation

Quasi-regular pattern of shear layers
and profile corrugations

Region of the extent A > A,
interspersed by temp. corrugation/ExB jets

- ExB staircases

so-named after the analogy to PV staircases
and atmospheric jets

Step spacing = avalanche distribution
outer-scale



Turbulence drive: R/,

ExB Staircase

Important feature: co-existence of shear flows and avalanches

o.=125  [GVSELA] \ - Seem mutually exclusive ?

sl v, =0.05 A .

«—> | — strong ExB shear prohibits transport
6+ : ; -1

— avalanches smooth out corrugations
4 —4
- Can co-exist by separating regions into:

T ) 1. avalanches of the size A > A,
’ 80 100 120 140 160 180 2. localized strong corrugations + jets

Normalized radius: r/p,

e How understand the formation of ExB staircase???

- What is process of self-organization linking avalanche scale to ExB step scale?
i.e. how explain the emergence of the step scale ?

e Some similarity to phase ordering fluids



Corrugation points and rational surfaces

- No apparent relation

qg= 1 3/2 2 572 3
2800
= | I I |
= GYSELA
oo p. = 1/300 ~
+ TS#45511 !
S 10
QD
O
2100 ©
-
(@)]
S
£ o
L (B)
]
1400 g
®)
Om = 0 ] ] ]
= 0.2 0.4 0.6 0.8 1.0
M Normalised radius p
£
|_
700 . . .
> Step location not tied to magnetic
geometry structure in a simple way
=

(GYSELA Simulation)

0.2 0.4 0.6 0.8 1.0
Normalised radius p



— Are they real?

E x B staircase visible on fluctuation correlations

Direct exp. characterisation difficult:
flows, profiles & gradients

Shear layers in staircase:
e eddies stretched, tilted, fragmented
e predict quasi-periodic decorrelation

turbulent fluct.

(r,0,t) ¢(r+8r,0,t)),
[ ';5(r 9 )20, ((r+6r,0,t)2),

Co(r,0,t,0r) =

]1/2

w (Cy=1/2 when dr = L,

w testable with fast-sweeping reflectometry

fluct. size

Correlation length Le/p,
w 'S %) [«>} ~ o ©

shear flow

shear flow

0

TM

IANSYcW

YN

{ | Step locations at flow shear extrema

GYSELA

time [a/c,]:

- 3188.0
-e- 32008
— 32136

120 " 140 = 160 = 180

Radius r/pg



Moderate fluctuation level & MHD-free plasmas:
optimal for staircase observation

1900 e e e e -_,__

fast-sweeping reflectometry on Tore Supra  [Clairet RSI 10, Hornung PPCF 13]
w |ocalised measure, fast (~ us), sweeping in X—mode : full radial profile dn
w routinely estimate [,



Staircase predicted. . .then observed experimentally

IRt
@

{ { Step locations at flow shear extrema

c 4 (’ ' ‘ i GYSEI_A 6 [ l LA} L] L L I T n Ll I L L] LI B l ] L L Ll I T Ll LA
I %L 145511 - = — -
% 9 ' 5 ‘. ‘F’ 3 q ?12 q .3 q 7.l2 Eg??upra
- A : : :
8 \J o ' ' '
< ,ﬁ‘\ ‘ A sk : :
o 7 1 | y time [a/c,): B : : :
ch ! ; } - 3188.0 © \ . :
S— 6 . -8 3200.8 4+ ' 1
= y ‘ / — 32136 g S ' -~ :
e .
=2 5 a8 t - S ; :
ﬁ + -/ 8 Ik . [ '
— 3 (] 82 ]
g - D S, !
— ; . m 1 : :
o L} L}
O 3 + g + #ﬁ + + | # ’ 2 A l 1 ' L l ' .l A l ' ' A 'l l L L L L l 1 '
120 140 160 180 0.55 0.60 0.65 0.70 0.75
Radius r/pg Normalised radius p

» Large set: 179 staircase steps, so far [Dif-Pradalier PRL 15]

e quasi-regularly spaced radial local minima of L.
e reproducible: not random & robust w.r.t. definition of L.

e tilt consistent with flow shear around minima

e no correlation to local g rationals ™ rules MHD out
e consistent width [~ 10p;] & spacing [meso.] of local L, minima



« How to understand it?
— Topic for a (theoretical) seminar...
— Bi-stable Modulations:

— Inhomogeneous mixing is key!

=>» "negative diffusion/viscosity”

c.f. also Cahn-Hilliard equation

How?:

» Bistable transport = /_,, (Ashourvan, P.D., 2016-PRE,PoP)
« Jams, ala’ traffic flow (Kosuga, P.D., Gurcan — PRL2012)



Staircase Model — Formation and Merger (QG-HM)

148
146

S = N WA N
T T T T T T
O = N W s WO N

0.18

0.16

0.14
0.12

PV transport

Zy]’ top :1% ]— bottom

Note later staircase mergers induce strong flux episodes!

< Avalanching connection?! 46



Staircase are Dynamic

0.008F
oShear pattern detaches and delocalizes from 0.006!
its initial position of formation. 0.004!
oMesoscale shear lattice moves in the up- 0.002}
gradient direction. Shear layers condense and [
) 0.000}
disappear at x=0. :
-0.002¢
oShear lattice propagation takes place over _0 0041
much longer times. From t~0(10) to t~(10%). 00

oBarriers in density profile move upward in

) i ——
an “Escalator-like” motion.

-)l Macroscopic Profile Re-structuring

1

‘Non-locality’




Macro-Barriers via Condensation

48

(a) Fast merger of micro-scale SC. Formation
of meso-SC.

(b) Meso-SC coalesce to barriers

(c¢) Barriers propagate along gradient,
condense at boundaries

(d) Macro-scale stationary profile

) \2/2 => LH transition?
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Conclusion, of sorts
« Scale selection problem in confined, magnetized

plasmas is intrinsically a pattern competition

e Staircase:

— Naturally reconciles avalanche and shear layers

— Allows ‘predator and prey’ co-existence via spatial

decomposition

— Realizes ‘non-local’ dynamics in transport



Conclusion, of sorts
* Where is confinement physics going?
— Considerable success in understanding and predicting

transport, including bifurcations

— Evolving:
« Confinement - Power Handling

* Transport Reduction - Transport control

— Need address interaction of turbulence + macro-stability

=» Boundary optimization, now the central problem
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