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The Systems

• Vlasov-Poisson

 	+   +   = 0 = −4∫  						 =  + 
è

 = 0 along trajectories

•  +  × ̂ ⋅  = − =  + 
  +  = 0 along trajectories

drag, diffusion

	 ≡	distribution function in x, v



Vlasov-Poisson Revisited



Key Problem – QL for Vlasov Plasma – Validity?

• Good beginnings: Vedenov, Velikov, Sagdeev; Drummond, Pines

– 1D Vlasov evolution / relaxation of B-O-T, CDIA

– QL system, from mean field approach with linear response ,  = 0, 		   =  	   						   = 2  						 =   

Inputs

- Landau theory

- Stochasticity

- Radiative transfer theory

- Mean field for 〈〉

〈〉  



• Key:

–  =  	∑      
– Resonant à ( − ) à irreversible

– Non-resonant à  	/	 à reversible / ‘fake’

– Non-resonant diffusion for stationary turbulence is problematic. 

Energetics?

– Coarse graining implicit in 〈	〉
– First derivation via RPA, ultimately particle stochasticity is 

fundamental

– Finite width resonance à local PV mixing



• Central elements/orderings:

– resonant diffusion, irreversibility:

• “chaos” ßà coarse graining

• Island overlap at resonances:   	−  ≤ /	
– linear response?:

•  <  ,  , 	 
•  =  −  	 Δ 	 à correlation time of wave-particle resonance 

•  = 	 / à particle bounce time in pattern

•  =  /	à particle decorrelation rate (cf. Dupree ‘66)



• QLT is Kubo # < 1 theory

i.e. / = 		 < 1
but often pushed to Ku ~ 1 !

• QLT assumes:

– all fluctuations are eigenmodes (i.e. neglect mode 

coupling)?

– all  ∼ 	〈〉/ ? 

(resemble  ∼ 〈〉 in MF dynamo theory)



• Energetics à 2 component description

– Resonant Particles vs Waves  +    = 0
– Particles vs Fields  +   = 0
– Species coupled via waves

– Issues: how describe stationary state with RP drive? 

i.e.  	    =   
, ala’ Zeldovich

or



• Outcome:

– B-O-T: Plateau formation

– prediction for  /	4 when plateau formed

– CDIA:

• wave driven momentum transfer e->i

• anomalous resistivity model (quasi-marginality)

plateau



• Why Plateau?

– In collisionless, un-driven system, need at stationarity: ∫ 	   /  = 0
– So either:

i)   / = 0, where   ≠ 0 on interval à plateau with finite 

amplitude waves

ii) Or  = 0 à fluctuation decay everywhere,  < 0
– Sub-overlap à velocity space staircase

(collisions: RHS à  	  
)



Is this story correct?

• TWT experiment – last time

• Granulations, phase space holes, etc.

è subcritical growth ?!

• See M. Lesur, this meeting



Potential Vorticity, 

Quasi-Geostrophics

and Hasegawa-Mina



The System Fundamentals:

- Kelvin’s Theorem for rotating system

- Displacement on beta plane

-

→

→ 2D dynamics

→

relative planetary

geostrophic balance

 ≪ 1 Fluids (Ω	 ↔ Ω)

cf. Lynden-Bell, Vlasov



Fundamentals II

- Q.G. equation

- Locally Conserved PV

- Latitudinal displacement → change in relative 
vorticity

- Linear consequence → Rossby Wave

observe:
→ Rossby wave intimately connected to momentum transport

- Latitudinal PV Flux → circulation

n.b. topography

 = 0à zonal flow



→ Isn’t this Talk re: Plasma?

→ 2 Simple Models a.) Hasegawa-Wakatani (collisional drift inst.)

b.) Hasegawa-Mima (DW)

a.)

→→

b.)

→

e.s.

n.b.

MHD:

DW:



So H-W

is key parameter

b.)

→ H-M

n.b.

→  ≠ 0
and instability

An infinity of technical models follows …
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Preamble I
• Zonal Flows Ubiquitous for:

~ 2D fluids / plasmas

Ex: MFE devices, giant planets, stars…

R0 < 1

0B
r

W
r

Rotation      , Magnetization     , Stratification
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Preamble II

• What is a Zonal Flow?

– n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)

– toroidally, poloidally symmetric ExB shear flow 

• Why are Z.F.’s important?

– Zonal flows are secondary (nonlinearly driven):

• modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. ‘78)

• modes of minimal damping (Rosenbluth, Hinton ‘98)

• drive zero transport (n = 0)

– natural predators to feed off and retain energy released by 

gradient-driven microturbulence
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Zonal Flows I
• Fundamental Idea:

– Potential vorticity transport + 1 direction of translation symmetry                             
→  Zonal flow in magnetized plasma / QG fluid

– Kelvin’s theorem is ultimate foundation

• G.C. ambipolarity breaking → polarization charge flux → Reynolds force
– Polarization charge

– so                                                                   ‘PV transport’ 

– If 1 direction of symmetry (or near symmetry):

eGCi G¹G ,

)()(,
22 fffr eGCi nn -=Ñ-

polarization length scale ion GC

0~~ 22 ¹Ñ^fr rEv

polarization flux

ErErrE vvv ^^ -¶=Ñ- ~~~~ 22 fr (Taylor, 1915)

ErEr vv ^¶- ~~

→ What sets cross-phase?

Reynolds force Flow

electron density
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Zonal Flows II

• Potential vorticity transport and momentum balance

– Example: Simplest interesting system → Hasegawa-Wakatani

• Vorticity:

• Density:

– Locally advected PV: q = n -∇ф2

• PV: charge density 

• conserved on trajectories in inviscid theory  dq/dt=0

• PV conservation →                                     →   Dynamical
constraint

nDnD
dt
dn

DnD
dt
d

2
0

2
||||

22
0

2
||||

2

)(

)(

Ñ+-Ñ-=

ÑÑ+-Ñ-=Ñ

f

fff

simplicityfor    1Pr
feeble classical,  0

=
D

Freezing-in law
Kelvin’s theorem

n → guiding centers

-∇ф2  → polarization
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Zonal Flow II, cont’d
• Potential Enstrophy (P.E.) balance

• PV flux:

• Fundamental Stationarity Relation for Vorticity flux

Þ-Þ

Ñ+¶+¶ºÞ

=

  '~~evolution   P.E.    RHS

)~(~~~~    LHS

0/

2
0

222

2

qqV

qDqVqq
dt
d

dtqd

r

rrt

P.E. Production by PV mixing / flux

flux dissipation

qff VVVVnVqV rrrrrr
~~~~  :but   ; ~~~~~~ 22 ¶=ÑÑ-=

∴ P.E. production directly couples driving transport and flow drive

'/)~(~~~~ 22 qqnVV trr df +=Ñ

Reynolds force Relaxation Local PE decrement

∴ Reynolds force locked to driving flux and P.E. decrement; transcends quasilinear theory

〈 〉 → coarse graining
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Zonal Flows III
• Momentum Theorem (Charney, Drazin 1960, et. seq. P.D. et. al. ‘08)

• What Does it Mean? “Non-Acceleration Theorem”:

– Absent            driving flux;             ― local potential enstrophy decrement

• Fundamental constraint on models of stationary zonal flows! ↔ need 
explicit connection to relaxation, dissipation

{ } qq nd VqqnVVGWMD trt ---=+¶ '/~~~)( 2

GWMD = Generalized Wave Momentum Density; '/~2 qq

driving flux Local P.E. decrement
drag

{ } qq nd VqqnVVGWMD trt ---=+¶ '/~~~)( 2

nVr
~~ 2~qtd

accelerate
maintain Z.F. with stationary fluctuations!→ cannot
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• Coherent shearing: (Kelvin, G.I. Taylor, Dupree’66, BDT‘90)

– radial scattering +       →  hybrid decorrelation

– →

– shaping, flux compression: Hahm, Burrell ’94

• Other shearing effects (linear):

– spatial resonance dispersion:

– differential response rotation → especially for kinetic curvature effects

→  N.B. Caveat: Modes can adjust to weaken effect of external shear 

(Carreras, et. al. ‘92; Scott  ‘92)

Shearing I

'EV

^Dkr
2

cE DVk tq /1)3/'( 3/122 =^

)(' 0|||||||| rrVkvkvk E ---Þ- qww

Response shift 
and dispersion
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Shearing II
• Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. ‘98, et. seq.)

• ;

• Mean Field Wave Kinetics

rVkdtdk Er ¶+-¶= /)(/ qw
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Zonal shearing

- Wave ray chaos (not shear RPA) 

underlies Dk → induced diffusion

- Induces wave packet dispersion

- Applicable to ZFs and GAMs 

EEE VVV ~+=

Coherent interaction approach (L. Chen et. al.)
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Shearing III
• Energetics: Books Balance for Reynolds Stress-Driven Flows!

• Fluctuation Energy Evolution – Z.F. shearing

• Fate of the Energy: Reynolds work on Zonal Flow

• Bottom Line:

– Z.F. growth due to shearing of waves

– “Reynolds work” and “flow shearing” as relabeling → books balance

– Z.F. damping emerges as critical; MNR ‘97
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N.B.: Wave decorrelation essential:

Equivalent to PV transport
(c.f. Gurcan et. al. 2010)
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Feedback Loops I
• Closing the loop of shearing  and Reynolds work

• Spectral ‘Predator-Prey’ equations

2
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Prey → Drift waves, <N>

Predator → Zonal flow, |ϕq|2



Structures:

• Inhomogeneous PV mixing

è Staircases

• Overlap and the gradient domino effect

è Avalanches



Motivation: ExB staircase formation

• `ExB staircase’ is observed to form

- so-named after the analogy to PV staircases 
and atmospheric jets

- Step spacing à avalanche  outer-scale

- flux driven, full f simulation

- Region of the extent 
interspersed by temp. corrugation/ExB jets

- Quasi-regular pattern of shear layers 
and profile corrugations

(G. Dif-Pradalier, P.D. et al. Phys. Rev. E. ’10)

→ ExB staircases

• ExB flows often observed to self-organize in magnetized plasmas
eg.  mean sheared flows, zonal flows, ...



• Interesting as:

– Clear scale selection

– Clear link of:

– ZF scale ßà avalanche scale à corrugation

But:

– Systematic scans lacking

– Somewhat difficult to capture

• Need a MODEL



The Hasegawa-Wakatani Staircase:

Profile Structure: 

From Mesoscopics à Macroscopics
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• Hasegawa-Mima (                                              ) 

H-W Drift wave model – Fundamental prototype 

• Hasegawa-Wakatani : simplest model incorporating instability

32

d
dt

n = -D||Ñ||
2 (f - n)+ D0Ñ

2n

rs
2 d

dt
Ñ2f = -D||Ñ||

2 (f - n)+nÑ2Ñ2fÑ^ × J^ + Ñ||J|| = 0

hJ|| = -Ñ||f + Ñ||pe

dne

dt
+ Ñ||J||

-n0 e
= 0

à vorticity: 

à density:

V = c
B

ẑ ´ Ñf +Vpol

J^ = n e V i
pol

d
dt

n - Ñ2f( ) = 0

à zonal flow being a counterpart of particle flux  

à PV flux = particle flux + vorticity flux 

à PV conservation in inviscid theory

QL:

à?

D||k
2
|| /w >>1 ® n ~ f

d
dt

f - rs
2Ñ2f( ) +u*¶yf = 0



The Reduced 1D Model

  

� 

¶tn = -¶xGn +¶x[Dc¶xn],        Gn = ?v x ?n = -Dn¶xn

¶tu = -¶xPu +¶x[mc¶xu],        Pu = ?v x ?u = (c - Dn )¶xn - c¶xu

Mean field equations:

� 

¶te = ¶x[De¶xe ] - (Gn - Gu)[¶x (n - u)] -e c
-1e 3 / 2 + P

Turbulent Potential Enstrophy (PE): 

� 

e =
1
2

?n - ?u ( )2

Turbulence evolution: (Potential Enstrophy)

Turbulence spreading Internal production dissipation
External 
production

density

vorticity
Residual vort. flux
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� 

 Taylor ID :  Pu = ?v x ?u = ¶x ?v x ?v y

Reduced system of evolution Eqs. is obtained from HW system for DW turbulence.

  

� 

log(N /N0) = n(x, t) + ?n (x,y, t),                    rs
2Ñ̂2 ej /Te( )= u(x, t) + ?u (x,y, t)

� 

q = n - u,Potential Vorticity (PV): 

Reduced density: Vorticity:

Variables:

� 

u = ¶xVy Zonal shearing field 

Turb. viscosity

� 

~ ge

Two fluxes ,  set model !

Two components

From closure

Reflect instability



What is new in this model?
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o In this model PE conservation is a central feature.
oMixing of Potential Vorticity (PV) is the fundamental effect regulating the interaction

between turbulence and mean fields. Mixing inhomogeneous
oDimensional and physical arguments used to obtain functional forms for the turbulent

diffusion coefficients. From the QL relation for HW system we obtain

oInhomogeneous mixing of PV results in the sharpening of density and vorticity
gradients in some regions and weakening them in other regions, leading to shear lattice
and density staircase formation.

Jet sharpening in stratosphere, 
resulting from inhomogeneous 
mixing of PV. (McIntyre 1986) 

� 

Q = Ñ2y + byPV

Relative 
vorticity

Planetary
vorticity

� 

Dn @ l2 e
a

� 

c @ cc l2 e
a 2 + auu

2 Parallel diffusion rate

� 

a

� 

l Dynamic mixing length

Rhines
scale sets

*



Perspective on (Rhines) Scale

• Note:       = / à
   /

• Reminiscent of weak turbulence perspective:

 =  = ∑  
Ala’ Dupree’67:

 ≈  	 ∑     −      /
Steeper 〈〉′ quenches diffusion à mixing reduced via PV gradient feedback
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 = −  /Δ ≈ 

( ∼ 1)



 ≈ 	1 +    
•  vs Δ dependence gives  roll-over with steepening

• Rhines scale appears naturally, in feedback strength à roll over scale

• Recovers effectively same model

Physics: 

① “Rossby wave elasticity’ (MM) à steeper 〈〉′à stronger memory (i.e. 

more ‘waves’ vs turbulence)

② Distinct from shear suppression à interesting to dis-entangle

36
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Staircase structure
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Densityshearing 

oStaircase in density profile: 

jumps         regions of steepening 

steps          regions of flattening 

oAt the jump locations, turbulent PE is suppressed.

oAt the jump locations, vorticity gradient is positive

Initial conditions:   

� 

n = g0(1 - x),    u = 0,   e = e 0

  

� 

n(0, t) = g0,  n(1, t) = 0;    u(0,1;t) = 0;   ¶xe (0,1;t) = 0Boundary conditions:

density grad. 

turb. PE

Snapshots of evolving profiles at t=1 (non-dimensional time) 

Density
+
Vorticity
lattices

Structures:



oShear pattern detaches and delocalizes from 
its initial position of formation.

oMesoscale shear lattice moves in the up-
gradient direction. Shear layers condense  and 
disappear at x=0.   

oShear lattice propagation takes place over 
much longer times. From t~O(10) to t~(104).

Dynamic Staircases
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oBarriers in density profile move upward in 
an “Escalator-like” motion.

t=700

t=1300

è Macroscopic Profile Re-structuring

‘Non-locality’



Mergers Occur
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Nonlinear features develop from ‘linear’ instabilities

Merger between jumps
Local profile reorganization: Steps and jumps merge (continues up to times t~O(10)) 

Merger between steps

� 

e(x = 0,1) = 0

� 

¶xe (x = 0,1) = 0

� 

t = 0.02

� 

t = 0.1

� 

t =10

shearing shearing
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Illustrating the merger sequence (QG-HM)

Note later staircase mergers induce strong flux episodes!

- 
-  top - 

- Γ bottom



(a) Fast merger of micro-scale SC. Formation 
of meso-SC.

(b) Meso-SC coalesce to barriers
(c) Barriers propagate along gradient, 

condense at boundaries
(d) Macro-scale stationary profile   

Time evolution of profiles    

41
a

b

c
d

� 

log10(t)

� 

u

� 

x

Shearing field

� 

Ñn

Steady
state

� 

x



• The Point:

– Macroscopic barrier emerges from hierarchical 

sequence of mergers and propagation, condensation

– (Somewhat) familiar bi-stable transport model

But

– Barrier formation is NOT a local process

à Begs for flux driven, but BVP analysis



Initial condition dependence

oSolutions are not sensitive to initial value of turbulent 
PE.
oInitial density gradient is the parameter influencing the 
subsequent evolution in the system.
oAt lower viscosity more steps form.
oWidth of density jumps grows with the initial density 
gradient. 

o Large turbulence spreading wipes out features on 
smaller spatial scales in the mean field profiles, 
resulting in the formation of fewer density and 
vorticity jumps.

Role of Turbulence Spreading 

� 

¶te = b¶x[(l
2e1/ 2)¶xe ] + ...

-  → 0 excessive profile roughness



Lessons
• Staircases happen

– Staircase is ‘natural upshot’ of modulation in bistable/multi-stable system

– Bistability is a consequence of mixing scale dependence on gradients, 

intensity ßà define feedback process

– Bistability effectively locks in inhomogeneous PV mixing required for zonal 

flow formation

– Mergers result from accommodation between boundary condition, drive(L), 

initial secondary instability

– Staircase is natural extension of quasi-linear modulational

instabilty/predator-prey model à couples to transport and b.c. ßà simple 

natural phenomenon



QG – Vlasov Correspondence

• Resonance à granulation ?!

• Vlasov staircase from inhomogeneous mixing of . Coarse 

graining a must

• Velocity space barrier?

• Beyond weakly nonlinear momentum theorem à

Pseudomomentum for Vlasov system and its meaning


