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Elastic Fluids

• Interal DOF exerting restoring force on fluid  “springiness”

• Examples:

– MHD  𝐵𝐵, 𝐽𝐽 × 𝐵𝐵

Polymer hydro  Elastic element oldroyd-B

– Spinodal Decomposition (CHNS)  droplet surface tension

• Elasticity  Memory Impact on mixing?!



Active Scalar Transport 

in 2D MHD:

Background and 

Conventional Wisdom



Physics: Active Scalar Transport
• Magnetic diffusion, 𝜓𝜓 transport are cases of active scalar transport
• (Focus: 2D MHD) (Cattaneo, Vainshtein ’92, Gruzinov, P. D. ’94, ’95)

𝜕𝜕𝑡𝑡𝐴𝐴 + 𝛻𝛻𝜙𝜙 × �̂�𝑧 � 𝛻𝛻𝐴𝐴 = 𝜂𝜂𝛻𝛻2𝐴𝐴
𝜕𝜕𝑡𝑡𝛻𝛻2𝜙𝜙 + 𝛻𝛻𝜙𝜙 × �̂�𝑧 � 𝛻𝛻𝛻𝛻2𝜙𝜙 = 𝛻𝛻𝐴𝐴 × �̂�𝑧 � 𝛻𝛻𝛻𝛻2𝐴𝐴 + 𝜈𝜈𝛻𝛻2𝛻𝛻2𝜙𝜙 + 𝑓𝑓

• Seek 𝑣𝑣𝑥𝑥𝐴𝐴 = −𝐷𝐷𝑇𝑇
𝜕𝜕 𝐴𝐴
𝜕𝜕𝑥𝑥

− 𝜂𝜂 𝜕𝜕 𝐴𝐴
𝜕𝜕𝑥𝑥

• Point: 𝐷𝐷𝑇𝑇 ≠ ∑𝑘𝑘 |𝑣𝑣𝑘𝑘|2 𝜏𝜏𝑘𝑘
𝐾𝐾 , often substantially less

• Why: Memory! ↔ Freezing-in
• Cross Phase

scalar mixing – the usual

back-reactionturbulent resistivity



Conventional Wisdom

• [Cattaneo and Vainshtein 1991]: turbulent 
transport is suppressed even for a weak large 
scale magnetic field is present.

• Starting point: 
• Assumptions: 

• Energy equipartition:
• Average B can be estimated by:

• Define Mach number as:
• Result for suppression stage:
• Fit together with kinematic stage result: 
• Lack physics interpretation of 𝜂𝜂𝑇𝑇 !

𝑀𝑀2 = 𝑣𝑣𝐴𝐴 2/ �𝑣𝑣2 = 𝑣𝑣2 /𝑣𝑣𝐴𝐴2 = 𝑣𝑣2 /
1
𝜇𝜇0𝜌𝜌

𝐵𝐵2



Origin of Memory?
• (a) flux advection vs flux coalescence

• intrinsic to 2D MHD (and CHNS)
• rooted in inverse cascade of 𝐴𝐴2 - dual cascades

• (b) tendency of (even weak) mean magnetic field to “Alfvenize”
turbulence [cf: vortex disruption feedback threshold!]

• Re (a): Basic physics of 2D MHD



Memory Cont’d

• v.s.

• Obvious analogy: straining vs coalescence; CHNS
• Upshot: closure calculation yields:

Γ𝐴𝐴 = −∑𝑘𝑘′[𝜏𝜏𝑐𝑐
𝜙𝜙 𝑣𝑣2 𝑘𝑘′ − 𝜏𝜏𝑐𝑐𝐴𝐴 𝐵𝐵2 𝑘𝑘′]

𝜕𝜕 𝐴𝐴
𝜕𝜕𝑥𝑥

+ ⋯

flux of potential competition
scalar advection vs. coalescence (“negative resistivity”)

(+) (-)

N.B.:
Coalescence 
 Negative diffusion 
 Bifurcation



Conventional Wisdom, Cont’d

• Then calculate 〈𝐵𝐵2〉 in terms of 〈𝑣𝑣2〉

• Multiplying by 𝐴𝐴 and sum over modes:

• Therefore: 
• Define Mach number as:
• Result:  
• This theory is not able to describe 𝐵𝐵0 → 0 case!

Dropped stationary case Dropped periodic boundary  introduce nonlocality?!

𝜕𝜕 𝐴𝐴
𝜕𝜕𝜕𝜕

→ 𝐵𝐵0



New Wrinkles



New Observations

• With no imposed 𝐵𝐵0, in suppression stage:

• v.s. same run, in kinematic stage (trivial):

Field 
Concentrated!



New Observations Cont’d

• Nontrivial structure formed in real space during the
suppression stage.

• 𝐴𝐴 field is evidently composed of “blobs”.
• The low 𝐴𝐴2 regions are 1-dimensional. 
• The high 𝐵𝐵2 regions are strongly correlated with low 
𝐴𝐴2 regions, and also are 1-dimensional.

• We call these 1-dimensional high 𝐵𝐵2 regions 
``barriers'', there, mixing is reduced, relative to 𝜂𝜂𝐾𝐾.
 Story one of ‘blobs and barriers’



Evolution of PDF of A

• Probability
Density
Function (PDF)
in two stage:

• Time evolution:
horizontal “Y”.

Δ𝐴𝐴

suppression
stage

kinematic
stage

• The PDF changes from double 
peak to single peak as the system 
evolves from the suppression 
stage to the kinematic stage.



Unimodal Initial Condition

• One may question whether the bimodal PDF feature is 
purely due to the initial condition. The answer is No.

• Two non-zero peaks in PDF of A still arise, even if the 
initial condition is unimodal.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)



The problem of the mean field 〈𝑩𝑩〉
What does mean mean?

• 〈𝐵𝐵〉 depends on the averaging 
window.

• With no imposed external field, 
B is highly intermittent, therefore 
〈𝐵𝐵〉 is not well defined.

𝜕𝜕

𝐴𝐴

| 𝐵𝐵 | ∼ 𝐴𝐴2 /𝐿𝐿0✓ 𝐵𝐵 not well defined

v.s.

Reality

𝜕𝜕

𝐴𝐴



Revisiting Quenching



New Understanding
• Summary of important length scales:

• System size 𝐿𝐿0
• Envelope size 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 emergent (blob)
• Stirring length scale 𝐿𝐿𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠
• Turbulence length scale 𝑙𝑙, here we use Taylor microscale 𝜆𝜆
• Barrier width 𝑊𝑊 emergent

• Quench is not uniform. Transport coefficients differ in 
different regions.

• In the regions where magnetic fields are strong, 
𝑅𝑅𝑅𝑅/𝑀𝑀2 is dominant. They are regions of barriers.

• In other regions, i.e. Inside blobs, 𝑅𝑅𝑅𝑅/𝑀𝑀′2 is what 
remains. 𝑀𝑀′2 ≡ 𝑉𝑉2 / 1

𝜌𝜌
𝐴𝐴2 /𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒2



New Understanding, cont’d

• From
• Retain 2nd term on RHS. Average taken over an 

envelope/blob scale.
• Define diffusion (closure):

• Plugging in:
• For simplicity: 
• where 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒 is the envelope size. Scale of 𝛻𝛻2〈𝐴𝐴2〉.
• Define new strength parameter:
• Result:  



𝜂𝜂𝑇𝑇 = 𝑉𝑉 𝑙𝑙 / 1 +
𝑅𝑅𝑚𝑚
𝑀𝑀2 +

𝑅𝑅𝑚𝑚
𝑀𝑀′2

• Barriers:

𝜂𝜂𝑇𝑇 ≈ 𝑉𝑉 𝑙𝑙 / 1 + 𝑅𝑅𝑚𝑚
𝐵𝐵 2

𝜌𝜌 �𝑉𝑉2

• Blobs:

𝜂𝜂𝑇𝑇 ≈ 𝑉𝑉 𝑙𝑙 / 1 + 𝑅𝑅𝑚𝑚
𝐴𝐴2

𝜌𝜌𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒2 �𝑉𝑉2

• Quench stronger in barriers, highly non-uniform

Strong field

Weak effective field



Formation of Barriers

• How do the barriers form?

• From above, strong B regions can support negative incremental 

𝜂𝜂𝑇𝑇 𝛿𝛿Γ𝐴𝐴/𝛿𝛿 −𝛻𝛻𝐴𝐴 < 0, suggesting clustering

• 𝜂𝜂𝑇𝑇 > 0

• Positive feedback:  a twist on a familiar theme

B is strong in a specific region diffusion of A is negative

∇A increasesB in that region increases

flux coalescence



Formation of Barriers,  Cont’d

• Negative resistivity leads to barrier formation.
• The S-curve reflects due to the dependence of Γ𝐴𝐴 on B.
• When slope is negative negative (incremental) resistivity.

Γ𝐴𝐴

- 𝐵𝐵

unstable
negative

Barriers 

Bistability of Γ𝐴𝐴 vs 𝛻𝛻𝐴𝐴

 a familiar theme

Landscape 
unknown

Quenched 𝜂𝜂𝑇𝑇

Kinematic

𝜂𝜂𝐾𝐾



Describing the Barriers

• How to measure the barrier width 𝑊𝑊.
• Starting point: 

• Use 〈𝐴𝐴2〉 to calculate Δ𝐴𝐴
• Define the barrier regions as: 
• Define barrier packing fraction:
• Use use the magnetic fields in the barrier regions to 

calculate the magnetic energy:
• Thus
• So barrier width can be estimated by:
N.B. All magnetic energy in the barriers

arbitrary threshold



Describing the Barriers

• Time evolution of 𝑃𝑃 and 𝑊𝑊:
- P, W collapse in decay
- 𝑀𝑀′ rises

• Sensitivity of 𝑊𝑊:
• 𝐴𝐴0 or 1/𝜇𝜇0𝜌𝜌 greater 𝑊𝑊 greater;
• 𝑓𝑓0 greater, 𝑊𝑊 smaller; (ala’ Hinze)
• 𝑊𝑊 not sensitive to 𝜂𝜂 or 𝜈𝜈.

(a) (b) (c) (d) (e)



Active Scalar Staircases



Staircase (inhomogeneous Mixing, Bistability)

• Staircases emerge spontaneously! – Barrier lattices
• Initial condition is the usual cos function (bimodal)
• The only major sensitive parameter (from runs above) 

is the forcing scale k=32 (for all runs above k=5).
• Resembles the PV staircase

(1) (2) (3) (4)



• Magnetic fields suppress turbulent diffusion in 2D 
MHD by: formation of intermittent transport barriers.

• Magnetic structures:
• Quench not uniform:

• Barriers form due to negative resistivity:

• Formation of “magnetic staircases” observed for some 
stirring scale

Conclusions / Summary

Barriers – thin, 1D strong field regions
Blobs – 2D, weak field regions

barriers, strong B blobs, weak B, 𝛻𝛻2〈𝐴𝐴2〉 remains

Γ𝐴𝐴

- 𝐵𝐵
flux coalescence



Future Works
• Extension of the transport study in MHD:

• Numerical tests of the new 𝜂𝜂𝑇𝑇 expression ?

• What determines the barrier width and packing fraction ?

• Why does layering appear when the forcing scale is small ?

• What determines the step width, in the case of layering 

• Other similar systems can also be studied in this spirit. e.g. Oldroyd-B 

model for polymer solutions. (drag reduction)

• Reduced Model of Magnetic Staircase

See Also:

C. Chen and P.D.: “PV Mixing in a Tangled Magnetic Field”, NO4.00003



• PRE Rap Comm 99, 041201 (2019)

• PoP 25, 055702 (2018)

• PRE Rap Comm 96, 041101 (2017)

• Phys Rev Fluids 1, 054403 (2016)

Reading

Fan, P.D., Chacon:

Thank you!



Back-Up



Constitutive Relations   Deborah Number

J. C. Maxwell:

(stress) + 𝜏𝜏𝑅𝑅
𝑑𝑑(stress)

𝑑𝑑𝑡𝑡
= 𝜂𝜂 𝑑𝑑

𝑑𝑑𝑡𝑡
(strain)

If 𝜏𝜏𝑅𝑅/𝑇𝑇 = 𝐷𝐷 ≪ 1, stress = 𝜂𝜂 𝑑𝑑
𝑑𝑑𝑡𝑡

(strain)

Π = - 𝜂𝜂𝛻𝛻�⃑�𝑣

If 𝜏𝜏𝑅𝑅/𝑇𝑇 = 𝐷𝐷 ≫ 1, stress ≅ 𝜂𝜂
𝜏𝜏𝑅𝑅

(strain)

~ E (strain)

Limit of “freezing-in”: D≫1 is criterion.

relaxation viscosity

𝑇𝑇 ≡ dynamic
time scale

viscous

elastic



• 𝐷𝐷 ~  Deborah Number  ~  𝛻𝛻𝑉𝑉 /𝜔𝜔𝑍𝑍 ~  𝜏𝜏𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟𝑥𝑥/𝜏𝜏𝑑𝑑𝑑𝑑𝑒𝑒

• Limit for elasticity:  𝐷𝐷 ≫ 1 limit for elasticity

• Why “Deborah”? 

Hebrew Prophetess Deborah: 

“The moutains flowed before the Lord.” (Judges)

∴

• Revisit Heraclitus (1500 years later): 

“All things flow” – if you can wait long enough



Simulation Setup

• PIXIE2D: a DNS code solving 2D MHD equations in real
space:

• 1024^2 resolution.
• External forcing 𝑓𝑓 is isotropic homogeneous.
• Periodic boundary conditions (both).
• Initial conditions:

• (1) bimodal:
• (2) unimodal:



Two Stage Evolution:

• 1. The suppression stage: 
the (large scale) magnetic
field is sufficiently strong so 
that the diffusion is 
suppressed.

• 2. The kinematic decay stage: 
the magnetic field is 
dissipated so the diffusion 
rate returns to the kinematic 
rate. 

• Suppression is due to the 
memory induced by the 
magnetic field.

suppression
stage

kinematic
stage



2D CHNS and 2D MHD

• The 𝐴𝐴 field in 2D MHD in suppression stage is
strikingly similar to the 𝜓𝜓 field in 2D CHNS (Cahn-
Hilliard Navier-Stokes) system:

𝜓𝜓 field in 2D CHNS 𝐴𝐴 field in 2D MHD
v.s.



• 2D CHNS Equations:

𝜕𝜕𝑡𝑡𝜓𝜓 + �⃑�𝑣 � 𝛻𝛻𝜓𝜓 = 𝐷𝐷𝛻𝛻2(−𝜓𝜓 + 𝜓𝜓3 − 𝜉𝜉2𝛻𝛻2𝜓𝜓)

𝜕𝜕𝑡𝑡𝜔𝜔 + �⃑�𝑣 � 𝛻𝛻𝜔𝜔 =
𝜉𝜉2

𝜌𝜌
𝐵𝐵𝜓𝜓 � 𝛻𝛻𝛻𝛻2𝜓𝜓 + 𝜈𝜈𝛻𝛻2𝜔𝜔

With �⃑�𝑣= ̂⃑𝑧𝑧 × 𝛻𝛻𝜙𝜙, 𝜔𝜔 = 𝛻𝛻2𝜙𝜙, 𝐵𝐵𝜓𝜓 = ̂⃑𝑧𝑧 × 𝛻𝛻𝜓𝜓, 𝑗𝑗𝜓𝜓 = 𝜉𝜉2𝛻𝛻2𝜓𝜓. 𝜓𝜓 ∈
[−1,1].
• 2D MHD Equations:

𝜕𝜕𝑡𝑡𝐴𝐴 + �⃑�𝑣 � 𝛻𝛻𝐴𝐴 = 𝜂𝜂𝛻𝛻2𝐴𝐴

𝜕𝜕𝑡𝑡𝜔𝜔 + �⃑�𝑣 � 𝛻𝛻𝜔𝜔 =
1
𝜇𝜇0𝜌𝜌

𝐵𝐵 � 𝛻𝛻𝛻𝛻2𝐴𝐴 + 𝜈𝜈𝛻𝛻2𝜔𝜔

With �⃑�𝑣= ̂⃑𝑧𝑧 × 𝛻𝛻𝜙𝜙, 𝜔𝜔 = 𝛻𝛻2𝜙𝜙, 𝐵𝐵 = ̂⃑𝑧𝑧 × 𝛻𝛻𝐴𝐴, 𝑗𝑗 = 1
𝜇𝜇0
𝛻𝛻2𝐴𝐴

−𝜓𝜓: Negative diffusion term

𝜓𝜓3: Self nonlinear term

−𝜉𝜉2𝛻𝛻2𝜓𝜓 : Hyper-diffusion term

𝐴𝐴: Simple diffusion term

2D CHNS and 2D MHD

See [Fan et.al. 
2016] for more 
about CHNS.



General Conclusions (MHD and CHNS)

• Dual (or multiple) cascades can interact with each other, 
and can modify one another.

• We show how a length scale, e.g. the Hinze scale in 2D 
CHNS, emerges from the balance of kinetic energy and 
elastic energy in blobby turbulence.  blob scale in MHD?!

• Negative incremental diffusion (flux/blob coalescence) can 
lead to novel real space structure in a simple system.

• Negative incremental resistivity can exist in a simple system 
such as 2D MHD. This results in the formation of nontrivial 
real space structure.
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