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Negative	Viscosity	Models-
Zonal	Scale	Selection,	Staircases	and	Dynamical	Symmetry	Breaking

• Theory	of	zonal	flow	scale	
selection	and	staircase	formation

• Model	reveals	migration	and	
condensation	of	staircase	steps	to	
form	macro	barrier	layers

• Novel	mechanism	for	nonlocality,	
via	’escalator	mode’

THC/P3-30

• New	dynamical	symmetry	breaking	mechanism	amplifies	toroidal	shear	flows	in	
electron	drift	wave	turbulence,	significant	in	weak	shear	plasmas

• Shear	amplification	enhances	residual	stress	effect	on	flow	profile	gradient

Fig:	Stages	of	evolution:	a)	Micro-steps	merge	into	
meso-steps.	b)	Meso-steps	to	barriers.	c)	Barriers	
condense	at	boundaries.	d)	Stationary	profile.	

I.)	Scales	and	Staircases	

II.)	Dynamical	Symmetry	Breaking



Some	Questions:	

• Key	to	self-regulation	of	drift	wave	turbulence	is	zonal	flow	
(Diamond	et	al.,	2005).	
BUT:

→Gyro-Bohm	breaking	observed	(McKee,	2006)	and	related	to	long	
range	tail	(Hennequin,	2015).

→Zonal	flow	scale	selection	and	saturation	determine	degree	of	
GB-breaking.	Scale	selection-how?

→ExB staircase	is	hint as	to	pattern	formation	scenario.
→But	previous	limitation	to	simulation	precludes	understanding.	

Model needed	to	step	beyond	color	VG’s.
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I.)	Observation:	Coherent	ZF	Pattern	⟺ ExB staircase

•	`ExB staircase’-coherent	pattern-is	observed

- What	controls	scale	selection?
- How	does	staircase	form	and	evolve?
- Nonlinear	evolution	of	modulations?
- Why	coherent?

- flux	driven,	full	f	simulation

- Region	of	the	extent	
interspersed	by	temp.	corrugation/ExB jets

� � �c

- Quasi-regular pattern	of	shear	layers	
and	profile	corrugations

(G.	Dif-Pradalier,	P.D.	et	al.	Phys.	Rev.	E.	’10)

→	ExB	staircases

•	ExB	flows	often	observed	to	self-organize	in	magnetized	plasmas
eg.		mean	sheared	flows,	zonal	flows,	...
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•	Questions:
How	understand	coherent	
pattern	selection	in	drift	
wave	turbulence?



Beyond	Color	VG:	The	Reduced	1D	Model

  

 

¶tn = -¶xGn +¶x[Dc¶xn],        Gn = ı  v x ı  n = -Dn¶xn

¶tu = -¶xPu +¶x[µc¶xu],       Pu = ı  v x ı  u = (c -Dn )¶xn - c¶xu

Mean	field	equations:

 

¶te =¶x[De¶xe]- (Gn -Gu)[¶x (n - u)]-e c
-1e 3 / 2 + P

Turbulent	Potential	Enstrophy (PE):	

 

e =
1
2

ı n - ı u ( )2

Turbulence	evolution:	(Potential	Enstrophy)

Turbulence	spreading Internal	production dissipation
External	
production

density

vorticity
Residual	vort.	flux
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 Taylor ID :  Pu = ı v x ı u =¶x ı v x ı v y

Reduced	system	is	obtained	from	Hasegawa-Wakatani system	for	DW

  

 

log(N /N0) = n(x,t) + ı n (x,y,t),                     rs
2Ñ̂2 ej /Te( )= u(x,t) + ı u (x,y,t)

 

q = n - u,Potential	Vorticity (PV):	

Reduced	density: Vorticity:

Variables:

 

u = ¶xVy
Zonal	shearing	field	

Turb.	viscosity

 

~ ge
Two	fluxes	𝚪𝒏, 𝚪𝒖 set	model	!

Two	components

From	closure

Reflect	instability𝑣'(𝑛'

𝑣'(𝑢'

𝑛' 𝑥, 𝑦, 𝑡 , 𝑢' 𝑥, 𝑦, 𝑡

𝜀 =
1
2 𝑛' − 𝑢' 3

Taylor	ID:	Π5 = 𝑣'(𝑢' = 𝜕( 𝑣'(𝑣'7

Vorticit flux	sets	flow	evolution.	
Contains	residual	stress	driven	by	𝛻𝑛.

⟺



What	are	the	Key	Points	in	this	model?
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oIn this model PE conservation is a central feature.
oMixing of Potential Vorticity (PV) is the fundamental effect regulating the interaction
between turbulence and mean fields. Mixing inhomogeneous, via intensity feedback.
oDimensional and physical arguments used to obtain functional forms for the turbulent
diffusion coefficients. From the flux relations for HW system we obtain

oInhomogeneous mixing of PV results in the sharpening of density and vorticity
gradients in some regions and weakening them in other regions, leading to shear lattice
and density staircase formation.

Key	Element:	Mixing	Scale	<->	Tied	to	Rhines Scale

• 𝑙 = 𝑙: 1 + 𝑙:3 𝜕( 𝑛 − 𝑢 3 𝜖⁄ > 3⁄⁄ = 𝑙: 1 + 𝑙:3 𝑙?@3⁄
> 3⁄⁄

• 𝑙?@ = Rhines	Length = 𝜖� 𝜕(𝑞⁄

From:	𝜔 ≈ 𝑘P𝑣∗ 1 + 𝑘R3𝜌T3⁄ ≈ 𝑙?@ 𝑞�

• 𝐷V ≈ 𝑙:3𝜖W 3⁄ 1 + 𝑙:3 𝑞 X 3 𝜖⁄Y

 

Dn @ l
2 e
a

 

c @ cc l
2 e

a 2 + auu
2 Parallel	diffusion	rate

 

a

 

l Dynamic	mixing	length
Set	by	
Rhines
scale

*

PV	mixing	exhibits	quench	with	𝛻𝑞
Note:	No	KH/tertiary.	Feedback	on	
gradient	drive	assures	saturation
⟹ Robust,	generic	mechanism



- Staircase	Structure	via	Mudulation
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Density	staircasesshearing	field	

oStaircase	in	density	profile:	

jumps									regions	of	steepening	

steps										regions	of	flattening	

oAt	the	jump	locations,	turbulent	PE	is	suppressed.

oAt	the	jump	locations,	vorticity gradient	is	positive

Initial	conditions:   

 

n = g0(1- x),    u = 0,    e = e 0
  

 

n(0,t) = g0,  n(1,t) = 0;    u(0,1;t) = 0;   ¶xe(0,1;t) = 0Boundary	conditions:

density	grad.	

turb.	PE

Snapshots	of	evolving	profiles	at	t=1	(non-dimensional	time)	

Density	
staircase

+
Vorticity
lattice

Structures:

(Boundary	value	problem)



oShear	pattern	detaches	and	delocalizes	from	
its	initial	position	of	formation.

oMesoscale shear	lattice	moves	in	the	up-
gradient	direction.	Shear	layers	condense		and	
disappear	at	x=0.			

oShear	lattice	propagation	takes	place	over	
much	longer	times.	From	t~O(10)	to	t~(104).

- Staircases	are	Dynamic

t=700

t=1300
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oBarriers	in	density	profile	move	upward	in	
an	“Escalator-like”	motion.

èMacroscopic	Profile	Re-structuring

Novel	Mechanism	for	
‘Non-locality’	via	profiles	
and	boundary	conditions.



(a) Fast merger of micro-scale SC. Formation 
of meso-SC.

(b) Meso-SC coalesce to barriers
(c) Barriers propagate along gradient, 

condense at boundaries
(d) Macro-scale stationary profile   
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a
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c
d

 

log10(t)

 

u

 

x

Shearing	field

Steady
state

 

Ñn

 

x

- Profile	Evolution:	Staircase	Coalescence	and	
Condensation	to	Barrier



 

Gdr(x, t) = G0(t)exp[-x /D dr]

G = -[Dn (e,¶xq) +Dcol ]¶xn

- Flux	driven	evolution
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Add	an	external	particle	flux	drive	to	the	density	Eq.,	use	its	amplitude						as	a	
control	parameter	to	study:	

- What	profile	structure	emerges	from	this	dynamics?

- Variation	of	the	macroscopic	steady	state	profiles	with					.	(	shearing,	density,	
turbulence,	and	flux).

- Transport	bifurcation	of	the	steady	state	(macroscopic)

- Particle	flux-density	gradient	landscape.				

 

¶tn = -¶xG-¶xGdr(x,t)
External	particle	flux	(drive)

Internal	particle	flux	(turb.	+	col.)

 

G0 

G0

è Source	as	𝛁 ⋅ 𝚷𝐞𝐱



- Transitions	to	Globally	Enhanced	Confinement	Occur	by	
Staircase	Evolution
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G1 < Gth < G2

 

G1
 

G2

 

G1

 

G2  

G2

 

G1

 

G2
 

G1

§Rise	in	density	level

§Drop	in	turb.	PE	and	turb.	
particle	flux	beyond	the	barrier	
position

§Enhancement	and	sign	reversal	
of	vorticity (shearing	field)				

With	NC	to	EC	transition	we	observe:	

Steady	state	solution	for	the	system	undergoes	a	transport	bifurcation	as	the	flux	drive	amplitude						
is	raised	above	a	threshold							.

 

Gth

 

G0

  

 

G0 = G1 ® Normal Conf. (NC)
G0 = G2 ® Enhanced Conf. (EC)

N.B.:	Macro transition	occurs	
via	staircase	evolution



- Flux	Landscape	in	 𝒙, 𝛁𝒏 Forms	from	Staircase	Condensation
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Fig:	Flux	landscape	of	the	local	Γ 𝑥 vs	−𝜕(𝑛 vs	𝑥 for	𝑔c =
4.5.	Shades	of	red	are	for	the	enhanced	confinement	state
s	(EC)	and	gray	scale	is	for	normal	confinement	state	(NC).

Forward Transition:
Abrupt transition from NC to EC (from A to B).

From B to C:
Barrier moves to the right with lowering the density gradient.
Backward Transition:
Abrupt transition from EC to NC (from C to D). Barrier moves
rapidly to the right boundary and disappears.

In	one	run	from	initially	flat	density	profile,					
is	adiabatically	raised	and	lowered.	

 

G0

Global
Hysteresis	evident	in	the	GLOBAL	
flux-gradient	relation



Initial	condition	dependence:

oSolutions	are	not	sensitive	to	initial	value	of	turbulent	
PE.
oInitial	density	gradient	is	the	parameter	influencing	the	
subsequent	evolution	in	the	system.
oAt	lower	viscosity	more	steps	form.
oWidth	of	density	jumps	grows	with	the	initial	density	
gradient.	

o Large	turbulence	spreading	wipes	out	features	on	
smaller	spatial	scales	in	the	mean	field	profiles,	
resulting	in	the	formation	of	fewer	density	and	
vorticity	jumps.

- Role	of	Turbulence	Spreading?	

 

¶te = b¶x[(l
2e1/ 2)¶xe]+ ...

- 𝛽 → 0, excessive	profile	roughness
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Lessons	I.)
• A)	Coherent	ZF	structures	evolve	from	modulations

– “Staircase”	is	‘natural	upshot’	of	modulation	in	bistable/multi-stable	system
– Bistability is	a	consequence	of	generic	mixing	scale	dependence	on	gradients,	

and	intensity	ßà define	feedback	process
– Mergers result	from	accommodation	between	boundary	condition,	drive(L),	and	

initial	secondary	instability
– Scale	selection	for	ZF	layers	is	intrinsically	globalà responds	to	boundaries

⟹	Nonlocality	mechanism.

• B)	ZF	Patterns	are	Dynamic	(not	previously	appreciated)
– Mergers	occur,	jumps/steps	migrate.	B.C.’s,	drive	all essential.
– Condensation	of	mesoscale	staircase	jumps	into	macroscopic	transport	barriers	

occurs.	
– Global 1st order	transition,	with	macroscopic	hysteresis	occurs	from	staircase	

evolution,	condensation.
– Flux	drive	+	B.C.	effectively	constrain	system	states.

14



• JET:	Weak	shear	AND Rotation	à Enhanced	confinement
• But	external	torque	limited	in	ITER	

• Need	understand:	Intrinsic	rotation	in	weak	shear	regimes

II.)	Intrinsic	Rotation	in	Weak	Shear

• Important	for:

• Total	effective	torque	

𝜏 = 𝜏k(l + 𝜏cmln

• Contribution	to	𝑉p×rX

[P. Mantica, PRL, 2011;
Rice, PRL, 2013] 15
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Recall:	Conventional	Wisdom	of	Intrinsic	Rotation

• Self-acceleration	by	intrinsic	torque	due	to	residual	stress	
(𝜏cmln = −𝛻 ⋅ Π?kT)

𝑣'n𝑣'∥ = −𝜒u
𝑑 𝑣∥
𝑑𝑟 + 𝑉x 𝑣∥ + Πn∥?kT

• Residual	stress	Πn∥?kT

– Driven	by	turbulence,	i.e.	Πn∥?kT ∼ 𝛻𝑃, 𝛻𝑇, 𝛻𝑛:

• Πn∥?kT ∼ 𝑘P𝑘∥ etc.	requires	symmetry	breaking	in	k space

• Relevance	in	weak	shear	dubious!

• Symmetry	breaking	usually	relies	on	magnetic	shear

• Rotation	builds	up	from	edge,	driven	by	Πn∥?kT at	edge
16[W.X.	Wang,	PRL,	2009]



Intrinsic	Rotation	in	Weak	Shear

• Results
– GK	Simulation:	stronger	intrinsic	rotation	at	

weaker	magnetic	shear	

• Problems:
– Intrinsic	rotation	requires	symmetry	breaking
– Most	involve	magnetic	shear
– Conventional	symmetry	breaking	models	fail
– But	weak	shear	

à non-resonant	mode	structure!
– Need	re-visit	fundamentals	of	intrinsic	

torque,	absent	shear.	(J.	Li	et	al.,	2016)

Intrinsic	Rotation?• Weak	shear	(𝑞X → 0)

• External	torque	≅ 0
• Beneficial	for	confinement	and	stability.

Status:
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[Kwon,	NF	(2012);
Z.X.	Lu,	NF&PoP,	2015]



Intrinsic	𝛻 𝑣� in	Drift	Wave	Turbulence

[Rice,	PRL,	2011]

• Axial	flow	in	CSDX:
• 𝛻𝑛: is	free	energy	source
• 𝑣� X ∼ W

m�
𝛻𝑛:

• Compare:

• Intrinsic	𝛻 𝑣� in	C-Mod	pedestal:

• Δ 𝑣u ∼ 𝛻𝑇

18(Zero	magnetic	shear) (Standard	shear)



Infinitesimal	test	axial	flow	
shear,	e.g.	𝛿 𝑣� X < 0

Modes	with	𝑘P𝑘� < 0 grow
faster	than	others

𝛾>|>�>��: > 𝛾>|>�>��:

Spectral	imbalance	in	𝑘P𝑘� space
𝑘P𝑘� < 0à Πn�?kT ≠ 0

• Growth	rate	<->	frequency	shift:	

Resolution:	Dynamical	Symmetry	Breaking

k�

k�

kP

:	{𝑘+}

:	{𝑘−}

0

𝜙> 3

0

Spectral
imbalance

{𝑘±}:	Domains	where	modes	grow	faster/slower

Spectral	imbalance
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Key:	𝛿 𝑣� ′à Frequency	shift	à Change	in	𝜔> − 𝜔∗
• Spectral	imbalance:

Operates	through	electron	growth



Negative	Viscosity	Increment

• 𝛿Π?kT = 𝜒u�m� 𝛿〈𝑣�〉′ [Li	et	al,	PoP,	2016]

• Reynolds	stress:

• Turbulent	momentum	diffusivity:	

• Residual	stress	àNegative	viscosity	increment

20

àMechanism	resembles	modulational instability:	seed	+	feedback

residual



Modulational Enhancement	of	𝛿〈𝑣�〉′

• 𝛿〈𝑣�〉′à Π?kT à 𝜒ul�l = 𝜒u − 𝜒u�m�

• 𝜒ul�l < 0àModulational growth	of	𝛿〈𝑣�〉′

• Feedback	loop:	𝛿〈𝑣�〉′à Π?kT à − 𝜒u�m�

• Dynamics	of	𝛿〈𝑣�〉′ :	
𝜕
𝜕𝑡 𝛿 𝑣�

X +
𝜕3

𝜕𝑟3 𝛿Πn�?kT − 𝜒u𝛿 𝑣� X = 0

• Growth	rate	of	flow	shear	modulation
𝛾V = −𝑞n3 𝜒u − 𝜒u�m�
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Upper	Range	of	 𝑣� X Limited by	PSFI
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• Parallel	shear	flow	instability	
(PSFI)	driven	by	𝛻 𝑣� ,	
negative	compressibility

𝛾>x��� ≅
𝑘P𝑘�𝜌T𝑐T 𝑣� X − 𝑣� �ncl

X

1 + 𝑘R3𝜌T3
�

𝜒ux��� ≅  𝜙> 3𝑘P3𝜌T3
4 1 + 𝑘R3𝜌T3 3

𝜔∗3
𝑘P𝑘�𝜌T𝑐T 𝑣� X − 𝑣� �ncl

X

1 + 𝑘R3𝜌T3
�

�

>

à Nonlinear	in	𝛻 𝑣�

• Hit	PSFI	threshold	à 𝜒ux��� nonlinear	in	𝛻 𝑣� à 𝜒ul�l > 0

• 𝛿〈𝑣�〉′à Π?kT à 𝛿〈𝑣�〉′ growth	ß Saturated	by	PSFI

𝜒ul�l = 𝜒u¡¢ − 𝜒u�m� < 0 𝜒ul�l = 𝜒u¡¢ + 𝜒ux��� − 𝜒u�m� > 0



Comparing	Symmetry	Breaking	Mechanisms
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Summary	(II.)
• Dynamical	symmetry	breaking	mechanism
• Negative	viscosity	increment	induced	by	Π?kT

– 𝛿Π?kT = 𝜒u�m� 𝛿 𝑣� X

– Total	viscosity:	𝜒ul�l = 𝜒u − 𝜒u�m�

– 𝜒ul�l < 0àModulational	growth	of	𝛿 𝑣� X

• Broader	lesson	for	tokamaks
– Synergy	of	 𝑣u X self-amplification	and	Π?kT

– 𝑣u X driven	by	𝜏«r�,	Π?kT 𝛻𝑛:, 𝛻𝑇

– 𝑣u X enhanced	by	− 𝜒u�m�
24


