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ABSTRACT OF THE DISSERTATION

Cascades, Spectra, Real Space Structure, Inhomogeneous Mixing and Transport
in Active Scalar Turbulence

by

Xiang Fan

Doctor of Philosophy in Physics

University of California San Diego, 2019

Patrick H. Diamond, Chair

An active scalar system refers to a system with a scalar field that is coupled to the fluid

dynamics and gives feedback to the velocity field through local forces. Active scalar turbulence

systems are ubiquitous, and the study of these systems is a central focus of research in theoretical

plasma physics. As examples, the 2D Cahn-Hilliard Navier-Stokes (CHNS) system and 2D

Magnetohydrodynamics (MHD) system are studied in this dissertation.

The similarities and differences between 2D CHNS and 2D MHD are discussed. These

are both elastic (i.e., self-restoring) systems, and display a memory, governed by freezing-in

laws. The CHNS system supports an elastic wave, which is analogous to Alfven wave in MHD.

xiv



Cascades and spectra in 2D CHNS are investigated, with focus on the interaction between inverse

and forward cascades. The inverse cascade of mean square concentration 〈ψ2〉, which is closely

related to the real space dynamics of blob formation and merger, is found to be the dominant

nonlinear transfer process. The spectrum of 〈ψ2〉k exhibits a scaling law of ∼ k−7/3, and this

exponent is the same as the corresponding one in 2D MHD. On the other hand, the kinetic energy

spectrum follows Ek ∼ k−3. This exponent is closer to that for 2D Navier-Stokes, instead of that

for 2D MHD. We suggest this is because the restoring force is significant only in the interfacial

regions. The packing fraction of interfacial regions is small because of the formation and merger

of blobs. This suggests that the inverse cascade of 〈ψ2〉 - related to blob coalescence - modifies

the forward cascade in 2D CHNS.

The evolution of the concentration field of the Cahn-Hilliard system in the background

of a single eddy is studied. This is analogous to the flux expulsion phenomenon in 2D MHD.

Though the system is simple, complex evolution is observed. 3 stages are observed: the “jelly

roll” pattern stage, the stage of topological evolution, and the “target” pattern stage. The target

pattern is metastable, as the bands gradually merge with time.

We also study turbulent transport in active scalar systems. We intended to first explore

the classic problem of the suppression of turbulent transport in 2D MHD as an exercise in code

verification, and then move to 2D CHNS. However, novel blob-and-barrier real space structures

were observed with higher magnetic Reynolds number Rm in 2D MHD. We argue that the

conventional approach of mean field theory is not applicable for the case without an external large

scale magnetic field. The magnetic energy is observed to be concentrated in the intermittent, thin

transport barrier regions, which located in the interstices between blobs of magnetic potential.

The turbulent transport is quenched primarily because of these barriers. Barrier formation is

linked to the inverse cascade of mean square magnetic potential 〈A2〉 and negative turbulent

resistivity. For small scale forcing, spontaneous formation of layering occurs.

More generally, we demonstrate that synergistic studies of related but different systems

xv



– 2D CHNS and 2D MHD – can lead to improved understanding. These studies can provide

insights for all active scalar turbulence systems, since these systems share important common

properties such as memory, elastic waves, and conservation laws.
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Chapter 1

Introduction

1.1 Turbulence

Turbulence is a ubiquitous phenomenon occurring in continua (gas, liquid, or plasma). In

contrast to the case of a laminar flow, a marker particle in a turbulent flow moves in a seemingly

irregular way. Turbulence is generally considered as the major unsolved problems of classical

physics. The Navier-Stokes Equation is the governing equation for the motion of viscous gas and

liquid, and is the most fundamental and intensively studied equation that can exhibit turbulence

phenomenon. Before discussing the turbulence in active scalar systems, let us first review some

of the basics of the turbulence in the Navier-Stokes system.

The Navier-Stokes Equation is:

∂tv+v ·∇v =−1
ρ

∇p+ν∇
2v+ f (1.1)

where v is velocity, ρ is density, p is pressure, ν is viscosity, and f is an external forcing term.

Reynolds Number Re is the dimensionless number which characterizes the state of the system,

and is defined by Re≡ lv/ν where l is the relevant length scale and v is characteristic velocity.

When Re is greater than a threshold, the flow becomes turbulent.

1



The Navier-Stokes Equation may seem simple at first glance, yet mathematicians still

can not even prove whether or not the 3D Navier-Stokes Equation always has a smooth solution,

given an initial velocity field. Indeed, this is one of the seven Millennium Prize Problems stated

by the Clay Mathematics Institute in 2000 [14]. Whoever can prove it can win the $1 Million

prize - which should be increased, on account of inflation. One reason why this problem is so

hard is because a solution of the Navier-Stokes Equation generally involves turbulence.

Although there is no rigorous mathematical tool with which to fully understand turbulence,

physicists still made progress in understanding some of its properties [35]. In 1941, Kolmogorov

developed a model (the so called K41 theory) of a fluid with high Re, based on Richardson’s

idea of “cascade” [58]. Kolmogorov made two assumptions for turbulent flows satisfying 3D

Navier-Stokes Equation with high Re, namely that: (1) the eddies are statistically isotropic

on small scales, and (2) the small scale physics is determined by only viscosity ν and energy

dissipation rate ε. The dissipation length scale is then calculated to be η = (ν3/ε)1/4. Turbulent

flows contain a broad dynamic range of eddies. In a cascade, a larger size eddy decays into

smaller ones. These eddies then break up into even smaller ones, and so on, until they reach the

dissipation scale η. The range between dissipation scale η and relevant characteristic length scale

L is referred to as inertial range η < l < L. The energy passes from large scale eddies to small

scale ones in the inertial range, and only dissipates on the scale of η. This transfer process is

called the energy cascade. Based on the assumptions and model above, Kolmogorov obtained the

energy spectrum:

Ek =Cε
2/3k−5/3 (1.2)

where C is a universal constant. This famous result - the spectral exponent −5/3 - was later

verified by simulations and experiments. Another great achievement in K41 theory is the 4/5

law: in the limit of infinite Re, the third order structure function in a fully developed turbulence is

given by 〈(δv‖(l)3〉=−4
5εl. This is one of the few results in 3D Navier-Stokes turbulence that is

both exact (i.e. no adjustable parameter) and nontrivial. Of course, there is more physics beyond

2



K41 theory, such as intermittency phenomena.

The 2D Navier-Stokes system has many features in common with systems in strongly

magnetized plasmas, and therefore is of particular interest for plasma physicists. It is interesting

that, turbulent flows in the 2D Navier-Stokes system behave significantly differently from those in

3D [61, 10]. There are two quadratic conserved quantities: energy E = 1
2
∫

v2 dx2 and enstrophy

Ω = 1
2
∫
|∇×v|2 dx2. As a result, coexisting (dual) cascades occur in 2D, in contrast to only one

forward energy cascade in 3D. One 2D cascade is the inverse energy cascade. It is called “inverse”

because the energy is transferred from small scale to large scale, opposite to the direction of

that in 3D. The other cascade is the direct/forward enstrophy cascade. If the external forcing is

injected at intermediate scale k, then the energy spectrum contains two parts: the inverse cascade

range and the forward cascade range. For the inverse cascade range k� k f , the energy spectrum

is ∼ k−5/3, assuming a scale-independent energy flux as in 3D; and for the forward cascade range

k� k f , the energy spectrum is ∼ k−3, assuming a constant enstrophy flux.

Turbulence can be studied by simulations. In order to obtain the complete information of

the velocity field, a direct numerical simulation (DNS) is required for a turbulent flow, which refers

to a simulation directly solving Navier-Stokes without further modelling. DNS is computationally

expensive due to the large range of length scales and time scales involved. The whole inertial

range, from dissipation scale η to system size L, needs to be resolved in DNS. This requires the

minimum number of mesh points to be N3 ≥ Re9/4 for 3D DNS, and N2 ≥ Re3/2 for 2D DNS.

Considering the time resolution requirement, the total CPU hours needed for a DNS is ∝ Re3 for

3D and ∝ Re9/4 for 2D. Therefore, it is usually very costly to do DNS for fluids with large Re,

and large scale parallel computing is usually involved [82].
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1.2 Active Scalar Turbulence

A passive scalar turbulent system refers to a scalar field which evolves according to the

flow’s motion, but does not give feedback to the flow [91]. In contrast, an active scalar turbulent

system is a system where the scalar field can affect the fluid motion via feedback. Active scalar

turbulence systems can exhibit more interesting properties as compared with the pure Navier-

Stokes turbulence. This is because in active turbulence, waves usually play an important role, in

addition to eddies.

Active scalar turbulence is one of the central topics in theoretical plasma physics. Exam-

ples of active scalar system in plasma include: 2D Magnetohydrodynamics (MHD) and its close

relative, reduced MHD. Many important models in strongly magnetized plasmas are generaliza-

tions of reduced MHD, including: ballooning coupling [22, 48], the Hasegawa-Wakatani system,

and related system for drift wave and ITG turbulence [43, 44, 63, 64, 69]. In plasma physics,

active scalar systems are natural results of the modelling process to simplify the Braginsky system

[11] for case of strong magnetization and weak compression. These systems are widely used to

model the plasmas in Tokamaks, so the understanding of these systems is important in fusion

energy researches. The equations for 2D MHD, as an example, is shown in the next subsection.

These active scalar systems have the generic structure of: (1) a vorticity equation, with a coupling

to the scalar because of j×B force; (2) one or more scalar advection equations. Many of the

active scalar systems in plasma physics exhibit elasticity, due to a memory, which originates

from the freezing-in law for magnetic fields. Apart from plasma physics, active systems are also

ubiquitous elsewhere. Examples include the Cahn-Hilliard Navier-Stokes (CHNS) system, flow

with polymers, flow with bubbles, and many other systems.

2D MHD and 2D CHNS will be discussed in introduced in the following subsections.

Then we will discuss some physics questions in active scalar turbulence systems.
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1.2.1 2D MHD

One of the simplest but important active scalar system in plasma physics is 2D Magne-

tohydrodynamics (MHD). MHD describes the macroscopic behavior of plasmas, and is widely

used to model the plasmas in Tokamak, in astrophysics (in the sun, in interplanetary medium,

etc.), and in geophysics (for example, in the Earth’s magnetic field).

The 2D MHD equations read:

∂tA+v ·∇A = η∇
2A (1.3)

∂tω+v ·∇ω =
1

µ0ρ
B ·∇∇

2A+ν∇
2
ω (1.4)

v = ẑ×∇φ, ω = ∇
2
φ (1.5)

B = ẑ×∇A, j =
1
µ0

∇
2A (1.6)

where A is the scalar magnetic potential (note that A is a scalar in 2D but is a vector in 3D), B is

magnetic field, j is current, φ is stream function, ω is vorticity, η is resistivity, ν is viscosity, and

µ0ρ is magnetic permeability and density. The first equation is a simple diffusion equation for A,

and the scalar A affects the motion of the fluid via the 1
µ0ρ

B ·∇∇2A term, which comes from the

j×B force. The two characteristic dimensionless parameters in MHD are the Reynolds number

Re and the Magnetic Reynolds number Rm≡ lv/η.

The basic elements in MHD turbulence are eddies and waves, in contrast to the Navier-

Stokes system which only contains eddies but not waves. The most important wave in MHD

turbulence is the Alfvén wave, with the dispersion relation ωk = k‖vA where vA =
√

B2/4πρ.

In MHD, in the limit of η = 0, magnetic field lines are frozen into the fluid and have to

move along with it. This constraint is called Alfvén’s Theorem, i.e. “freezing-in law”. This has

profound impact on the evolution of the fields and renders MHD distinct from the Navier-Stokes

system, because “memory” appears due to Alfvén’s Theorem. A system is said to have “memory”
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if the instantaneous value of the field reflects the time history of the fluid motions acting on it, in

contrast to the situation of a Markov process, where the present is affected by only 1 time step’s

worth of the past.

In 3D MHD, if the magnetic field is strong and almost uniform along one direction, i.e.

B0 = −B0ẑ, then the 3D MHD equations can be reduced to a 2D system with an externally

imposed magnetic field. This is called reduced MHD [27]:

∂tA+v ·∇A = η∇
2A+B0

∂φ

∂z
(1.7)

∂tω+v ·∇ω =
1

µ0ρ
B ·∇∇

2A+B0
∂

∂z
∇

2A+ν∇
2
ω (1.8)

v = ẑ×∇φ, ω = ∇
2
φ (1.9)

B = ẑ×∇A, j =
1
µ0

∇
2A (1.10)

Reduced MHD is an important system in the field of magnetically confined plasmas. It

is evident that reduced MHD and 2D MHD have similar structures - indeed, identical nonlinear

structure. The study of 2D MHD can therefore gain insights into reduced MHD as well as other

models in plasma physics based on reduced MHD.

1.2.2 2D CHNS

The Cahn-Hilliard Navier-Stokes (CHNS) equations describe the motion of a binary

fluid undergoing spinodal decomposition. Spinodal decomposition is a second order phase

transition for a binary fluid, which evolves from a miscible phase (such as water+alcohol) to

an immiscible phase (such as water+oil). See Fig. 1.1 for illustration. Spinodal decomposition

has applications in alloy manufacturing, because it provides a way to produce micro structure

which enhances physical properties of the alloy [104]. More importantly, CHNS system is also of

interest theoretically, because (1) it is one of the few phase transitions in solids for which there is
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Figure 1.1: Some typical screenshots for the ψ field in the 2D CHNS system. Reprint from
[30].

any plausible quantitative theory [104]; (2) it is an active scalar system which provides insights to

related but different systems.

Let ψ(x, t) be the relative concentration field ψ≡ ρ1−ρ2
ρ1+ρ2

of the binary fluid (ρ1 and ρ2)

undergoing spinodal decomposition, and its governing equation is the CHNS equations:

∂tψ+v ·∇ψ = D∇
2(−ψ+ψ

3−ξ
2
∇

2
ψ) (1.11)

∂tω+v ·∇ω =
ξ2

ρ
Bψ ·∇∇

2
ψ+ν∇

2
ω (1.12)

v = ẑ×∇φ, ω = ∇
2
φ (1.13)

Bψ = ẑ×∇ψ, jψ = ξ
2
∇

2
ψ (1.14)

where D is diffusivity, ξ is a coefficient describing the strength of the surface tension interaction.

Note that ψ ranges from −1 to 1 assuming the binary fluid is symmetric. The ψ field affects the

fluid motion via the ξ2

ρ
Bψ ·∇∇2ψ term, which comes from the surface tension force.

In 2D, MHD and CHNS have many similarities. Here are the correspondences: the scalar
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field A↔ ψ (and their derived quantities), the diffusion coefficient η↔ D, and coupling strength

1
µ0
↔ ξ2. Apart from these obvious correspondences, these two systems are also analogous in

deeper ways. The quadratic conserved quantities in 2D MHD are energy, mean square magnetic

potential 〈A2〉, and cross helicity. In 2D CHNS, they are energy, mean square concentration 〈ψ2〉,

and cross helicity, analogous to the ones in 2D MHD. These two systems both support a linear

wave that is “springy”. They are both elastic (i.e., self-restoring) systems, and both systems

exhibit memory due to freezing-in laws. Of course, there are important differences as well. The

range of ψ is limited, but there is no physics restriction on A. The real space structure is different,

and the packing fraction for CHNS is significantly smaller, since the back reaction on fluid motion

is limited to interfacial regions. The two systems are compared in detail in Chapter 2.

1.3 Some Challenges

There are many challenges to understanding active scalar turbulence. Some of the most

prominent physics issues include: (1) the physics of dual (or multiple) cascades, (2) the nature of

“blobby” turbulence, (3) the effects of negative diffusion/resistivity, and (4) the understanding of

turbulent transport. They are discussed below.

The energy cascade is rather simple in the most familiar turbulence system, the 3D Navier-

Stokes system. There is only one cascade, the energy cascade, in that system. If energy is injected

at large scales, the energy cascades to small scale. However, there can be more than one cascades

in active scalar turbulence systems, with forward or inverse directions. For example, in MHD, it

is known that there are a forward energy cascade, and an inverse cascade of 〈A2〉 (2D) or 〈A ·B〉

(3D). The question is, which cascade is more fundamental? Can one cascade affect another?

How? Previous studies focus mainly on the energy cascade in the inertial range, partly due to its

being the natural extension of the K41 theory in the 3D Navier-Stokes system. However, the other

cascade, the inverse cascade of 〈A2〉, may be at least equally important. In CHNS, we will show
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there are also two cascades: a forward energy cascade, and an inverse cascade of 〈ψ2〉. Note that

2D CHNS and 2D MHD are analogous with respect to cascades and spectra. The inverse cascade

in 2D CHNS is more robust, and can alter the forward energy cascade. Note that many important

models of electromagnetic turbulence in magnetized plasmas are based on 2D MHD (or its close

relative, reduced MHD), therefore such systems also support dual (or multiple) cascades and are

relevant to the questions mentioned above.

“Blobby” turbulence refers to turbulence in which meso scale real space structures

resemble blobs. Blobby turbulence is observed in the Scrap-Off Layer (SOL) in Tokamak and

stellarator devices [9, 28, 36], and plays an important role in terms of dynamics and transport in

SOL. There are numerous simulation studies of these, which yield many impressive color view

graphs. However, some fundamental questions still remain to be investigated, such as: “What

makes a blob a blob?” What sets the scale of the blobs? How do the blobs co-exist or interact

with cascade processes? The CHNS system is a naturally blobby turbulent system. As we will

show in later chapters, size of blobs in 2D CHNS grows, until limited by the balance of kinetic

and elastic energy. As blobs grow, the active regions of elastic feedback on fluid reduce, and the

power law of the energy spectrum is thus modified. The study of how the concentration field in

the Cahn-Hilliard system evolves in the background of a single eddy can also give us insights

into how blobs form and interact in that system. The blobby real space structures can also occur

in 2D MHD, as will be discussed in Chapter. 4. We argue that the blob-and-barrier real space

structure is closely related to the important phenomenon of why turbulent transport in 2D MHD

is quenched, absent an external large scale magnetic field.

Negative diffusion (or negative resistivity) describes how the gradient of a field increases,

instead of decays in a diffusive system [95]. It is usually related to bistability. Negative diffusion

is a mechanism for the formation of macroscopic flow in turbulence. Zonal flow formation

is one of the most important example of negative diffusion phenomenon in geophysics and

plasma physics [25, 45]. The formation of zonal flow has some similarity to phase separation in
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CHNS, see Fig. 1.2. The CHNS system is a natural system for the study of negative diffusion

phenomena. In CHNS, a negative diffusion term appears explicitly in the original equations,

along with a nonlinear term and a positive hyper-diffusion term. In 2D MHD, negative turbulent

resistivity can also appear (for a short transition period), and lead to the formation of a large scale

blob-and-barrier real space structure, and even layering.

Figure 1.2: Zonal flow vs Spinodal Decomposition. (a) Zonal flow. The white arrows refer to the
directions of flow. Copyright c©2005 Pearson Prentice Hall, Inc. (b) Spinodal Decomposition.
The black arrows refer to the directions of ψ evolution. Reprint from [83]

Turbulent transport is an important topic for turbulent systems. In 2D MHD, the effect

of small scale magnetic field on transport coefficients is found to be significant even for a very

weak large scale magnetic field [16]. Turbulent transport of magnetic potential is suppressed,

relative to the kinematic prediction. This type of analysis was extended to 3D MHD in order to

understand the dynamo effect [25] (note that, strictly speaking, dynamo action does not exist in

2D MHD). However, the conventional mean field approach is not applicable to a newly discovered

blob-and-barrier real space structure, as discussed in Chapter 4. How to understand this highly

intermittent, inhomogeneous mixing is challenging.

Although 2D MHD and CHNS are simple, idealized systems, the study of the turbulence
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in these systems illuminates all the challenges mentioned above, and provides general insights

useful for the study of many other active scalar turbulent systems.

1.4 Overview of the Remaining Chapters

In this dissertation, we focus on three main topics: cascades and spectra in 2D CHNS,

the evolution of Cahn-Hilliard system in the background of a single eddy, and the mechanism

of transport suppression in 2D MHD. They will be discussed in Chapter 2-4, respectively. A

summary and future work are discussed in Chapter 5.

In Chapter 2, cascades and spectra in turbulent 2D CHNS system are investigated. 2D

MHD and 2D CHNS systems are compared in detail. The similarities include ideal quadratic

conserved quantities and the directions of cascades. The 〈ψ2〉 inverse cascade in 2D CHNS is

analogous to the 〈A2〉 inverse cascade in 2D MHD. The 〈ψ2〉k and 〈A2〉k spectra have the same

−7/3 exponents in the two systems. However, the kinetic energy spectra have different scaling.

The spectrum in 2D CHNS is more like that for 2D Navier-Stokes turbulence, than that for 2D

MHD. We resolve this apparent puzzle by observing that the blob merger process tends to make

the region of active feedback decrease, so the back reaction of surface tension is reduced. The

evolution of packing fraction is studied.

In Chapter 3, the evolution of Cahn-Hilliard system in the background of a single eddy

is analyzed. This study is inspired by, and is an analogue of, the classic study of flux expulsion

in 2D MHD. It offers insights of how a scalar field with a negative diffusion, a nonlinear term,

and a positive hyper-diffusion term interact with flow shear. A complex evolution process is

observed. There are 3 stages: the “jelly roll” pattern stage, the stage of topological evolution, and

a “target” pattern stage. The results indicate the target pattern is metastable: bands in the target

pattern merge with time. The band merger process resembles the step merger in staircase models

in plasma physics and elsewhere.
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In Chapter 4, the suppression of turbulent transport in 2D MHD is studied. This topic is

a classic problem, however, we found that the conventional approach, mean field theory, is not

applicable to the case without an external large scale magnetic field. A novel blob-and-barrier

structure is observed. Barriers are located in the interstices of blobs of magnetic potential field.

Magnetic fields are highly concentrated in these one dimensional barrier regions. We call these

regions barriers because we argue these regions are where transport is heavily suppressed. We

propose that the formation of these barriers is due to negative resistivity which is originated

from the inverse cascade of 〈A2〉. It is also observed that, for small scale forcing, a staircase (or

layering) of the A field can spontaneously form in 2D MHD.

In Chapter 5, the key results of the chapters above are summarized, and possible future

directions of study are discussed.
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Chapter 2

Cascades and Spectra of a Turbulent

Spinodal Decomposition in 2D Symmetric

Binary Liquid Mixture

We study the fundamental physics of cascades and spectra in 2D Cahn-Hilliard-Navier-

Stokes (CHNS) turbulence, and compare and contrast this system with 2D MagnetoHydroDy-

namic (MHD) turbulence. The important similarities include basic equations, ideal quadratic

invariants, cascades and the role of linear elastic waves. Surface tension induces elasticity, and

the balance between surface tension energy and turbulent kinetic energy determines a length scale

(Hinze scale) of the system. The Hinze scale may be thought of as the scale of emergent critical

balance between fluid straining and elastic restoring forces. The scales between the Hinze scale

and dissipation scale constitute the elastic range of the 2D CHNS system. By direct numerical

simulation, we find that in the elastic range, the mean square concentration spectrum Hψ

k of the

2D CHNS system exhibits the same power law (−7/3) as the mean square magnetic potential

spectrum HA
k in the inverse cascade regime of 2D MHD. This power law is consistent with an

inverse cascade of Hψ, which is observed. The kinetic energy spectrum of the 2D CHNS system
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is EK
k ∼ k−3 if forced at large scale, suggestive of the direct enstrophy cascade power law of 2D

Navier-Stokes (NS) turbulence. The difference from the energy spectra of 2D MHD turbulence

implies that the back reaction of the concentration field to fluid motion is limited. We suggest

this is because the surface tension back reaction is significant only in the interfacial regions. The

interfacial regions fill only a small portion of the 2D CHNS system, and their interface packing

fraction is much smaller than that for 2D MHD.

2.1 Introduction

Binary liquid mixtures can pass spontaneously from one miscible phase to two coexisting

immiscible phases following a temperature drop. This second-order phase transition is called a

spinodal decomposition. The Cahn-Hilliard-Navier-Stokes (CHNS) model [13, 12] is the standard

model for binary liquid mixture undergoing spinodal decomposition. The 2D CHNS system is as

follows: (the definitions and derivation are discussed below)

∂tψ+v ·∇ψ = D∇
2(−ψ+ψ

3−ξ
2
∇

2
ψ) (2.1)

∂tω+v ·∇ω =
ξ2

ρ
Bψ ·∇∇

2
ψ+ν∇

2
ω (2.2)

v = ẑ×∇φ, ω = ∇
2
φ (2.3)

Bψ = ẑ×∇ψ, jψ = ξ
2
∇

2
ψ (2.4)
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Table 2.1: Comparison of 2D MHD and the 2D CHNS system.

2D MHD 2D CHNS
Ideal Quadratic Conserved Quantities Conservation of E, HA and HC Conservation of E, Hψ and HC

Role of elastic waves Alfven wave couples v with B CHNS linear elastic wave couples v with Bψ

Origin of elasticity Magnetic field induces elasticity Surface tension induces elasticity
Origin of the inverse cascades The coalescence of magnetic flux blobs The coalescence of blobs of the same species

The inverse cascades Inverse cascade of HA Inverse cascade of Hψ

Power law of spectra HA
k ∼ k−7/3 Hψ

k ∼ k−7/3

The definitions of the variables are discussed later in the paper. It is evident that this system is

closely analogous to the 2D MagnetoHydroDynamics (MHD) model for plasmas:

∂tA+v ·∇A = η∇
2A (2.5)

∂tω+v ·∇ω =
1

µ0ρ
B ·∇∇

2A+ν∇
2
ω (2.6)

v = ẑ×∇φ, ω = ∇
2
φ (2.7)

B = ẑ×∇A, j =
1
µ0

∇
2A (2.8)

Since 2D MHD turbulence has been well studied [27, 26, 84, 85, 17, 18, 8, 7, 6, 60, 50, 90, 68], it

provides us with potential insight and guidance for exploring the physics of 2D CHNS turbulence.

The comparison of 2D MHD and the 2D CHNS system is shown in Table 2.1, the details are

discussed later in this paper.

The similarity between binary liquid mixture and 2D MHD was first discussed by Ruiz

and Nelson [89]. They addressed only the regime when the binary liquid mixture is miscible, i.e.

above the critical temperature. The governing equation for this regime is

∂tψ+v ·∇ψ = D∇
2
ψ (2.9)

In this limit, basically there is no difference from 2D MHD. However, the more interesting and

challenging regime occurs when the binary liquid mixture undergoes spinodal decomposition, i.e.
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below the critical temperature.

Figure 2.1: Top panels are pseudo color plots of ψ field for an unforced run (Run1) at various
times; bottom panels are the ones for a forced run (Run4). Time t is normalized by the diffusive
mixing time tm = ξ2/D.

When the binary liquid mixture is quenched below the critical temperature, spinodal

decomposition occurs. Small scale blobs tend to coalesce and form larger blobs [55, 54, 4, 92],

see Fig. 2.1 (top panel) for an illustration. The blob size grows as L∼ t2/3 if unforced [37]. The

length scale growth can be arrested by external fluid forcing, and an emergent characteristic

length scale of the blob size is formed by the critical balance between turbulent kinetic energy

and surface tension energy in 2D CHNS turbulence [5]. In 3D, the length scale growth is also

arrested when proper external forcing is applied, and the emergent characteristic length scale of

blob size is consistent with the Hinze scale: LH ∼ (ρ

σ
)−3/5ε−2/5 where ρ is density, σ is surface

tension, and ε is the energy dissipation rate per unit mass [78, 79]. In the inverse energy cascade

regime of the 2D CHNS system, the characteristic length scale is also consistent with the Hinze
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scale [80].

Previous studies did not adequately separate the Hinze scale from the dissipation scale.

We define the elastic range as the range of scales from the Hinze scale down to the dissipation

scale. This is where the surface tension induced elasticity is important to the dynamics. The 2D

CHNS system is more MHD-like in the elastic range. The power laws of the turbulent spectra in

the elastic range were not investigated by previous studies.

In this study, we first describe the fundamental theory of spinodal decomposition in

Sec. 2.2. In Sec. 2.3, we compare and contrast 2D CHNS with 2D MHD in terms of basic

equations, ideal quadratic conserved quantities, cascades, and linear elastic wave. The concepts of

the Hinze scale and the elastic range are explained in detail in Sec. 2.4. Next we use the PIXIE2D

code [20, 19] to simulate the 2D CHNS system in Sec. 2.5. We focus on the turbulent spectra and

cascades in the elastic range, and compare them with 2D MHD. Conclusions and discussions are

presented in Sec. 2.6.

2.2 Governing Equations for Spinodal Decomposition

We consider spinodal decomposition in a symmetric (50%-50%) binary liquid mixture of

equal density. Spinodal decomposition is a second-order phase transition, and so can be modeled

by Landau theory.

The corresponding order parameter is the local relative concentration ψ(x, t):

ψ =
ρA−ρB

ρA +ρB
(2.10)

where ρA and ρB are the local densities of the two species. When ρB = 0, ψ = +1 implies an

A-rich phase; when ρA = 0, ψ =−1 implies a B-rich phase. The range of ψ is thus ψ ∈ [−1,1].
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Figure 2.2: Free energy functional F [ψ] for T > Tc and T < Tc.

The free energy functional reads as:

F [ψ] =
∫
(
1
2

Aψ
2 +

1
4

Bψ
4 +

ξ2

2
|∇ψ|2)dr (2.11)

where A and B are coefficients of a Taylor expansion, and ξ is a coefficient describing the strength

of the surface tension interaction. ξ also characterizes the interfacial thickness. The first two

terms characterize the second-order phase transition dynamics, while the last term is the curvature

penalty. In Landau theory, B must always be greater than 0 for the system to be thermodynamically

stable, while A can be either positive or negative, i.e.:

A = A0(T −Tc) (2.12)

where A0 is some temperature independent constant, T is the temperature and Tc is the critical

temperature for spinodal decomposition. As shown in Fig. 2.2, when T > Tc, A > 0, the free

energy F [ψ] has a “V” shape, so there is only one minimum at ψ = 0. When T < Tc, A < 0, the

free energy F [ψ] has a “W” shape, so there is one unstable maximum at ψ = 0, and two minima

at ψ =±
√
−A

B . When the homogeneous phase of the binary liquid mixture is quenched down to

below the critical temperature, the ψ = 0 phase becomes unstable because the system tends to
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reach its minimal energy, and the system now prefers the ψ =±
√
−A

B phases, implying phase

separation. Because of the definition of ψ, the minimal energy should be reached when ψ =±1,

so we have B =−A. For simplicity, we study the isothermal case when the temperature is fixed

below Tc, i.e. A is constant. Without loss of generality, we set B =−A = 1:

F [ψ] =
∫
(−1

2
ψ

2 +
1
4

ψ
4 +

ξ2

2
|∇ψ|2)dr (2.13)

The dynamics of the binary liquid mixture under spinodal decomposition is fully deter-

mined by this free energy functional. The chemical potential is

µ =
δF
δψ

=−ψ+ψ
3−ξ

2
∇

2
ψ (2.14)

According to Fick’s Law J =−D∇µ (where D is diffusivity) and the continuity equation dψ/dt +

∇ ·J = 0, we obtain the Cahn-Hilliard Equation:

dψ/dt = D∇
2(−ψ+ψ

3−ξ
2
∇

2
ψ) (2.15)

The total derivative is d/dt = ∂ψ/∂t +v ·∇ when flow is present, where v is velocity. The fluid

motion satisfies Navier-Stokes Equation, with an additional force term due to surface tension:

∂tv+v ·∇v =−1
ρ

∇p− ξ2

ρ
∇

2
ψ∇ψ+ν∇

2v (2.16)

Here ν is viscosity, p is pressure, and ρ= ρA+ρB is density. The second term on the R.H.S. comes

from the surface tension force, which has the from − 1
ρ

ψ∇µ. This means that the force pushes two

species in opposite directions, with a strength proportional to the gradient of the chemical potential.

This surface tension force can be written in the form− 1
ρ

∇(−1
2ψ2+ 3

4ψ4−ξ2ψ∇2ψ)− ξ2

ρ
∇2ψ∇ψ.

The first part can be absorbed into the definition of pressure p, leaving the second part as in
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Eq. (2.16). Finally, for 2D incompressible flow, ∇ ·v = 0, so it is more convenient to take the curl

of Eq. (2.16) and work with the vorticity equation.

To summarize, the governing equations for spinodal decomposition in 2D symmetric

binary liquid mixture are the Cahn-Hilliard-Navier-Stokes (CHNS) equations: Eqs. (2.1) - (2.4),

where φ is the stream function, ω is vorticity, and Bψ and jψ are analogous to magnetic field and

current in MHD, respectively, which will be discussed in the next section.

2.3 Comparison and contrast of 2D CHNS Turbulence and

2D MHD Turbulence

2.3.1 Basic Equations

The 2D CHNS system is an analogue to 2D Magnetohydrodynamics (MHD) in plasma

physics. MHD turbulence is comparatively better understood due to several decades of extensive

study. By comparison and contrast of 2D CHNS turbulence and 2D MHD turbulence, we can

understand each more clearly.

The 2D MHD equations are Eqs. (2.5) - (2.8), where A is the scalar magnetic potential in

2D, B is magnetic field, j is current, η is resistivity, and µ0 is magnetic permeability. Comparing

Eqs. (2.1) - (2.4) and Eqs. (2.5) - (2.8), we immediately grasp the correspondence between these

two systems, which is summerized in Table 2.2. Note that the surface tension force ξ2

ρ
Bψ ·∇∇2ψ

in Eq. (2.2) and the j×B force 1
µ0ρ

B ·∇∇2A in Eq. (2.6) have the same structure.

The major difference is between the dissipation terms in Eq. (2.1) and Eq. (2.5). The

CHNS equations contain a negative diffusivity term −D∇2ψ, self nonlinear diffusivity term

D∇2ψ3 and a hyper-diffusivity term −ξ2D∇2∇2ψ. The MHD equations only contain one (pos-

itive) resistivity term η∇2A. Another difference to notice is that the concentration ψ ranges

from −1 to 1, limited by physics definition ψ = ρA−ρB
ρA+ρB

. The magnetic potential A has no such
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Table 2.2: The correspondence between 2D MHD and the 2D CHNS system.

2D MHD 2D CHNS
Magnetic Potential A ψ

Magnetic Field B Bψ

Current j jψ
Diffusivity η D

Interaction strength 1
µ0

ξ2

restriction.

The CHNS system is more similar to MHD in 2D than in 3D, because magnetic potential

A is a scalar in 2D, but is a vector in 3D. The concentration ψ is always a scalar, regardless of

dimension.

2.3.2 Ideal Quadratic Conserved Quantities

The quadratic conserved quantities in the ideal system, which means D,η = 0 and ν = 0

here, are important to the study of turbulent cascades. The real turbulent systems with finite

dissipation are different from ideal systems, nevertheless, the ideal conserved quantities are still

important constraints imposed on the nonlinear dynamics. In particular, the study of absolute

equilibrium distributions of the ideal systems provides us indications of cascade directions.

It is known that there are 3 ideal quadratic conserved quantities in 2D MHD: total energy

E (which is the sum of kinetic energy EK and magnetic energy EB), mean square magnetic

potential HA, and cross helicity HC:

E = EK +EB =
∫
(
ρv2

2
+

B2

2µ0
)d2x (2.17)

HA =
∫

A2 d2x (2.18)

HC =
∫

v ·Bd2x (2.19)
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Note that HA is not a conserved quantity in 3D MHD; instead, the magnetic helicity HB =∫
A ·Bd3x is conserved.

When the dissipation is set to 0, the difference between the 2D CHNS system and 2D

MHD disappears, so the ideal quadratic conserved quantities in the 2D CHNS system are the

direct analogues of those in MHD, namely: total energy E, mean square concentration Hψ, and

cross helicity HC:

E = EK +EB =
∫
(
ρv2

2
+

ξ2B2
ψ

2
)d2x (2.20)

Hψ =
∫

ψ
2 d2x (2.21)

HC =
∫

v ·Bψ d2x (2.22)

Note that some previous works [5, 80] use another definition of energy: E ′ = EK +F =∫
(ρv2

2 −
1
2ψ2+ 1

4ψ4+ ξ2

2 |∇ψ|2)d2x. This is also an ideal conserved quantity, but it is not quadratic.

In this paper, we focus on quadratic conserved quantities, because higher-order conserved

quantities are not strictly conserved when the k space is discretized and truncated at large k.

Since discretization and truncation are unavoidable when doing statistical physics and numerical

simulation, only quadratic conserved quantities are robust enough to be meaningful.

The physical meaning of cross helicity in the CHNS equations is not clear, as it is in

MHD. The role of cross helicity is an interesting question, but it is beyond the scope of this paper.

It will be investigated further in future works.

In addition, recall that there are only two ideal quadratic conserved quantities in 2D

Navier-Stokes (NS) turbulence: kinetic energy EK and enstrophy Ω:

EK =
∫ v2

2
d2x (2.23)

Ω =
∫

ω2

2
d2x (2.24)
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It is clear that the constraints on the dynamics of the CHNS system are more like those for 2D

MHD than 2D NS. The conservation of enstrophy is broken in the 2D CHNS system by the

surface tension force, just as it is broken by the j×B force in 2D MHD. Although enstrophy is

not a strict ideal conserved quantity in 2D CHNS system, it is still useful to retain this concept,

for reasons discussed below.

2.3.3 Cascades

Turbulence cascade directions of various physics systems are suggested by the absolute

equilibrium distributions, i.e. the Gibbs distribution [8, 34]. The peak of the absolute equilibrium

distribution for each quadratic conserved quantity is a good indicator of the corresponding cascade

direction. This approach only depends on the ideal quadratic conserved quantities of the system.

Because the ideal quadratic conserved quantities of 2D CHNS and 2D MHD are direct analogues,

we can then obtain an indication of the cascade directions in 2D CHNS by changing the name in

variables. The summary of cascade directions of relevant physics systems are shown in Table 2.3.

The Gibbs distribution for 2D MHD is

ρG = Z−1 exp(−αE−βHA− γHC) (2.25)

where α, β and γ are Lagrangian multipliers and Z is the partition function. Similarly, the Gibbs

distribution for 2D CHNS is

ρG = Z−1 exp(−αE−βHψ− γHC) (2.26)

By calculating each ideal spectral density from the above absolute equilibrium distribution, sug-

gested cascade directions can be extracted. The second-order moment for a Gaussian distribution
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ρ = Z−1 exp−1
2 ∑i, j Ai jxix j is:

〈xix j〉= A−1
i j (2.27)

Write the ideal quadratic conserved quantities in terms of Fourier modes and in the discrete form,

and restrict the index of summation k within the band kmin < k < kmax:

E =
1
2 ∑

k
k2(|φk|2 + |ψk|2) (2.28)

Hψ = ∑
k
|ψk|2 (2.29)

HC = ∑
k

k2
φkψ−k (2.30)

Plugging the above expressions into Eq. (2.26) and Eq. (2.27) (set ρ = 1 and ξ2 = 1 for simplicity),

it is then straightforward to obtain the expressions for ideal spectral densities:

EK
k =

1
2

k2〈|φ2
k|〉=

2πk
α

(1+
k2 tan2 θ

k2 +(β/α)sec2 θ
) (2.31)

EB
k =

1
2

k2〈|ψ2
k|〉=

2πk
α

k2 sec2 θ

k2 +(β/α)sec2 θ
(2.32)

Hψ

k = 〈|ψ2
k|〉= 2k−2EB

k (2.33)

HC
k = k2〈φkψ−k〉=−

2γ

α
EB

k (2.34)

where sinθ = γ/(2α). The requirement that EK
k , EB

k and Hψ

k are always positive definite implies

that α > 0, k2
min + (β/α)sec2 θ > 0, and |γ| < 2α. If the spectrum is peaked at high k, and

excitation is injected at intermediate scales, we expect the spectrum to relax towards high k [8].

The trend suggests a direct cascade. Similarly, an inverse cascade is suggested if a spectrum

is peaked at small k. So for the 2D CHNS system, we predict a direct energy cascade and an

inverse cascade of HA
k . The spectral transfer of cross helicity spectral density HC

k needs more

consideration and is beyond the scope of this paper.
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Table 2.3: The cascade directions for 2D MHD, CHNS and NS turbulences.

Physics System Conserved Quantity Cascade Direction

2D MHD
Ek Direct
HA

k Inverse

2D CHNS
Ek Direct
Hψ

k Inverse

2D NS
EK

k Inverse
Ωk Direct

In 2D MHD, the inverse cascade of HA can be understood as the process of magnetic

flux coalescence [26]. Similarly, in 2D CHNS, the inverse cascade of Hψ can be related to the

coalescence of blobs of the same species.

2.3.4 Linear Elastic Wave

Since Alfven waves play a crucial role in MHD turbulence, it is meaningful to examine

the similar linear elastic wave in CHNS system. Recall that in the limit of small damping, the

dispersion relation for the Alfven wave in 2D MHD is:

ω(k) =±

√
1

µ0ρ
|∇A0×k|− 1

2
i(η+ν)k2 (2.35)

It is straightforward to linearize the CHNS equations and obtain a similar linear elastic wave:

ω(k) =±

√
ξ2

ρ
|∇ψ0×k|− 1

2
i(CD+ν)k2 (2.36)

where C = [−1−6ψ0∇2ψ0/k2−6(∇ψ0)
2/k2−12ψ0∇ψ0 · ik/k2+3ψ2

0+ξ2k2] is a dimensionless

coefficient. The 2D CHNS system spontaneously leads to a state of phase separation. Inside a

blob of the same species, the concentration field ψ0 is homogeneous, so ∇ψ0→ 0. ∇ψ0 is large

only along the interface of blobs, as shown in Fig. 2.3. The CHNS linear elastic wave propagates
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along the interface of the two species where ∇ψ0 6= 0, so it is much like a capillary wave.

Figure 2.3: The linear elastic wave (left) in the 2D CHNS system propagates only along the
interface, similar to capillary wave (right).

Alfven waves and CHNS linear elastic waves are similar, not only due to the resemblance

of the dispersion relations, but also because both wave propagate along B0 or Bψ0 field lines.

Both waves are elastic waves, in which magnetic tension and surface tension generate restoring

forces that act as elasticity. The Alfvenization process in MHD turbulence couples v with B, and

even a weak mean magnetic field can spontaneously convert fluid eddies into Alfven waves [26].

The Alfvenization process leads to Alfvenic equipartition ρ〈v2〉 ∼ 1
µ0
〈B2〉 of the fields. A similar

elasticization process can also occur in the 2D CHNS system, because of the presence of linear

elastic waves. The corresponding elastic equipartition for the 2D CHNS system is as follows:

ρ〈v2〉 ∼ ξ
2〈B2

ψ〉 (2.37)

An interesting difference between Alfven wave and the CHNS linear elastic wave is that,

the non-ideal part of the dispersion relation for CHNS linear elastic wave can be either positive or

negative depending on k: if CD+ν > 0, then the wave is damped; but if CD+ν < 0, growth is

possible. This wave growth is physical, and is responsible for the pattern formation during the

linear phase, and the sustainment of sharp interfaces that separate phases during the dynamical

evolution of the physical system in the nonlinear phase. It is important to note that treating this
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anti-diffusive term numerically is non-trivial, and requires unconditionally energy-stable temporal

update schemes that ensure energy is either conserved or slightly dissipated. In this work, we

have employed the MP-BDF2 energy-stable scheme proposed in Ref. [42], which in addition to

being energy-stable, is unconditionally uniquely solvable.

2.4 Important Length Scales and Ranges of 2D CHNS Turbu-

lence

Figure 2.4: The Hinze scale, hydrodynamic range and elastic range.

In the forced 2D CHNS system, large blobs in the binary liquid mixture tend to be broken

up by turbulent fluid straining, while small blobs tend to stick together due to surface tension.

From this competition, a statistically stable length scale for the blob size, the Hinze scale LH ,

emerges. LH is defined by balancing turbulent kinetic energy and surface tension energy [49, 78]:

ρ〈v2〉
σ/LH

∼ 1 (2.38)

where σ is surface tension. According to [55, 54], the surface tension is σ =
√

8
9ξ. The surface
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tension energy can also be expressed in terms of Brms
ψ (Brms

ψ = 〈B2
ψ〉1/2). The key is to identify the

relevant length scale for ∇ψ. We propose to use the geometric mean of the blob size LH and the

interface width ξ, because they are the longest and shortest gradient length scales, respectively,

as shown in Fig. 2.5. Assuming the length scale for Brms
ψ is the geometric mean of LH and ξ,

i.e. Brms
ψ ∼

√
∆ψ

LH

∆ψ

ξ
∼

√
1

LHξ
, then the original expression for surface tension energy σ/LH is

consistent with our expression ξ2〈B2
ψ〉 in Eq. (2.20). It is interesting to note that the critical

balance Eq. (2.38) is then consistent with elastic equipartition (ρ〈v2〉 ∼ ξ2〈B2
ψ〉).

Figure 2.5: The gradient length scales.

The expression for the Hinze scale was originally derived for the 3D NS direct energy

cascade regime [49]. The velocity was estimated using the Kolmogorov energy distribution law,

〈v2〉/kH ∼ ε2/3k−5/3
H where ε = ν

∫
ω2 dx2 is the kinetic energy dissipation rate per unit mass and

kH = 2π/LH . We then obtain the expression:

LH ∼ (
ρ

ξ
)−3/5

ε
−2/5 (2.39)

However, in the 2D NS direct enstrophy cascade regime, the velocity distribution is 〈v2〉/kH ∼

ε
2/3
Ω

k−3
H where εΩ = ν

∫
(∇×ωẑ)2 dx2 is the enstrophy dissipation rate per unit mass. Therefore,
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in 2D:

LH ∼ (
ρ

ξ
)−1/3

ε
−2/9
Ω

(2.40)

Note that the Hinze scale depends on the magnitude of the external forcing via εΩ, and

it does not depend on the scale of the external forcing. The Hinze scale separates the k space

into two ranges: the scales larger than LH form the hydrodynamic range, where the usual eddy

break-up process dominates. The range of scales between LH and dissipation scale Ld is the

elastic range, where the blob coalescence process dominates, as shown in Fig. 2.4. Separation

between the Hinze scale LH and dissipation scale Ld is critical to defining an elastic range. The

dissipation scale here should be related to the direct enstrophy cascade. By simple dimensional

analysis, we obtain Ld = (ν3/εΩ)
1/6. Defining a dimensionless number for the ratio of LH to Ld

gives:

LH/Ld = Hd = (
ρ

ξ
)−1/3

ν
−1/2

ε
−1/18
Ω

(2.41)

Hd� 1 is required to form a large enough elastic range. It is clear that reducing ν is an efficient

way to obtain a longer elastic range.

The A blobs in 2D MHD and ψ blobs in the 2D CHNS system are shown side by side in

Fig. 2.6. In the elastic range of the 2D CHNS system, the blob coalescence process is analogous to

the magnetic flux blob coalescence process in 2D MHD. The former leads to the inverse cascade

of Hψ, and the latter leads to the inverse cascade of HA. In the elastic range of the 2D CHNS

system, surface tension induces elasticity and plays a major role in defining a restoring force.

Similarly, in 2D MHD, the magnetic field induces elasticity and make MHD different from a pure

fluid. The 2D CHNS system is more MHD-like in the elastic range.
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Figure 2.6: The A blobs in 2D MHD (Run6) and the ψ blobs in the 2D CHNS system (Run2).

2.5 Numerical Results

2.5.1 Basic Setup

We solve 2D CHNS Eqs. (2.1) - (2.4) and 2D MHD Eqs. (2.5) - (2.8) with the PIXIE2D

code [20, 19]. The simulation box size is L0×L0 = 2π×2π, and the resolution is 1024×1024.

External forcing is applied to the A and φ field with the sinusoidal form fA,φ(x,y) = f0A,φ sin[x∗

int(k f A,φ cosθA,φ)+ y ∗ int(k f A,φ sinθA,φ)+ϕA,φ], where f0 is the forcing magnitude, k f is the

forcing scale, and θ,ϕ ∈ [0,2π) are random angle and random phase that change at each time

step, respectively. This kind of external forcing keeps the system isotropic and homogeneous.

The free parameters in the equations are ξ (or µ0), D (or η), ν, and ρ. In addition, the

external forcing properties f0A,φ, and k f A,φ are also adjustable. Important dimensionless numbers

here are as follows [80, 75]:

• LH/Ld = Hd, the ratio of the Hinze scale to dissipation scale.

• Reλ =
√

10EK/ρ
√

εν, the Taylor microscale Reynolds number.

• Sc = ν/D, the Schmidt number; or Pr = ν/η, the Prandtl number.
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• Ch = ξ/L0, the Cahn number, which is the ratio of the interfacial thickness to the system

size.

• We = ρL f f0φ/σ (where L f = 2π/k f ), the forcing scale Weber number, which characterizes

the relative importance of the external forcing compared to the surface tension.

• Gr = L2
0 f0φ/ν2, the Grashof number, which approximates the ratio of the external forcing

to viscosity.

We keep Sc = Pr = 1 in all our runs, and other parameters are listed in Table 2.5.

The system is periodic in both directions. The initial condition for the concentration field

ψ (or magnetic potential field A) is a random distribution of +1 and−1, while the stream function

field φ is 0 everywhere initially. Although the range of ψ is [−1,1] from its physics definition

ψ = ρA−ρB
ρA+ρB

, we don’t enforce this restriction in our simulation and let it freely evolve according

to Eqs. (2.1) - (2.4). This approach is valid because the Probability Density Function (PDF) of ψ

lies mostly in the range [−1,1] spontaneously, as shown in Fig. 2.7. This PDF is consistent with

previous studies [73].

2D simulations are sufficient to capture much of the important physics of the CHNS

turbulence. The length scale growth, the arrest of the length scale growth, the emergence of the

Hinze scale, and the inverse cascade of Hψ appear both in 3D and 2D simulations [78]. It is

well known that 2D and 3D Navier-Stokes turbulence have totally different cascades and spectra,

but 2D and 3D MHD turbulence are rather more similar. So as an analogy, 2D and 3D CHNS

turbulence also should not differ much.

2.5.2 Benchmark

In the simulation, we verified that, if unforced, the blob coalescence progresses, and the

blob size grows until it reaches the system size. If φ field is forced at large scale, blob size growth
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Figure 2.7: The Probability Density Function (PDF) of ψ (Run2) and normalized A (Run6).
The PDF of ψ falls into the range [−1,1] spontaneously.

Figure 2.8: Blob size growth for Run1 - Run5. Dashed lines are corresponding the Hinze scales.
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can be arrested. See Fig. 2.1 as an illustration. Define the blob size L as the following:

L(t) = 2π

∫
Sk(k, t)dk∫
kSk(k, t)dk

(2.42)

where Sk(k, t) = 〈|ψk(k, t)|2〉 is the structure function. This definition essentially picks the peak

of the structure function, if it has a clear peak.

Earlier numerical studies [55, 54] observed that, if the system is unforced, the blob size L

grows such that L∼ t2/3 at the late stage of the blob coalescence process. This exponent can be

obtained dimensionally by balancing the advection term v ·∇ω and the surface tension force term

ξ2

ρ
Bψ ·∇∇2ψ in Eq. (2.2) and assuming the velocity can be estimated by v∼ L̇. The presence of

external forcing can arrest the length scale growth [5]. Larger forcing leads to a larger enstrophy

dissipation rate εΩ, and thus a smaller Hinze scale. Fig. 2.8 supports this finding. The peak of the

Hψ

k spectrum moving towards larger scale in Fig. 2.10 is consistent with the blob size L growth

shown in Fig. 2.8.

2.5.3 The Hψ

k Flux

Figure 2.9: The HA
k flux (left) for MHD (Run6), and the Hψ

k flux (right) for CHNS (Run2).

The directions of cascades are suggested by the sign of the corresponding spectral fluxes.
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We define the Hψ

k flux and the HA
k flux as follows:

ΠHA(k) = ∑
k<k′

THA(k′), where THA(k) = 〈A∗k(v ·∇A)k〉 (2.43)

ΠHψ(k) = ∑
k<k′

THψ(k′), where THψ(k) = 〈ψ∗k(v ·∇ψ)k〉 (2.44)

If a flux is negative, then the corresponding transfer is inverse, suggestive of an inverse cascade.

See Fig. 2.9 for our simulation results. For the MHD case (left), an external forcing on the

magnetic potential A is applied on k = 128. The small scale A forcing drives an inverse transfer

of HA. For the CHNS case (right), no forcing on ψ is necessary for the appearance of an inverse

transfer of Hψ. The negative diffusion term in the CHNS equations leads to small scale instability.

Thus it plays a similar role to forcing of ψ.

2.5.4 The Hψ

k Spectrum Power Law

Figure 2.10: The HA
k spectrum in 2D MHD for Run6 at various times (left), and the Hψ

k spectrum
in 2D CHNS for Run2 (right).

It is known that the dynamics of 2D MHD turbulence is dominated by the inverse cascade

of HA, if HA is injected at small scales. The corresponding power law of the HA
k spectrum is

−7/3:

HA
k ∼ ε

2/3
HA k−7/3 (2.45)
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Here εHA is the HA dissipation rate, and see Fig. 2.10 (left) for the simulation result. Note that in

order to obtain a 2D MHD setup similar to the 2D CHNS system, small scale external forcing of

the A field and large scale external forcing of the φ field are imposed.

The scaling argument for the power of −7/3 for 2D MHD is as follows. Assuming there

is a constant mean square magnetic potential dissipation rate εHA, according to the Alfvenic

equipartition (ρ〈v2〉 ∼ 1
µ0
〈B2〉), the time scale for the decay of HA (εHA ∼HA/τ) can be estimated

by τ∼ (vrmsk)−1 ∼ (Brmsk)−1. Define the spectrum to be HA = ∑k HA
k ∼ kHA

k , so Brms ∼ kA∼

k(HA)1/2 ∼ (HA
k )

1/2k3/2. Therefore, εHA ∼ HA/τ∼ (HA
k )

2/3k7/2, leading to Eq. (2.45).

Figure 2.11: The ratio of EK to EB for Run1 - Run4 supports the assumption of elastic
equipartition (ρ〈v2〉 ∼ ξ2〈B2

ψ〉). If the forcing intensity is too strong, then the elastic forcing
term in the ω equation becomes negligible, and the system does not significantly differ from the
2D NS equation. In our study, though we tried a broad range of forcing intensity, larger forcing
(than Run5) may break the equipartition of the kinetic and magnetic energy.

The same argument can be applied to 2D CHNS turbulence to get a (similar) Hψ spectrum.

Assuming that elastic equipartition applies to the 2D CHNS system (ρ〈v2〉 ∼ ξ2〈B2
ψ〉) (see

Fig. 2.11), the time scale for the decay of Hψ is τ∼ (vrmsk)−1 ∼ (Brms
ψ k)−1. Then by repeating
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the above argument for MHD, it is easy to obtain the Hψ

k spectrum:

Hψ

k ∼ ε
2/3
Hψ

k−7/3 (2.46)

The simulation result for the Hψ

k spectrum in 2D CHNS turbulence in Fig. 2.10 (right)

verifies the similarity to the HA
k spectrum in 2D MHD turbulence. The peak of the Hψ

k spectrum,

which gives the approximate blob size according to Eq. (2.42), moves towards larger scale, as

shown in Fig. 2.10. The blob coarsening process is consistent with the inverse cascade of Hψ.

Moreover, the Hψ

k spectrum with power law −7/3 is indeed a good fit, as predicted by the inverse

cascade of Hψ argument. Again, we assumed (marginally satisfied) elastic equipartition in order

to obtain the −7/3 power law. The result fits the simulation very well. These findings suggest

that the dynamics of the fluctuating concentration field is governed by the inverse cascade of Hψ.

The −7/3 power is robust. It does not change with the magnitude of external forcing,

as long as the separation between the Hinze scale and the dissipation scale is maintained, so

the elastic range is long enough (Hd� 1). Fig. 2.12 gives the Hψ

k spectra for different external

forcing strengths. It shows that the power −7/3 remains unchanged. Note that larger external

forcing leads to a smaller Hinze scale according to Eq. (2.40), so the elastic range is shorter. If

the Hinze scale is close to or even smaller than the dissipation scale, there will be no clear elastic

range, and thus no power law spectrum for Hψ

k . Thus, a sufficient separation between the Hinze

scale and the dissipation scale (Hd� 1) is critical to uncovering elastodynamic phenomena.

2.5.5 The Energy Spectrum Power Law

When the φ field is forced at large scale, the kinetic energy spectrum is EK
k ∼ k−3, as

shown in Fig. 2.13. This spectrum is the same as that for the direct enstrophy cascade in 2D

NS Turbulence. This result is initially surprising, because enstrophy is not a conserved quantity

in the 2D CHNS system. The kinetic energy spectrum for 2D CHNS turbulence is different

36



Figure 2.12: Hψ spectra for Run1 - Run4, with different magnitudes of external forcing f0φ

thus different Hinze scales. The Hinze scale for each run is marked by a dashed line with the
same color.

Figure 2.13: Kinetic energy spectrum (left) and magnetic energy spectrum (right) for Run2.
The kinetic energy spectrum indicates a direct enstrophy cascade of 2D NS turbulence.
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from that for 2D MHD turbulence. It is well known that in the direct energy cascade regime of

2D MHD, the energy spectrum is EK
k ∼ k−3/2, which is called the Iroshnikov-Kraichnan (IK)

spectrum [60, 50]. The IK spectrum is the consequence of the interaction between Alfven waves

propagating in opposite directions. The result that the kinetic energy spectrum for the 2D CHNS

system is significantly different from the IK spectrum for MHD suggests that the back reaction of

surface tension on the fluid motion is limited.

Figure 2.14: The time evolution for the interface packing fraction P, the ratio of mesh grid
number where |Bψ|> Brms

ψ (or |B|> Brms) over total mesh grid number.

This initially surprising result is plausible because in the 2D CHNS system, Bψ vanishes

in most of the space. Bψ is large only in the interfacial regions, and the interfacial regions fill only

a small portion of the system, as shown in Fig. 2.15. On the other hand, the magnetic fields in

MHD are not localized to specific regions, so Alfven waves can propogate everywhere. Define the

interface packing fraction P to be the ratio of mesh grid number where |Bψ|> Brms
ψ (or |B|> Brms)

to the total mesh grid number. This definition of interface packing fraction is a rather simple

choice of a figure of merit, but one for which we can easily grasp the underlying physics. In the
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2D CHNS system, P = 13.9% for Run2; while for 2D MHD, P = 44.0% for Run6. This notable

difference shows that only a small portion of the 2D CHNS system is strongly affected by the

Bψ field, as compared to MHD. The time evolution for the interface packing fraction P is shown

in Fig. 2.14. In the 2D CHNS system, as time progresses, the blob coalescence process drives

the interfacial region to a smaller and smaller interface packing fraction, and thus suppresses

the elastic effects on fluid motion. If there is a larger number of blobs, there will be a larger

interfacial region, and thus the velocity field will be more heavily influenced by the Bψ field. In

that case, the kinetic energy spectrum will be more MHD-like.

Figure 2.15: B field for Run6 (left) and Bψ field for Run2 (right). From the color map we can
see that the structures look quite different.

2.6 Conclusion and Discussion

2D CHNS turbulence is an analogue to 2D MHD turbulence. The two systems have

some common features and also some important differences. See Table 2.1 for comparison and

Table 2.4 for contrasts. The theories of 2D MHD turbulence give us inspiration and guidance for

the study of 2D CHNS turbulence.

From the basic equations, it is easy to notice similarities between 2D CHNS and 2D
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Table 2.4: Contrast of 2D MHD and the 2D CHNS system.

2D MHD 2D CHNS
Diffusion A simple positive diffusion term A negative, a self nonlinear, and a hyper-diffusion term

Range of potential No restriction for range of A ψ ∈ [−1,1]
Interface Packing Fraction Not far from 50% Small

Back reaction j×B force can be significant Back reaction is apparently limited
Kinetic energy spectrum EK

k ∼ k−3/2 EK
k ∼ k−3

Suggestive cascade by EK
k Suggestive of direct energy cascade Suggestive of direct enstrophy cascade

MHD. Most clear is that the surface tension force is a direct analogue of the j×B force. The

ideal quadratic conserved quantities of these two systems have the same form, and this leads to

the same cascade directions. The linear elastic wave from the 2D CHNS system has a similar

dispersion relation to the Alfven wave from 2D MHD. The linear elastic wave plays an important

role in the dynamics through the elasticization process, which is analogous to the Alfvenization

process.

The scales between the Hinze scale and dissipation scale in the 2D CHNS system form

the elastic range. Separation of the Hinze scale and the dissipation scale (Hd� 1) is critical to

allow an elastic range. In the elastic range, the surface tension interaction induces an elastic effect

critical to the nonlinear dynamics, so the system is more MHD-like.

By direct numerical simulation, we find that in the elastic range, the mean square con-

centration spectrum is Hψ

k ∼ k−7/3. This power law scaling can be recovered theoretically by

assuming elastic equipartition (which is at best marginally satisfied). The −7/3 power law is

the same as the HA
k spectrum in the inverse cascade regime of 2D MHD. The −7/3 power law

is robust and independent of the forcing strength. This result suggests that the dynamics of the

fluctuating concentration field is governed by the inverse cascade of Hψ

k . The inverse cascade of

Hψ is consistent with the blob coalescence process.

The kinetic energy spectrum for the 2D CHNS system is EK
k ∼ k−3 when forced at large

scale. This spectrum is different from the IK spectrum in MHD, and is the same as the kinetic

energy spectrum in the 2D NS turbulence direct enstrophy cascade regime. This result suggests
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that the back reaction of surface tension on the fluid motion is limited. This is plausible because

the back reaction is only significant in the interfacial regions, which fill only a small part of the

system. This is an important difference between 2D CHNS turbulence and 2D MHD turbulence.

In order to make the kinetic energy spectrum more MHD-like, we need to increase the interface

packing fraction. We will obtain larger interfacial regions if we have a large number of small

blobs instead of a small number of large blobs. Thus the apparent next step is to increase the

forcing strength or change the form of forcing in order to increase the interface packing fraction.

However, a larger forcing strength leads to a smaller Hinze scale, and thus a shorter elastic range.

If we want to keep a broad enough elastic range, we have to decrease the dissipation scale at

the same time, i.e. decrease ν. This requires higher resolution and more computing resources,

and so we will perform runs with higher resolution in future works. The definition of interface

packing fraction we use in this paper is rather crude, and more study about how to characterize the

interface, what physics controls the interface packing fraction, and how to increase the interface

packing fraction would be interesting. The statistics of |Bψ| and how it is related to the interface

packing fraction is also a relevant interesting problem to study.

The theories of 2D MHD turbulence can also inspire the study of turbulent transport

and memory effects in 2D CHNS turbulence. Even a weak mean magnetic field can result

in a large mean square fluctuation. Such small scale magnetic fields will result in enhanced

memory, so turbulent transport in MHD with even a weak large scale magnetic field is suppressed

[16, 98, 99, 27]. This effect may also appear in 2D CHNS turbulence. It is also interesting to

investigate the possible change of momentum transport in the elastic range of CHNS, due to

elastic wave effects. 2D CHNS turbulence also has similarities to elastic turbulence in polymer

solutions [96, 24]. The comparison and contrast among MHD, CHNS and polymer hydrodynamic

turbulence will be discussed in future works.
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Table 2.5: Simulation parameters. Note that for 2D MHD runs, ξ means µ−1/2
0 , and D means η.

Run System ξ D ν ρ f0φ k f φ f0A k f A Reλ Hd We Gr ξ2/ρ

Run1 CHNS 0.015 10−3 10−3 1.0 0 − − − 5.5 39 0 0 2.25∗10−4

Run2 CHNS 0.015 10−3 10−3 1.0 0.1 4 − − 6.1 39 11 3.9∗106 2.25∗10−4

Run3 CHNS 0.015 10−3 10−3 1.0 0.5 4 − − 25 35 56 2.0∗107 2.25∗10−4

Run4 CHNS 0.015 10−3 10−3 1.0 1.0 4 − − 59 33 110 3.9∗107 2.25∗10−4

Run5 CHNS 0.015 10−3 10−3 1.0 5.0 4 − − 719 30 550 2.0∗108 2.25∗10−4

Run6 MHD 0.015 10−3 10−3 1.0 1.0 4 103 128 18 - - - 2.25∗10−4
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Chapter 3

Formation and Evolution of Target

Patterns in Cahn-Hilliard Flows

We study the evolution of the concentration field in a single eddy in the 2D Cahn-

Hilliard system to better understand scalar mixing processes in that system. This study extends

investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential

vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A)

formation of a ‘jelly roll’ pattern, for which the concentration field is constant along spirals;

(B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for

which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the

isoconcentration bands align with stream lines. The results indicate that the target pattern is a

metastable state. Band merger process continues on a time scale exponentially long relative to

the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases;

this is characteristic of the long-time evolution of phase separated patterns described by the

Cahn-Hilliard equation.
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3.1 Introduction

Spinodal decomposition is a process by which a binary liquid mixture can evolve from a

miscible phase (e.g., water+alcohol) to two co-existing phases (e.g., water+oil). When the binary

liquid mixture is cooled below the critical temperature in the absence of external forcing, initially

small blobs coalesce and become larger blobs until their size grows to the system size [13]. If

large scale external forcing is imposed, blob size growth is arrested. The competition between the

elastic energy and the turbulent kinetic energy leads to a statistically stable blob size. The Hinze

scale LH ∼ (ρ

σ
)−3/5ε−2/5 is an estimate of the stable blob size. Here, ρ is density, σ is surface

tension, and ε is the energy dissipation rate per unit mass [76, 81, 79, 78, 23, 97, 42]. In our

previous work [30], we defined the elastic range to be the scales in the range Ld < l < LH , where

Ld is the dissipation scale. The elastic range scales are those for which the surface tension-induced

elasticity is important to dynamics.

The Cahn-Hilliard equation is a standard model for spinodal decomposition. When

considering the back reaction of the surface tension on to fluid motion, we need to couple the Cahn-

Hilliard with Navier-Stokes (CHNS). 2D CHNS has analogies to 2D Magnetohydrodynamics

(MHD) [89]. The concentration ψ in 2D CHNS is the analogue of the magnetic potential A in 2D

MHD. Both models consist of a vorticity equation and a diffusion equation for an active scalar.

2D CHNS differs from 2D MHD by the appearance of negative diffusivity for potential and a

nonlinear dissipative flux. A linear elastic wave, the analogue of the Alfven wave, exists in the

2D CHNS system and introduces the crucial element of memory. This wave propagates along

the interface of the blobs, thus resembles a capillary wave. The two systems have identical ideal

quadratic conserved quantities, and they both exhibit dual cascades. Our previous work [30]

showed that the mean square concentration spectrum for the 2D CHNS system in the elastic range

is ∼ k−7/3, and it is associated with an inverse cascade of mean square concentration. Note that

the power −7/3 is the same as the power for the mean square magnetic potential spectrum in
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2D MHD. On the other hand, the kinetic energy spectrum is proportional to k−3, which is the

same power law as for a 2D Navier-Stokes fluid in the forward enstrophy cascade regime. The

kinetic energy power law −3 in 2D CHNS is far from −3/2 in 2D MHD, and the difference can

be explained by the difference in the physics of back reaction. Unlike the case in MHD where

the magnetic fields fill the whole space, the CHNS analogue of the magnetic fields, which are

the blob interfaces, have a much smaller spatial packing fraction (i.e., relative spatial “active

volume”). Thus, in CHNS, the back reaction is only significant in the interfaces of the blobs,

because the waves propagate along the interfaces, like surface waves. This implies that for CHNS,

the interfaces of the blobs are crucial to the mixing dynamics.

In order to better understand the dynamics in the CHNS turbulence, we examine the

evolution of the concentration field in the background of a single convective eddy in the Cahn-

Hilliard system. Since the system tends to evolve to a state of a few large blobs, the simplest

problem which emerges is that of understanding the competition of shearing and dissipation in

the context of a single cell structure. This goal leads us to a study which re-visits the classic

problems of flux expulsion in 2D MHD [101, 38, 71, 72] and potential vorticity homogenization

in 2D fluids [88, 87]. Weiss (1966) studied the evolution of an initial uniform magnetic field B0

in the background of a single eddy in 2D MHD [101]. Because the magnetic field was expelled to

a layer at the boundary of the eddy, this phenomenon was named “flux expulsion”. The eddy was

observed to stretch the initial field, and the final value of average magnetic field was estimated to

be 〈B2〉 ∼ Rm1/2〈B2
0〉, where Rm is the magnetic Reynolds number (Rm� 1). The time scale

for the magnetic field to reach a steady state was found to scale as τMHD ∼ Rm1/3
τ0. Rhines and

Young (1983) studied the time scale of the homogenization of a passive scalar in 2D fluids with

closed streamlines [87]. A rapid stage and a later slow stage are observed. In the rapid stage,

shear-augmented diffusion dominates, and the initial values of the passive scalar approach an

average about a streamline. The time scale for the rapid stage is proportional to Pe1/3, where Pe

is the Péclet Number. In the slow stage, the passive scalar homogenizes within the eddy over the
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full diffusion time, which is proportional to Pe. A system of a few blobs can be viewed as an

array of such eddies. Thus, we hope that understanding the physics of a single eddy can promote

understanding of the turbulent system.

3.2 Simulation System

Figure 3.1: The background stream function φ (a) and velocity field v (b).

In this Rapid Communication, we report on solutions of the 2D Cahn-Hilliard system by

PIXIE2D [20, 21] in the background of a single eddy, which is an analogue to the flux expulsion

problem. The basic equation is:

∂tψ+v ·∇ψ = D∇
2(−ψ+ψ

3−ξ
2
∇

2
ψ) (3.1)

where ψ = ρ1−ρ2
ρ1+ρ2

is the local relative concentration and satisfies −1≤ ψ≤ 1, D is the diffusivity,

ξ is the parameter for interaction strength, and v is a background velocity field which does not

change with time. We use the following background velocity field as a model of single eddy

[101]:

φ =−φ0

π
(1−4y2)4 cos(πx) (3.2)
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where φ is the stream function, see Fig. 3.1. Our simulation is defined on a box of size L2
0

with 2562 points, x,y ∈ [−L0/2,L0/2]. The initial condition is ψ0(x,y) = B0(x+L0/2), where

B0 is a coefficient analogous to the magnitude of the external magnetic field in MHD. We set

B0 = 1.0∗10−2 in our runs to compare with Weiss’s study [101] (B0 should be a small number

considering the allowed range of ψ: ψ ∈ [−1,1]). The boundary conditions are Dirichlet in both

directions: ψ = ψ0 and ∇2ψ = ∇2ψ0 at boundaries. Without losing generality, we normalize

the system as follows: let length scale L0 = 1.0 and time scale t0 = L0/v0 = L2
0/φ0 = 1.0. The

absolute value of the velocity does not change the physics as long as it is nonzero, because we

can always re-scale the time scale to make the system identical to the case where v0 = 1.0. In

this Letter, we focus on the competition between shearing and dissipation, so the v0 = 0 cases are

excluded. Thus, there are only two independent parameters: D and ξ. The range of parameters

used in our simulations are summarized in Table. 3.1.

The dimensionless parameters are:

1. The Péclet Number Pe = L0v0/D, the analogue of magnetic Reynolds number Rm in MHD,

is the advective transport rate to the diffusive transport rate. In our simulation, Pe = D−1.

2. The Cahn Number Ch = ξ/L0 is the characteristic length scale of the interface width over

the system size. In our simulation, Ch = ξ.

Table 3.1: The parameters used in our simulations.

Runs D ξ

Run1 3.16∗10−4 1.0∗10−2

Run2 1.0∗10−4 1.0∗10−2

Run3 3.16∗10−5 1.0∗10−2

Run4 1.0∗10−5 1.0∗10−2

Run5 3.16∗10−5 1.2∗10−2

Run6 3.16∗10−5 1.5∗10−2

Run7 3.16∗10−5 1.8∗10−2
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3.3 Time Evolution of the Concentration Field

Figure 3.2: The evolution of the ψ field, represented by Run2. (a) The ‘jelly roll’ stage, in
which the stripes are spirals. (b) - (e) The topological evolution stage, in which the topology
evolves from spirals to concentric annuli in the center of the pattern. (f) & (g) The target pattern
stage, in which the concentration field is composed of concentric annuli. The band merger
progress occurs on exponentially long time scales; see (f)→ (g) as an example. (h) The final
steady state.

We observe three stages in the evolution of the concentration field: (A) formation of a

‘jelly roll’ pattern, (B) a change in topology, and (C) formation of target pattern (Fig. 3.2).

(A) In the ‘jelly roll’ pattern stage, the magnitude of |ψ| remains close to zero. Stripes form

gradually, and are then wound up into spirals by the fluid motion. See Fig. 3.2 (a) for a

typical concentration field plot in the ‘jelly roll’ pattern stage. This wind-up process also

occurs in the early stage of the expulsion problem in MHD.

(B) In the topological evolution stage, the ψ field inside the stripes quickly approaches ± ∼

1, demonstrating that phase separation has occurred. In this stage, stripes break up and

reconnect with adjacent stripes. The spirals evolve to concentric annuli, with topology

change proceeding from outside to inside, one annulus at a time. Fig. 3.2 (b) - (e) show the

48



topology evolution of the stripe in the center of the pattern. Fig. 3.3 illustrates this process:

the stripes break in the middle, while the outer parts reconnect to form a circle.

Figure 3.3: An illustration of the topological evolution from the ‘jelly roll’ pattern to the target
pattern: the stripes break in the middle, and the outer parts reconnect into a circle.

(C) In the target pattern stage, the bands form concentric annuli, in contrast to spirals. See

Fig. 3.2 (f) and (g) for typical concentration field plots in the target pattern stage. The

bands are aligned with the stream lines. This structure is caused by shear flows. Shears can

stabilize the bands against their intrinsic surface tension instabilities. Previous studies that

investigated how the Cahn-Hilliard system behaves in a shear flow noted that the formation

of band patterns aligned along the flow direction [66, 47, 46]. Shear flow with closed stream

lines leads to the target pattern.

The target patterns are metastable. They persist on time scales that are exponentially long

relative to the eddy turnover time. During their life, the bands merge with each other very slowly,

and the number of bands tends to decrease over time (see Fig. 3.2 (f) and (g)). The merger time

scales will be discussed in more detail below, after Fig. 3.5. Fig. 3.4 shows how the concentration

field along the y axis at x = 0 evolves with time. The merger process is shown as the corner of the

“>” shape in the plot. The band merger process is similar to step merger in drift-ZF staircases

[1, 2]. The formation and coalescence of meso-steps is analogous to the formation and merger

of the target bands in the Cahn-Hilliard system. Because the Cahn-Hilliard system does not
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Figure 3.4: The evolution of ψ at x = 0 with time (Run2). The three stages are distiguished by
black dashed lines, and marked as A, B, and C, respectively. In the target pattern stage (C), the
merger process is shown as the corner of the “>” shape.

support a selected direction, it does not exhibit barrier propagation, as seen in models of drift-ZF

staircases.

Fig. 3.2 (h) shows the final steady state. It resembles what is observed during the

homogenization of magnetic potential A in MHD. The major difference is that the concentration

field is ψ∼−1 in the center of the eddy for the Cahn-Hilliard system, instead of A∼ 0 in MHD.

This result implies that the concentration field is not conserved in our simulation, i.e., the red fluid

is lost. This is acceptable, because the Dirichlet boundary conditions do not forbid the transport

of matter in or out of the eddy. The choice of this boundary condition is to allow comparisons to

studies of flux expulsion.
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Figure 3.5: The time evolution of elastic energy (Run2). Note that logarithm scale is used for
the t axis. A: the ‘jelly roll’ stage; B: the topological evolution stage; C: the target pattern stage.
The dips marked by orange arrows are due to band mergers.

3.4 Time Evolution of the Elastic Energy

In our previous study [30], we stressed the analogy between 2D CHNS and 2D MHD.

The energy in MHD consists of two parts: kinetic energy and magnetic energy. Similarly, we can

also define the energy in the CHNS system to be the sum of kinetic energy EK and elastic energy

EB [30]:

EK =
∫ 1

2
v2 d2x (3.3)

EB =
∫ 1

2
ξ

2(∇ψ)2 d2x (3.4)

Note that this definition of energy differs from the energy commonly used in studies on the

CHNS system (E =
∫
[−1

2ψ2 + 1
4ψ4 + 1

2ξ2(∇ψ)2 + 1
2v2]d2x), but it makes it easier to compare

to MHD studies. Since the velocity does not change with time in this study, the kinetic energy

stays constant. The elastic energy EB is the analogue of the magnetic energy in MHD. The time
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evolution of elastic energy for a typical run is shown in Fig. 3.5. The 3 stages in the evolution are

marked as A, B, and C, respectively.

In the ‘jelly roll’ pattern stage, the elastic energy increases but remains small compared to

later stages. In the topology change stage, the elastic energy rises quickly and reaches a maximum

value when the topology change is complete. Then, in the target pattern stage, the elastic energy

decreases slowly and episodically. When band merger occurs, it appears as a local dip in the

elastic energy time evolution plot. Examples of the dips are marked by orange arrows in Fig. 3.5.

The time scales for band mergers can be obtained in the plot by measuring the time interval of the

dips. The time scales for mergers are observed to be linear on the plot with a logarithm scale, so

they are exponential on a linear scale. Note that in our normalization, the eddy turnover time is

1. The band merger time scales differ for each occurrence, but they all are exponentially long

relative to the eddy turnover time.

3.5 The effects of D and ξ

In order to observe the phenomena presented above, there is a necessary range of parame-

ters. Ch should be small, so long as the interface width is resolved (ξ > h0, where h0 is the mesh

size). This is because we are interested in cases where the interface width is small compared to

the system size. Pe should be large, so long as the cell’s boundary layer is resolved (LBL > h0,

where LBL is the width of the boundary layer in ψ at the inner edge of the cell). In MHD, one

expects to observe expulsion phenomenon when the magnetic Reynolds number Rm is large.

Analogously, in the Cahn-Hilliard system, we are interested in the large Pe regime. Similar to

the MHD case for which LBL ∼ Rm−1/3L0, the width of the boundary layer in the Cahn-Hilliard

system is estimated to be LBL ∼ Pe−1/5Ch3/5L0. Thus the condition for resolution of LBL is

Pe1/5Ch−3/5( h0
L0
) < 1. This expression is obtained by calculating the mixing time scale of the

shear + dissipation hybrid case t−1
mix ∼ Pe−1/5Ch2/5t−1

0 . Note that in the Cahn-Hilliard case, the
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dissipation is the hyper-diffusion, and the ratio of convection to hyper-diffusion is Pe/Ch2.

A parameter scan of Pe and Ch is shown in Fig. 3.6. The elastic energy evolution exhibits

the same trend discussed above, and all values of Pe and Ch pass through the same three stages.

A characteristic time scale in this system is the time to reach the maximum elastic energy τ. τ is

shown to scale as τ∼ Pe1.05±0.05Ch1.78±0.04 (Fig. 3.7). The error bars reflect only the standard

deviations of the linear fits, and the errors from τ itself are not considered. This relationship can

be approximately understood by dimensional analysis: τ ∝ ξ2/D.

Figure 3.6: The time evolution of elastic energy for a range of Pe (a) and Ch (b).

3.6 Conclusion and Discussion

In summary, we have investigated the evolution of the concentration field of the Cahn-

Hilliard system in the background of a single convective eddy, motivated by the analogy between

CHNS and MHD. This study is an extension of the classic study of flux expulsion in 2D MHD

and homogenization of potential vorticity in 2D fluids. We find there are three stages of the

evolution: the ‘jelly roll’ pattern stage, the stage of topological evolution, and the target pattern

stage. The target bands are metastable: they merge with each other on a time scale exponentially
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Figure 3.7: The relationship between the time to reach the maximum elastic energy τ and the
dimensionless parameters Pe (a) and Ch (b).

long relative to the eddy turnover time. Band merger occurrences are associated with dips in the

elastic energy evolution. The time scale for target pattern evolution and band merger is extended

by the imposed shear flow of the eddy. Such flows slow down the merger of bands that is known

to occur in, and is natural to, the Cahn-Hilliard system. The band merger process is similar to the

drift-ZF staircases in the confined plasma turbulence. The major difference from flux expulsion

in MHD is the metastable target pattern stage before reaching the steady homogenized state.

Compared to the homogenization of the potential vorticity system, the evolution of the passive

scalar in the Cahn-Hilliard system contains additional multi-stage physics, and it exhibits richer

dynamics on the long time scale. We also found the time to reach the maximum elastic energy τ is

τ∼ Pe1.05±0.05Ch1.78±0.04. In future work, we will investigate the evolution of the concentration

field with the back reaction on the fluid dynamics.
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Chapter 4

Spontaneous Transport Barriers Quench

Turbulent Resistivity in 2D MHD

This Letter identifies the physical mechanism for the quench of turbulent resistivity in 2D

MHD. Without an imposed, ordered magnetic field, a multi-scale, blob-and-barrier structure of

magnetic potential forms spontaneously. Magnetic energy is concentrated in thin, linear barriers,

located at the interstices between blobs. The barriers quench the transport and kinematic decay

of magnetic energy. The local transport bifurcation underlying barrier formation is linked to

the inverse cascade of 〈A2〉 and negative resistivity, which induce local bistability. For small

scale forcing, spontaneous layering of the magnetic potential occurs, with barriers located at the

interstices between layers. This structure is effectively a magnetic staircase.

4.1 Introduction

The evolution of mean quantities in turbulence is frequently modelled as a transport

process, using ideas from the kinetic theory of gases. A classic example is that of Prandtl’s theory

of turbulent boundary layers, which first proposed the use of an eddy viscosity - based upon mixing
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length theory - to calculate mean flow profiles at high Reynolds number. Magnetohydrodynamics

(MHD) presents additional challenges, especially at high magnetic Reynolds number Rm. There,

models based on transport theory concepts are central to our understanding of mean B (〈B〉)

evolution in turbulent flows. Indeed, the well-known theory of mean field electrodynamics

(Moffatt [71]) employs transport coefficients α, β - related to turbulent helicity and energy,

respectively - to describe the growth and transport of a mean magnetic field. Such models are

heavily utilized in dynamo theory - the study of how large scale fields are formed. The turbulent

or “eddy” resistivity, ηT , is ubiquitous in these models (and corresponds to β above). While ηT is

often taken as kinematic (ηT ∼ ηK ∼ ∑k〈ṽ2〉kτc where τc is the self-correlation time) for many

applications, nonlinear dependence of ηT on magnetic field and potential has been observed in

numerous simulations [16, 100, 99, 15, 3, 62, 7, 33, 70, 56, 93, 94, 57, 51, 53, 52, 98, 29, 59, 67].

Such nonlinearity arises from the fact that the magnetic fields alter the turbulent flows which

scatter them. As this nonlinearity tends to reduce ηT relative to kinematic expectations, such

trends are referred to as quenching. Rm dependent quenching – i.e. when the product Rm〈B〉2

enters – is of particular interest, as it signals that for the relevant case of high Rm, relatively weak

fields can produce significant feedback on transport and evolution processes. Such Rm-dependent

feedback has been associated with Alfvenization (i.e. the conversion of hydrodynamics turbulence

to Alfven wave turbulence) and/or with the balance of magnetic helicity 〈A ·B〉 (i.e. in 3D) or

〈A2〉 (i.e. in 2D). Both arguments ultimately point to memory, due to the freezing-in law, as the

origin of the quench. The quenching problem is also relevant to models of fast reconnection

and impulsive energy release processes in MHD, as it constrains the size of (frequently invoked)

anomalous dissipation [103, 102]. More generally, it is an important paradigm of the transport of

an active scalar.

In a seminal paper [16] which broached the quenching question, Cattaneo and Vainshtein

(CV) presented numerical simulations of 2D MHD turbulence which demonstrated that even a

weak large scale magnetic field is sufficient to quench the turbulent transport of the active scalar
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A (the magnetic potential). Based on ideas from mean field theory, CV suggested – and presented

simulations to support – the idea that ηT is given by

ηT ∼
〈v2〉1/2l

1+ 1
µ0ρ

Rm〈B〉2/〈v2〉
(4.1)

The mean field 〈B〉 here is estimated using:

|〈B〉| ∼
√
〈A2〉/L0 (4.2)

where L0 is system size. For 1
µ0ρ

Rm〈B〉2/〈v2〉< 1, ηT ∼ηK ∼〈v2〉1/2l. While for 1
µ0ρ

Rm〈B〉2/〈v2〉>

1, ηT � ηK , so ηT is quenched. It is important to note that, in view of Cowling’s Theorem,

suppression occurs only for a time of limited duration, without external forcing of A. After the

afore mentioned suppression stage, rapid decay of the magnetic field occurs, and ηT reverts to

ηK . The evolutions of EB, EK (magnetic and kinetic energy) and 〈A2〉 (mean square potential) are

shown in Fig. 4.1 (a, b).

Equation (4.1) was also obtained analytically from statistical theory, assuming the presence

of an imposed weak large scale field B0 (i.e. 〈B〉= B0) [40, 41, 27, 26]. (Note the assumptions

that |〈B〉| is determined by root-mean-square A and the system size in CV.) The derivation made

use of 〈A2〉 balance to constrain the turbulent resistivity [105, 85, 84]. Rm-dependence of the

quench stems from the fact that 〈A2〉 is conserved up to resistive diffusion. This early work on

resistivity quenching triggered a tidal wave of subsequent studies of nonlinear dynamo evolution

and quenching.

In this Letter, we show that, without an imposed, ordered magnetic field, Rm-dependent

quenching is intrinsically an intermittency phenomena, and can occur where a global mean field

〈B〉 simply does not exist. Rather, turbulent resistivity quenching occurs due to intermittent

transport barriers. A transport barrier is a localized region of mixing and transport significantly

lower than the mean thereof, i.e. ηT,local < η̄T . These barriers are extended, thin, linear features,
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Figure 4.1: Time evolution of (a) magnetic energy EB and kinetic energy EK ; (b) 〈A2〉 in Run1.
The suppression stage is marked in orange, and the kinematic decay stage in green. The decay
of EB is slow in the suppression stage, which is consistent with previous studies. The decay of
〈A2〉 is also slow in the suppression stage, and is more smooth compared to EB.
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into which strong 〈B2〉 is concentrated. The barriers are formed by the 〈B2〉 feedback on scalar

transport, specifically by magnetic flux coalescence. Thus, transport quenching is manifestly

not a mean field effect, as the structure of the field is more akin to a random network than to a

smooth mean field. The barriers form in the interstices between blobs of 〈A2〉, which are formed

by the inverse cascade of 〈A2〉. Overall, the magnetic potential and field have a structure of

“blob-and-barrier” at large Rm, as shown in Fig. 4.2. In contrast to the assumptions of CV, the

magnetic field exhibits two non-trivial scales, i.e. the blob size Lblob and the barrier width W ,

where W � Lblob. Lblob characterizes the magnetic potential while W characterizes the field

intensity.

The A field in the blob-and-barrier structure of 2D MHD resembles the concentration

contrast field ψ in the Cahn-Hilliard Navier-Stokes (CHNS) system [89, 30, 31, 32, 77].

4.2 Analysis: global

In this Letter, the 2D MHD equations are solved using direct numerical simulation [20, 19]

with doubly periodic boundary condition:

∂tA+v ·∇A = η∇
2A (4.3)

∂tω+v ·∇ω =
1

µ0ρ
B ·∇∇

2A+ν∇
2
ω+ f (4.4)

Here ω is vorticity, η is resistivity, ν is viscosity, µ0ρ is magnetic permeability and density,

and f is an isotropic homogeneous external forcing, with wave number k and magnitude f0. The

simulation box size is L2
0 = 1.0× 1.0 with 1024× 1024 resolution. The parameters used are

summarized in Table. 4.1. The initial condition for the ω field is ωI = 0 everywhere; the initial

condition for A field is a cosine function in Run1:

AI(x,y) = A0 cos2πx (4.5)
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Table 4.1: Initial conditions, k and Rm for the suppression stage. For all runs, A0 = 1.0 and
f0 = 30.

Runs Initial Condition η ν 1/(µ0ρ) k Rm
Run1 Bimodal 1∗10−4 1∗10−4 0.04 5 ∼ 500
Run2 Unimodal 1∗10−4 1∗10−4 0.04 5 ∼ 500
Run3 Bimodal 1∗10−4 2∗10−3 0.01 32 ∼ 150

The setup of Run1 differs from that of Ref. [16] only in the range of Rm studied.

Non-trivial blob-and-barrier structure is observed in real space at large Rm, and this

structure forms quickly after a short transition period. Fig. 4.2 (a1) shows a snapshot of magnetic

potential in the suppression stage for Run1. It consists of “blobs” (regions in red and blue) and

interstices (green), and is very different from the initial condition, for which a mean field is

relevant. Fig. 4.2 (a2) shows the B2 field for the same run. The high B2 regions (bright color)

occur at the interstices of the A blobs, since B≡ ẑ×∇A. The interstices have a 1-dimensional

shape. We call these 1-dimensional, high B2 regions “barriers”, because these are the regions

where transport is strongly suppressed relative to the kinematic case ηK , due to locally strong

B2, as discussed below. One measure of this blob-and-barrier structure is the structure of the

probability density function (PDF) of A. As is shown in Fig. 4.2 (a3), the PDF of A for Run1

during the suppression stage has two peaks, both at A 6= 0.

Notably, such a structure of the PDF also appears in the analogous CHNS system. Some

binary fluid transfers from miscible phase to immiscible phase when the temperature dropped

to below the corresponding critical temperature, and this second order phase transition is called

spinodal decomposition. The Cahn-Hilliard Navier-Stokes (CHNS) equations describe a binary

fluid undergoing spinodal decomposition:
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Figure 4.2: Row 1: A field snapshots; Row 2: 〈B2〉 field snapshots; Row 3: PDF of A. Column
a: Run1 at t = 10 (suppression stage). The system exhibits blob-and-barrier feature, and the
PDF of A is bimodal. Column b: Run1 at t = 17 (kinematic decay stage). The distribution of the
fields are trivial. Column c: Run2 at t = 10. Two peaks still arise on the PDF of A even though
its initial condition is unimodal. Column d: Run3 at t = 4.5. The system exhibits staircases
feature, and the PDF of A has multiple peaks.
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∂tψ+v ·∇ψ = D∇
2(−ψ+ψ

3−ξ
2
∇

2
ψ) (4.6)

∂tω+v ·∇ω =
ξ2

ρ
Bψ ·∇∇

2
ψ+ν∇

2
ω (4.7)

v = ẑ×∇φ, ω = ∇
2
φ (4.8)

Bψ = ẑ×∇ψ, jψ = ξ
2
∇

2
ψ (4.9)

where ψ = ρA−ρB
ρA+ρB

is the local relative concentration, and ξ is a coefficient describing the strength

of the surface tension interaction.

Figure 4.3: Some typical screenshots for the ψ field in the 2D CHNS system. Reprint from
[30].

2D CHNS and 2D MHD are both active scalar systems. The two systems are analogous,

and the correspondence of the physics quantities between the two systems are summarized in

Table. 4.2. The comparison and contrast of some most important features are summarized in

Table. 4.3 and Table. 4.4. See Ref. [30, 31, 32] for more details about turbulence in 2D CHNS.

In comparison with the blob-and-barrier structure described above, in the kinematic decay
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Table 4.2: The correspondence between 2D MHD and the 2D CHNS system. Reprint from
[30].

2D MHD 2D CHNS
Magnetic Potential A ψ

Magnetic Field B Bψ

Current j jψ
Diffusivity η D

Interaction strength 1
µ0

ξ2

Table 4.3: Comparison of 2D MHD and the 2D CHNS system. Reprint from [30].

2D MHD 2D CHNS
Ideal Quadratic Conserved Quantities Conservation of E, HA and HC Conservation of E, Hψ and HC

Role of elastic waves Alfven wave couples v with B CHNS linear elastic wave couples v with Bψ

Origin of elasticity Magnetic field induces elasticity Surface tension induces elasticity
Origin of the inverse cascades The coalescence of magnetic flux blobs The coalescence of blobs of the same species

The inverse cascades Inverse cascade of HA Inverse cascade of Hψ

Power law of spectra HA
k ∼ k−7/3 Hψ

k ∼ k−7/3

Table 4.4: Contrast of 2D MHD and the 2D CHNS system. Reprint from [30].

2D MHD 2D CHNS
Diffusion A simple positive diffusion term A negative, a self nonlinear, and a hyper-diffusion term

Range of potential No restriction for range of A ψ ∈ [−1,1]
Interface Packing Fraction Not far from 50% Small

Back reaction j×B force can be significant Back reaction is apparently limited
Kinetic energy spectrum EK

k ∼ k−3/2 EK
k ∼ k−3

Suggestive cascade by EK
k Suggestive of direct energy cascade Suggestive of direct enstrophy cascade
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stage of Run1 (i.e. at later time, when the magnetic field is so weak that ηT reverts to ηK), the

fields are well mixed and nontrivial real space structure is absent. No barriers are discernible in

the decay stage. The corresponding PDF of A is a distribution for a passive scalar, with one peak

at A = 0, as shown in Fig. 4.2 column (b).

The time evolution of PDF of A for Run1 (Fig. 4.4 (a)) has a horizontal “Y” shape. The

PDF has two peaks initially, and the interval between the peaks decreases as the A field decays.

The PDF changes from double peak to single peak as the system evolves from the suppression

stage to the kinematic stage.

Figure 4.4: The time evolutions of PDF of A. (a) For Run1, the PDF is bimodal in the
suppression stage, and ∆A between the two peaks reduces in time. The PDF becomes unimodal
in the kinematic decay stage. (b) For Run2, two peaks at A 6= 0 still arise spontaneously given a
unimodal initial condition. (c) For Run3, with external forcing at smaller scale, layering and
coarsening can occur. See further explanations in the text.

Two quantities which characterize the field structure in the suppression stage are the

packing fraction P, and barrier width W , defined below. In order to identify the barriers,

we set a threshold on local field intensity, and define the barriers to be the regions where

B(x,y)>
√
〈B2〉 ∗2. The packing fraction P is defined as:

P≡ # of grid points in barrier regions
# of total grid points

(4.10)

P is the fraction of the space where intensity exceeds the mean square value. The expression for

the barrier width is W ∼ ∆A/Bb, where ∆A is the difference in A between adjacent blobs, and Bb
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Figure 4.5: The initial conditions for A and their PDFs: (a) “Bimodal” for Run1 and Run3; (b)
“Unimodal” for Run2.

is the magnitude of the magnetic field in the barrier regions. We use
√
〈A2〉 to estimate ∆A for

the bimodal PDF, such as for Run1. The narrow barriers contain most of the magnetic energy.

For example, in Run1 at t = 10, the barriers occupy only P = 9.9% of the system space, but the

magnetic field in these regions accounts for 80.7% of the magnetic energy. Therefore, we can use

the magnetic energy in the barriers 〈B2
b〉 to approximate the total magnetic energy, i.e.:

∑
barriers

B2
b ∼

∫
d2xB2 (4.11)

It follows that 〈B2
b〉 ∼ 〈B2〉/P. We can thus define W based on the arguments above as:

W 2 ≡ 〈A2〉/(〈B2〉/P) (4.12)

This definition of W can be justified by measuring the approximate barrier widths. The time
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evolutions of P and W in Run1 are shown in Fig. 4.6. P stays at 0.08 ∼ 0.10 throughout the

suppression stage. P starts to decline near the end of the suppression stage, and drops to the noise

level in the kinematic decay stage. W decreases during the suppression stage, due mainly to the

decrease in ∆A. It is important to note that the decline in P, which begins at t ∼ 13, slightly leads

the decay in magnetic energy, which begins at t ∼ 15. This supports the notion that barriers, the

population of which is measured by P, are responsible for the quenching of mixing and decay in

the suppression stage.

Figure 4.6: Time evolution of (a) packing fraction P; and (b) barrier width W in Run1.

One may question whether the bimodal PDF is due to the initial condition, since the

cosine initial condition in Run1 is bimodal. The answer is no. In order to show this, a unimodal

initial condition is constructed for Run2, such that the initial PDF of A has one peak at A = 0:

AI(x,y) = A0 ∗


−(x−0.25)3 0 <= x < 1/2

(x−0.75)3 1/2 <= x < 1
(4.13)
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See Fig. 4.5 for the comparison between bimodal and unimodal initial condition. To make

Run2 and Run1 have the same time duration of the suppression stage, the initial magnitude A0 in

Run2 is chosen such that the initial 〈A2〉 (not EB!) is the same with Run1.

Fig. 4.2 column (c) shows a snapshot for Run2 at t = 10. The time evolution of the PDF

of A for that case is shown in Fig. 4.4 (b). It is evident that, two non zero peaks in the PDF of

A still arise, even if the initial condition is unimodal. The blob structure in A and the barrier

structure in B2 are also evident.

4.3 Analysis: local

One can easily see from the B2 fields plots in Fig. 4.2 that, a large scale 〈B〉 does not

exist. Intermittent magnetic intensity, with low P, is a consequence of the blob-and-barrier

structure. Therefore, the traditional approach of mean field theory, especially Eqn. (4.2), is neither

applicable nor relevant. Globally, no theory exists for B0 = 0. Usual closure approaches appear

useful when the averaging window is restricted to a suitable size, corresponding to a localized

region within which a mean B exists. In order to derive an expression for the effective ηT for

such a local region from dynamics, we extend the theory by [40, 41, 27, 26], and propose:

ηT =
〈v2〉1/2l

1+Rm 1
µ0ρ
〈B〉2/〈v2〉+Rm 1

µ0ρ

〈A2〉
L2

blob
/〈v2〉

(4.14)

Here Lblob is the size of the large A blobs, i.e. the characteristic length scale for 〈A2〉. The

derivation is shown below.

We start from:

1
2
[∂t〈A2〉+ 〈∇ · (vA2)〉] =−ΓA

∂〈A〉
∂x
−η〈B2〉 (4.15)

where ΓA = 〈vxA〉 is the spatial flux of A. In the past, only the ΓA
∂〈A〉
∂x term is kept in (4.15) to
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balance η〈B2〉. However, in the absence of B0, ΓA
∂〈A〉
∂x term can be small, while the triplet term

〈∇ · (vA2)〉 can remain, if the average is taken over a window smaller than the system size L0.

Note the relevant scale l here is

ld <W < l < L0 (4.16)

where ld is the dissipation scale. Retaining all contributions, we have

∂t〈A2〉=−〈vA〉 ·∇〈A〉−∇ · 〈vA2〉−η〈B2〉 (4.17)

Now assume the fluxes are Fickian. Note that, in principle, there are two diffusion coefficients:

〈vA〉=−ηT 1∇〈A〉 (4.18)

〈vA2〉=−ηT 2∇〈A2〉 (4.19)

Plugging them in, we get

∂t〈A2〉= ηT 1(∇〈A〉)2 +∇ηT 2 ·∇〈A2〉−η〈B2〉 (4.20)

The first term on the RHS is turbulent diffusion of 〈A〉, corresponding to the large scale magnetic

field. The second term is the turbulent diffusion of 〈A2〉, which controls decay in weak magnetic

field. The third term is the usual collisional dissipation. In principle, ηT 1 6= ηT 2, though these two

are related. Both terms are retained. For simplicity, we assume ηT 1 = ηT 2 = ηT . For a stationary

state, we have

〈B2〉 ∼ ηT

η
(〈B〉2 + 〈A2〉/L2

blob) (4.21)

where Lblob is the blob size, the characteristic length scale for 〈A2〉. By standard closure methods,
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one can obtain an expression for ηT [85, 84]:

ηT = ∑
k

τc[〈v2〉k−
1

µ0ρ
〈B2〉k] (4.22)

Plugging (4.21) into (4.22) yields Eqn. (4.14) proposed above. Detailed comparisons of Eqn. (4.14)

with simulation results are nontrivial and will be left for a future paper.

Note that Lblob� L0. In regions where no high intensity magnetic field is present, i.e.

inside blobs, Rm 1
µ0ρ
〈B〉2/〈v2〉 is negligible. Yet transport is still reduced relative to kinematics

by 〈A2〉, via the Rm 1
µ0ρ

〈A2〉
L2

blob
/〈v2〉 term. In the barrier regions where magnetic energy is large,

Rm 1
µ0ρ
〈B〉2/〈v2〉 is dominant, since 〈B2〉 � 〈A2〉/L2

blob for P� 1. Such regions – barriers – are

where turbulent transport of A is most strongly suppressed.

A key question concerns how transport barriers form spontaneously in turbulent 2D MHD.

We argue that transport barriers result from negative resistivity, driven by the inverse cascade of

〈A2〉. In Eqn. (4.22), the positive contribution to ηT is a consequence of turbulent mixing by fluid

advection, while the second, negative, term is a consequence of flux coalescence. From the above,

we see that the turbulent resistivity can go negative locally, where 〈B2〉 is strong. Of course, the

system-averaged resistivity is positive, so the field decays, though slowly. Note though that a

local negative contribution can trigger a feedback loop, i.e.: B2 strong in a specific region→ local

ηT negative→ local ∇A increases→ local B2 increases further. The feedback process saturates

after the short transition period, as the inverse cascade of 〈A2〉 must ultimately deplete the small

scales.

Another way to view this evolution is as a local transport bifurcation – see the spatially

local S-shaped flux-gradient curve for A, shown in Fig. 4.7 for illustration, which follows from

Eqn. (4.14). The S-curve describes a bi-stable system. Note there are two stable ranges with

positive slope, and one unstable region between, with a negative slope (as for negative resistivity).

This implies that barrier formation is a transport bifurcation, which occurs when local magnetic
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intensity exceeds the threshold given by (4.22). This mechanism resembles a transport bifurcation

in magnetically confined systems [1, 2]. Here, feedback via regions of locally intense B2, rather

than E×B shear, is the trigger for barrier formation.

Figure 4.7: A sketch showing the relationship between flux ΓA and ∇A. The total resis-
tivity is ηtot = δΓA/δ∇A, and is composed of turbulent and collisional parts ηtot = ηT +η.
In the small B limit, ηtot ∼ ηK ; in the large B limit, the residual resistivity is ηres ∼

ul

Rm 1
µ0ρ
〈B〉2/〈v2〉+Rm 1

µ0ρ

〈A2〉
L2

blob
/〈v2〉

+ η. The transition between the two limits is the transport bi-

furcation.

4.4 Layering of magnetic potential

Inhomogeneous mixing and bistability (of which negative viscosity is a symptom) are

the key elements in the dynamics of layering (i.e. staircase formation) in many systems [3, 1, 2].

Given that, and the ubiquitous blob-and-barrier structure here, it is natural to ask if spontaneous

layering can occur in 2D MHD. We answer in the affirmative – see Fig. 4.2 column (d). The

initial condition in Run3 is the same bimodal one as for Run1. The key difference in parameters

is the forcing scale, which is smaller here, i.e. k = 32 in Run3, rather than k = 5 for the other

runs. As shown in Fig. 4.4 (c), the layered structure consists of regions of homogenized A, with

small transition layers of sharp gradients in A (and thus B2) between them. Layering thus induces
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transport barriers. The layered structure persists for the duration of the suppression stage, but

coarsens, as shown in Fig. 4.4 (c). Coarsening occurs by a sequence of blob mergers. Note

that by t ∼ 4 the staircase has coarsened to four transition layers. We note that closure theory

for the evolution of 〈A2〉k predict a positive turbulent hyper-resistivity along with the negative

component of the turbulent resistivity [27, 26]. This implies that evolution equation for mean

〈A〉 has a structure much like the Cahn-Hilliard equation, the solutions of which are known to

manifest mergers and coarsening [32].

4.5 Conclusions

In summary, we observe a blob-and-barrier real space structure in the decay of magnetic

fields in turbulent 2D MHD. The magnetic field and the resulting barriers are highly intermittent,

and cannot be treated by mean field theory. The turbulent resistivity is suppressed in the barriers,

where the magnetic fields are strong. The barriers form at blob interstices. For small scale forcing,

spontaneous layering of magnetic potential occurs due to inhomogeneous mixing. Barriers form

between layers. The layered structure coarsens in time.

This analysis has implications beyond 2D. One line of development is to the quenching

of transport of magnetic helicity and magnetic dynamo processes by spatially intermittent but

locally strong magnetic fields. The other is to anomalous dissipation in anisotropically ordered 3D

systems, such as reduced MHD, where the nonlinear dynamics are effectively two dimensional.

These topics will be pursued in the future.
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Chapter 5

Summary and Future Work

5.1 Summary

In this dissertation, we have studied 2D CHNS and 2D MHD as examples of active

scalar turbulence systems, with emphasis on cascades and spectra, real space structure, and

inhomogeneous mixing and transport. The key results are summarized below.

In Chapter 2, we analyze the similarities and differences between 2D CHNS and 2D

MHD, and study cascades and spectra in 2D CHNS. The conserved quantities are analogous,

and both systems exhibit dual cascades. Moreover, the CHNS system supports an elastic wave,

which resembles the Alfven wave in MHD. The origin of the inverse cascade for 2D CHNS is

the coalescence of blobs of concentration of the same species. Similarly, it is the coalescence

of blobs of magnetic flux for 2D MHD. In 2D CHNS, smaller blobs progressively merge and

become larger blobs. The blob size grows as l ∼ t2/3, until capped by the Hinze scale lH . The

Hinze scale is defined by the balance of turbulent kinetic energy and the elastic energy. An elastic

range is observed from the dissipation scale up to Hinze scale ld < l < lH . In the elastic range,

the spectrum for the inverse cascade of mean square concentration is 〈ψ2〉k ∼ k−7/3, and the

exponent −7/3 is the same for 〈A2〉k in 2D MHD. This power law can thus be understood by
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the explanation used in 2D MHD. On the other hand, the exponent for the forward cascade is

closer to −3 in 2D CHNS, not −3/2, as in 2D MHD. The exponent −3 suggests it is more like

the forward enstrophy cascade in 2D Navier-Stokes turbulence rather than the forward energy

cascade in 2D MHD. This result is plausible because it is observed that the back reaction of

surface tension on the fluid is diminished as the blobs coalesce. The back reaction is localized in

the interstices between blobs. The packing fraction of such regions decreases as blobs merge. In

other words, the inverse cascade of 〈ψ2〉 modifies the forward cascade. The power law for the

inverse 〈ψ2〉 cascade is observed to be more robust than the forward energy/enstrophy cascade in

2D CHNS, and it suggests that the inverse cascade is the more fundamental one in this system.

This raises the interesting question of: what about other active scalar turbulent systems?

In Chapter 3, we investigated the kinematic evolution of the concentration field in the 2D

Cahn-Hilliard system in a background of a single fixed eddy. The analogy between this and flux

expulsion phenomenon in 2D MHD is noted and discussed. The concentration field first exhibits

a “jelly roll” shape, then a topological change (reconnection) occurs, and the field morphs into a

“target” shape, which means the bands are in the form of concentric annuli. The target pattern

is metastable. The bands merge gradually, and the time scale of the mergers is exponentially

long. The change in elastic energy is episodic during the target pattern stage. Dips in the energy

evolution plot corresponds to the band mergers. A characteristic time scale in this system is the

time to reach the maximum elastic energy. This time scale is shown to be approximately ∼ ξ2/D.

The band merger process resembles step merger in drift-ZF staircases. The general lesson is that

negative diffusion can lead to the formation of novel patterns in simple systems, and the formation

of target pattern in single eddy mixing is a good example.

In Chapter 4, turbulent transport in active scalar systems is studied. We initially planned

to first repeat the classic problem of suppression of turbulent transport in decaying 2D MHD

turbulence for the purpose of code verification, and then study the corresponding phenomenon

in 2D CHNS. However, in 2D MHD, a surprising new phenomenon appears for higher Rm, and
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it is worth deeper investigation. Without an externally imposed large scale magnetic field, no

well defined mean B is observed. Instead, a blob-and-barrier real space structure spontaneously

emerges. The conventional understanding is based on mean field theory, which is not applicable in

this case. The magnetic energy is concentrated in the barriers, which are located in the interstices

between blobs of magnetic potential. The barriers are highly intermittent, and mixing of magnetic

potential is inhomogeneous. The turbulent transport is quenched more heavily in the barrier

regions where magnetic fields are strongest. The spontaneous formation of the barriers is due to

negative diffusion, which ultimately follows from flux coalescence and the inverse cascade of

〈A2〉. For small scale external forcing (of the fluid), a layering (or staircase) of magnetic potential

can occur, with barriers located in the interstices of layers. The layering is observed to coarsen in

time. This layering can also be explained by a negative diffusion mechanism. Such a phenomenon

is relevant to the E×B staircase in fusion studies.

In general, broader lessons for active scalar systems are learned beyond the specifics of

2D CHNS and 2D MHD. The studies in this dissertation illustrate that dual (or multiple) cascades

can interact with each other, and one can modify another. One example is the inverse cascade of

〈ψ2〉 can reduce the region of active elastic back reaction and thus alter the forward cascade in

2D CHNS. We also show how a length scale, for example the Hinze scale in 2D CHNS, emerges

from the balance of kinetic energy and elastic energy in blobby turbulence. This length scale

is a result of competition between the blob coalescence process and the eddy breakup process.

We learn how negative diffusion (flux/blob coalescence) can lead to novel real space structure

in a simple system, for example the target pattern in 2D Cahn-Hilliard system. We also learn

that negative resistivity can exist (though for a short time) in a simple system such as 2D MHD.

This results in the formation of nontrivial real space structure, i.e. the blob-and-barrier structure

and layering structure. More generally, we see that studying analogous but different systems can

improve our understanding of all of them.
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5.2 Future Work

In this dissertation, we mainly focused on two systems, 2D CHNS and 2D MHD as

examples of elastic active scalar turbulence systems. Other similar systems can also be studied in

this spirit, and be compared to these two in the future. For instance, the Oldroyd-B model for

polymer solutions [74, 96, 24] is also an interesting active elastic system.

Another direction of future work is the extension of the transport study in MHD. An

obvious extension is the numerical verification of the new ηT expression we proposed. For this, an

approach like Lagrangian conditional averaging [39] may be required, because of the motion and

evolution of the barriers. There are still a lot of important features remaining to be investigated,

for instance: what determines the barrier width and packing fraction in 2D MHD turbulence?

Why does layering appear when the forcing scale is small? What determines the step width, in the

case of layering? The transport study may also be extended to 3D MHD, with a special note that

the inverse cascade of 〈A2〉 in 2D will be replaced by the inverse cascade of 〈A ·B〉 in 3D. It will

be interesting to investigate how these spatially intermittent, locally strong magnetic fields affect

magnetic dynamo processes in 3D MHD. Turbulent transport in CHNS is also an interesting

topic for future study. It is natural to extend the theory for MHD to CHNS, because of the many

common properties appearing in both systems, especially the blob-and-barrier structure.

Some of our results can be potentially addressed by experiments. Although real physical

systems are intrinsically 3D, there are experimental techniques to approximate 2D turbulence.

Some widely used experimental realizations of 2D turbulence include thin electrically conducting

layers, and soap films [10]. It is possible to further use a stirred binary fluid undergoing spinodal

decomposition to realize 2D CHNS turbulence in experiments. It should be easier to take

snapshots of the concentration field in 2D than in 3D. Experiments on 2D MHD in plasmas are

difficult to realize in the lab. However, it is possible to do 2D MHD experiments on liquid metals

[65, 86]. These, however, will have too low an Rm unless stirred vigorously (i.e. by an expensive

77



motor drive) or unless very large.
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[73] Lennon Ó Náraigh and Jean-Luc Thiffeault. Bubbles and filaments: Stirring a Cahn-
Hilliard fluid. Phys. Rev. E, 75(1):016216, January 2007. URL: http://link.aps.org/doi/10.
1103/PhysRevE.75.016216.

[74] JG Oldroyd. On the formulation of rheological equations of state. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences, 200(1063):523–541,
1950. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1950.0035.

[75] Nairita Pal, Prasad Perlekar, Anupam Gupta, and Rahul Pandit. Binary-Fluid Turbulence:
Signatures of Multifractal Droplet Dynamics and Dissipation Reduction. arXiv:1512.09331
[cond-mat, physics:physics], December 2015. arXiv: 1512.09331. URL: http://arxiv.org/
abs/1512.09331.

85

https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.2103150407
https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.2103150407
http://www.sciencedirect.com/science/article/pii/S0021999113001186
https://link.aps.org/doi/10.1103/PhysRevFluids.2.113701
https://link.aps.org/doi/10.1103/PhysRevFluids.2.113701
http://link.aps.org/doi/10.1103/PhysRevLett.100.085003
http://link.aps.org/doi/10.1103/PhysRevLett.100.085003
http://aip.scitation.org/doi/abs/10.1063/1.866747
http://aip.scitation.org/doi/abs/10.1063/1.866747
https://aip.scitation.org/doi/abs/10.1063/1.1863260
https://books.google.com/books/about/Magnetic_Field_Generation_in_Electricall.html?id=cAo4AAAAIAAJ
https://books.google.com/books/about/Magnetic_Field_Generation_in_Electricall.html?id=cAo4AAAAIAAJ
http://www.igf.fuw.edu.pl/KB/HKM/PDF/HKM_045.pdf
http://www.igf.fuw.edu.pl/KB/HKM/PDF/HKM_045.pdf
http://link.aps.org/doi/10.1103/PhysRevE.75.016216
http://link.aps.org/doi/10.1103/PhysRevE.75.016216
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1950.0035
http://arxiv.org/abs/1512.09331
http://arxiv.org/abs/1512.09331


[76] Nairita Pal, Prasad Perlekar, Anupam Gupta, and Rahul Pandit. Binary-fluid turbulence:
Signatures of multifractal droplet dynamics and dissipation reduction. Physical Review E,
93(6):063115, June 2016. URL: https://link.aps.org/doi/10.1103/PhysRevE.93.063115.

[77] Rahul Pandit, Debarghya Banerjee, Akshay Bhatnagar, Marc Brachet, Anupam Gupta,
Dhrubaditya Mitra, Nairita Pal, Prasad Perlekar, Samriddhi Sankar Ray, Vishwanath
Shukla, and Dario Vincenzi. An overview of the statistical properties of two-dimensional
turbulence in fluids with particles, conducting fluids, fluids with polymer additives, binary-
fluid mixtures, and superfluids. Physics of Fluids, 29(11):111112, October 2017. URL:
http://aip.scitation.org/doi/abs/10.1063/1.4986802.

[78] Prasad Perlekar, Roberto Benzi, Herman J. H. Clercx, David R. Nelson, and Federico
Toschi. Spinodal Decomposition in Homogeneous and Isotropic Turbulence. Physical
Review Letters, 112(1):014502, January 2014. URL: http://link.aps.org/doi/10.1103/
PhysRevLett.112.014502.

[79] Prasad Perlekar, Luca Biferale, Mauro Sbragaglia, Sudhir Srivastava, and Federico
Toschi. Droplet size distribution in homogeneous isotropic turbulence. Physics of Fluids,
24(6):065101, June 2012. URL: http://scitation.aip.org/content/aip/journal/pof2/24/6/10.
1063/1.4719144.

[80] Prasad Perlekar, Nairita Pal, and Rahul Pandit. Two-dimensional Turbulence in Symmetric
Binary-Fluid Mixtures: Coarsening Arrest by the Inverse Cascade. arXiv:1506.08524
[cond-mat, physics:physics], June 2015. arXiv: 1506.08524. URL: http://arxiv.org/abs/
1506.08524.

[81] Prasad Perlekar, Nairita Pal, and Rahul Pandit. Two-dimensional Turbulence in Symmetric
Binary-Fluid Mixtures: Coarsening Arrest by the Inverse Cascade. Scientific Reports,
7:44589, March 2017. URL: http://www.nature.com/srep/2017/170321/srep44589/full/
srep44589.html.

[82] Stephen B Pope and Stephen B Pope. Turbulent flows. Cambridge university press,
2000. URL: https://books.google.com/books?id=HZsTw9SMx-0C&printsec=frontcover#
v=onepage&q&f=false.

[83] David Porter. Phase Transformations in Metals and Alloys. 1981.

[84] A. Pouquet. On two-dimensional magnetohydrodynamic turbulence. Journal of Fluid
Mechanics, 88(01):1–16, 1978. URL: https://aip.scitation.org/doi/10.1063/1.1377611.

[85] A. Pouquet, U. Frisch, and J. L’eorat. Strong MHD helical turbulence and the nonlinear
dynamo effect. Journal of Fluid Mechanics, 77(02):321–354, 1976. URL: http://journals.
cambridge.org/abstract S0022112076002140.

[86] Kian Rahbarnia, Benjamin P Brown, Mike M Clark, Elliot J Kaplan, Mark D Nornberg,
Alex M Rasmus, Nicholas Zane Taylor, Cary B Forest, Frank Jenko, Angelo Limone, et al.

86

https://link.aps.org/doi/10.1103/PhysRevE.93.063115
http://aip.scitation.org/doi/abs/10.1063/1.4986802
http://link.aps.org/doi/10.1103/PhysRevLett.112.014502
http://link.aps.org/doi/10.1103/PhysRevLett.112.014502
http://scitation.aip.org/content/aip/journal/pof2/24/6/10.1063/1.4719144
http://scitation.aip.org/content/aip/journal/pof2/24/6/10.1063/1.4719144
http://arxiv.org/abs/1506.08524
http://arxiv.org/abs/1506.08524
http://www.nature.com/srep/2017/170321/srep44589/full/srep44589.html
http://www.nature.com/srep/2017/170321/srep44589/full/srep44589.html
https://books.google.com/books?id=HZsTw9SMx-0C&printsec=frontcover#v=onepage&q&f=false
https://books.google.com/books?id=HZsTw9SMx-0C&printsec=frontcover#v=onepage&q&f=false
https://aip.scitation.org/doi/10.1063/1.1377611
http://journals.cambridge.org/abstract_S0022112076002140
http://journals.cambridge.org/abstract_S0022112076002140


Direct observation of the turbulent emf and transport of magnetic field in a liquid sodium
experiment. The Astrophysical Journal, 759(2):80, 2012. URL: https://iopscience.iop.org/
article/10.1088/0004-637X/759/2/80.

[87] P. B. Rhines and W. R. Young. How rapidly is a passive scalar mixed within closed
streamlines? Journal of Fluid Mechanics, 133:133–145, 1983. URL: http://journals.
cambridge.org/article S0022112083001822.

[88] Peter B. Rhines and William R. Young. Homogenization of potential vorticity in planetary
gyres. Journal of Fluid Mechanics, 122:347–367, September 1982. URL: http://journals.
cambridge.org/article S0022112082002250.

[89] Ricardo Ruiz and David R. Nelson. Turbulence in binary fluid mixtures. Physical Review A,
23(6):3224, 1981. URL: http://journals.aps.org/pra/abstract/10.1103/PhysRevA.23.3224.

[90] S. Servidio, W. H. Matthaeus, M. A. Shay, P. A. Cassak, and P. Dmitruk. Magnetic
Reconnection in Two-Dimensional Magnetohydrodynamic Turbulence. Phys. Rev. Lett.,
102(11):115003, March 2009. URL: http://link.aps.org/doi/10.1103/PhysRevLett.102.
115003.

[91] Boris I Shraiman and Eric D Siggia. Scalar turbulence. Nature, 405(6787):639, 2000.
URL: https://www.nature.com/articles/35015000.

[92] Eric D. Siggia. Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A,
20(2):595–605, August 1979. URL: http://link.aps.org/doi/10.1103/PhysRevA.20.595.

[93] L. J. Silvers. Dynamic effects of a magnetic field on diffusion in a chaotic flow. Physics
Letters A, 334(5):400–405, January 2005. URL: http://www.sciencedirect.com/science/
article/pii/S0375960104016408.

[94] L. J. Silvers. On the choice of boundary conditions when studying the turbulent diffusion
of magnetic fields. Monthly Notices of the Royal Astronomical Society, 367(3):1155–
1162, April 2006. URL: https://academic.oup.com/mnras/article/367/3/1155/1040944/
On-the-choice-of-boundary-conditions-when-studying.

[95] Victor P. Starr. Physics of Negative Viscosity Phenomena. McGraw-Hill, 1968. URL:
http://agris.fao.org/agris-search/search.do?recordID=US201300315890.

[96] M. Tabor and P. G. de Gennes. A Cascade Theory of Drag Reduction. EPL, 2(7):519,
1986. URL: http://stacks.iop.org/0295-5075/2/i=7/a=005.

[97] G. Tierra and F. Guilln-Gonzlez. Numerical Methods for Solving the CahnHilliard Equation
and Its Applicability to Related Energy-Based Models. Arch Computat Methods Eng,
pages 1–21, May 2014. URL: http://link.springer.com/article/10.1007/s11831-014-9112-1.

[98] Steven M. Tobias, Patrick H. Diamond, and David W. Hughes. -Plane Magnetohy-
drodynamic Turbulence in the Solar Tachocline. ApJ, 667(1):L113, 2007. URL:
http://stacks.iop.org/1538-4357/667/i=1/a=L113.

87

https://iopscience.iop.org/article/10.1088/0004-637X/759/2/80
https://iopscience.iop.org/article/10.1088/0004-637X/759/2/80
http://journals.cambridge.org/article_S0022112083001822
http://journals.cambridge.org/article_S0022112083001822
http://journals.cambridge.org/article_S0022112082002250
http://journals.cambridge.org/article_S0022112082002250
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.23.3224
http://link.aps.org/doi/10.1103/PhysRevLett.102.115003
http://link.aps.org/doi/10.1103/PhysRevLett.102.115003
https://www.nature.com/articles/35015000
http://link.aps.org/doi/10.1103/PhysRevA.20.595
http://www.sciencedirect.com/science/article/pii/S0375960104016408
http://www.sciencedirect.com/science/article/pii/S0375960104016408
https://academic.oup.com/mnras/article/367/3/1155/1040944/On-the-choice-of-boundary-conditions-when-studying
https://academic.oup.com/mnras/article/367/3/1155/1040944/On-the-choice-of-boundary-conditions-when-studying
http://agris.fao.org/agris-search/search.do?recordID=US201300315890
http://stacks.iop.org/0295-5075/2/i=7/a=005
http://link.springer.com/article/10.1007/s11831-014-9112-1
http://stacks.iop.org/1538-4357/667/i=1/a=L113


[99] Samuel Vainshtein and Faustro Cattaneo. Nonlinear Restrictions on Dynamo Action. The
Astrophysical Journal, 1992. URL: http://articles.adsabs.harvard.edu/full/1992ApJ...393.
.165V.

[100] Samuel I. Vainshtein and Robert Rosner. On turbulent diffusion of magnetic fields and
the loss of magnetic flux from stars. The Astrophysical Journal, 376:199–203, July 1991.
URL: http://adsabs.harvard.edu/abs/1991ApJ...376..199V.

[101] N. O. Weiss. The Expulsion of Magnetic Flux by Eddies. Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences, 293(1434):310–328,
August 1966. URL: http://rspa.royalsocietypublishing.org/content/293/1434/310.

[102] P. W. Xi, X. Q. Xu, and P. H. Diamond. The impact of pedestal turbulence and electron
inertia on edge-localized-mode crashes. Physics of Plasmas, 21(5):056110, May 2014.
URL: https://aip.scitation.org/doi/abs/10.1063/1.4875332.

[103] P.W. Xi, X.Q. Xu, and P.H. Diamond. Phase Dynamics Criterion for Fast Relaxation of
High-Confinement-Mode Plasmas. Physical Review Letters, 112(8):085001, February
2014. URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.085001.

[104] Ling Zang. Mse 5034 & 6034 lecture 22. Spinodal Decomposition: Part 1: general
description and practical implications. URL: https://pubweb.eng.utah.edu/∼lzang/images/
lecture-22.pdf.

[105] Ya B. Zeldovich. The magnetic field in the two-dimensional motion of a conducting
turbulent fluid. Sov. Phys. JETP, 4:460–462, 1957. URL: http://jetp.ac.ru/cgi-bin/dn/
e 051 03 0493.pdf.

88

http://articles.adsabs.harvard.edu/full/1992ApJ...393..165V
http://articles.adsabs.harvard.edu/full/1992ApJ...393..165V
http://adsabs.harvard.edu/abs/1991ApJ...376..199V
http://rspa.royalsocietypublishing.org/content/293/1434/310
https://aip.scitation.org/doi/abs/10.1063/1.4875332
https://link.aps.org/doi/10.1103/PhysRevLett.112.085001
https://pubweb.eng.utah.edu/~lzang/images/lecture-22.pdf
https://pubweb.eng.utah.edu/~lzang/images/lecture-22.pdf
http://jetp.ac.ru/cgi-bin/dn/e_051_03_0493.pdf
http://jetp.ac.ru/cgi-bin/dn/e_051_03_0493.pdf

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Turbulence
	Active Scalar Turbulence
	2D MHD
	2D CHNS

	Some Challenges
	Overview of the Remaining Chapters

	Cascades and Spectra of a Turbulent Spinodal Decomposition in 2D Symmetric Binary Liquid Mixture
	Introduction
	Governing Equations for Spinodal Decomposition
	Comparison and contrast of 2D CHNS Turbulence and 2D MHD Turbulence
	Basic Equations
	Ideal Quadratic Conserved Quantities
	Cascades
	Linear Elastic Wave

	Important Length Scales and Ranges of 2D CHNS Turbulence
	Numerical Results
	Basic Setup
	Benchmark
	The Hk Flux
	The Hk Spectrum Power Law
	The Energy Spectrum Power Law

	Conclusion and Discussion

	Formation and Evolution of Target Patterns in Cahn-Hilliard Flows
	Introduction
	Simulation System
	Time Evolution of the Concentration Field
	Time Evolution of the Elastic Energy
	The effects of D and 
	Conclusion and Discussion

	Spontaneous Transport Barriers Quench Turbulent Resistivity in 2D MHD
	Introduction
	Analysis: global
	Analysis: local
	Layering of magnetic potential
	Conclusions

	Summary and Future Work
	Summary
	Future Work

	Bibliography

