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Background
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Tokamak Physics Basics
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● Tokamaks are toroidal fusion devices that use 
a strong helical magnetic field to confine 
plasma.

● Key challenge: 
○ ＜n＞＜T＞τE > 1021 keV s/m3 

(Lawson criterion) → maximize 
confinement time τE  → minimize losses 
due to transport.

○ But: n, T gradients →  instabilities →  
turbulence → anomalous transport.

● Anomalous transport in tokamak plasmas can 
be attributed to drift-wave turbulence. 



Drift-Wave Turbulence
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Plasma transport across the magnetic field is largely controlled by low-frequency 
drift-wave (DW) fluctuations.

● Heat and particle loss are attributed to this DW mechanism of plasma 
turbulence.

DW: collective oscillations associated with ion/electron diamagnetic drifts which 
form in response to temperature/density gradients vd = 1/(qnB2)𝛁p ⨯ B.

Structure: cell convecting around ñ at vE = -c/B 𝛁 φ1⨯ B traveling at vd.

edgecore

n ● ñ coupled tightly to φ1 by fast parallel 
“Boltzmann” electron response (from 
force balance) ñ/n0 ≃ e φ1/Te.

● Collisions and resonances → phase 
shift ñk/n0 ≃  e φ1k/Te (1 - i δk) → 
instability!

● Turbulence results when many drift 
modes become unstable, nonlin. 
interaction becomes important! 5

Close parallel to Rossby 
waves and vortices in 
geophysical systems
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Zonal Flows

6

● DW turbulence features complex interaction between mean 
density profiles, zonal flow (ZF), and turbulence.

● ZF are special modes with m = n = 0. Turbulence-driven, 
sheared poloidal flows.

○ No radial flow → do not cause harmful transport.
○ ZF shear stretches turbulent eddies → regulate 

turbulence!

● ZF are extremely important for confinement problem!

ZFs also important in 
geophysical flows.

Feedback Loop

Eddy shearing



Transport Barriers
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Why do this?
● Plasma confinement in magnetic fusion devices. 

To achieve this, a transport barrier is critical! 
● Most likely candidate for the formation of a transport barrier is some 

effect of a shear flow on the plasma. Goal: Regulate turbulent heat flux.

● A balance between the E-field, Lorentz force, and pressure gradient 
results in an enhanced shear as the pressure gradient is increased.

The radial ion force balance gives us insight:

This triggers a “feedback loop”!

It turns out that a global pattern of isolated 
transport micro-barriers and sectors of high 
transport can coexist in plasma. This 
phenomenon resembles a staircase!



E ⨯ B Staircase
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E ⨯ B staircase current subject in M.F.E

Suggested ideas:
● E ⨯ B shear feedback, predator-prey

○ Zonal flows predator and turbulence 
intensity prey

● Jams

Some Questions
● How does staircase beat homogenization?
● Is the staircase a meta-stable state?
● What is the minimal set of scales to recover layering?

Next:
Fixed-Cell Array… 

Context: Flat spots of high transport and nearly vertical 
layers acting as mini-barriers coexist. In plasmas, avalanches 
happen in flat spots and shear layers due to zonal flows 
occur in the areas of mini-barriers.

Yellow and black colors are a rapid transition of the 
direction of flows around peaks in turbulence drive. 
This is the shear layer, which is interspersed with a 
regular pattern of shear layers and profile corrugations.

But… is there an even simpler physical mechanism 
that can produce layering? 
Answer: Yes (e.g., pattern of cells)

Dif-Pradalier, 
2017



FCA Problem
(another way to get a Staircase)
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FCA Problem (similar to E ⨯ B convection)
Transport of particle between non-overlapping or marginally overlapping cells (characteristic 
of near marginal) is an important topic in fusion plasma.
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Overlapping case: particles can transport directly from cell to cell, wandering along streamlines

Nearly-overlapping case (cells sit at near overlap): transport is a synergy of motion due to cells and 
random kicks (Collisional diffusion, ambient scattering) thru gap regions.

The transport over gap is random kicks 
(ambient diffusion): collisions, 
micro-turbulence. 

Characteristic of near marginal.

Coexistence of:
~ Fast transport - Mixing in cell
~ Slow transport - Kicks between cells

N.B.: “Profile stiffness” → Cells near overlap
   → Rapid increase in transport prevents strong overlap



What of Interest?
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The transport over gap is random kicks 
(ambient diffusion): collisions, 
micro-turbulence. 

Characteristic of near marginal.

Coexistence of:
~ Fast transport - Mixing in cell
~ Slow transport - Kicks between cells

N.B.: “Profile stiffness” → Cells near overlap
   → Rapid increase in transport prevents strong overlap

● Relevant to key question of “near marginal stability”

→ Representative of state in marginal stability.
● Stiff systems hovering near threshold (relevant 

question) 
→ Natural candidate to near marginal stability!

● Zonal (mean) flows
● similarities SOC (fronts, spreading,...)
● Staircases

Back-of-Envelope Calculation

D* ≈ factive((Δx)² / Δt); 

factive ≡ active fraction ~ δ / ℓₒ
Δt ~ ℓₒ / vₒ → cell circulation time

So, δ² ~ D Δt ~ D ℓₒ / vₒ

D* ~ [(D ℓₒ / vₒ)½1 / ℓₒ] (ℓₒ² / ℓₒ) vₒ ~ [D Dcell]
½ 

~ D Pe½ 



FCA Problem (cont.d)
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“Steep transitions in the density exist 
between each cell.”

Rosenbluth et. al. ‘87 → Layering!
→ Simple consequence of two rates
→ “Rosenbluth Staircase”

Transport? Answer: Deff ~ D Pe½ {Not a simple addition of process!} 
→ Two time rates: τH=d / v (fast), τD=d² / D (slow)
→ Pe = v d / D  >>  1

Profile?
Consider concentration of injected dye (passive scalar transport in 
eddys) → profile

Consider a general case of a system of eddies not overlapping but tangent → Staircase

● Staircase arises in stationary array of passive 
eddies (Note that there is no FEEDBACK)

● Global transport hybrid:
→ fast rotation in cell
→ slow diffusion in boundary layer

● Irreversibility localized to inter-cell boundary.

Important:

Relevant to key question of “near 
marginal stability”

Staircase arises in an array 
of stationary eddies!



FCA Setup
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Periodic

Periodic
d

L

Constant flux of 
particle concentration 
enters at left boundary

Noisey deposition 
(Pulse Train)

Constant flux of 
particle concentration 
exits at right boundary

Combination of fixed 
flux and periodic 
boundary conditions are 
used to model the 
physics of  core to edge 
in fusion devices. 

y

x
x = radial
y = poloidal

We are primarily concerned with Pe >> 1, where 
layering occurs (physics explained by fast 
mixing within the cells and slow mixing across 
the boundaries of the cells).



FCA Problem (cont.d)
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Next:

The governing equation that produces layering is the passive-scalar transport equation.

BUT, this setup is 
contrived, NOT 
self-organized!!!
Cellular array is 
severely constrained!

Pe is defined as the 
ratio between the 
advective term and 
diffusion term! 
(Pe >> 1)

A preliminary study is done to verify that code reproduces known theoretical results!

Constrained (6x6) cell array

What about the dynamics of 
a less constrained cell array 
(i.e., vortex array with 
fluctuations) ?



Relaxing FCA with FVA 
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Consider Another Approach
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● We want to study a much more general and less constrained version of the cell array.
○ Consider a vortex array with fluctuations; jitters.

● How resilient is the staircase in the presence of these small variations to a fixed vortex array? 

In the process of studying the resilience of the 
staircase, we aim to answer the following:
1. What happens to interspersed regions of 

strong scalar concentration mixing as 
cells relax? What about general cell 
interactions/behavior?

2. What is the behavior of the scalar 
trajectory through the VA?

3. How does the increase of scattering in 
the VA affect the transport of scalar 
concentration? 

Example of less constrained cell array

To answer these questions, we use the idea of 
a Melting Vortex Crystal… Novel representation of array of cells in tokamaks



Fluctuating Vortex Array

→ We begin with the 2D NS equation that can be written in nondimensional form (Perlekar and Pandit 
2010),
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→ The fluctuating flow structure is created by slowly increasing the Reynolds number in the NS equation 

→ By increasing the Reynolds number this modifies the forcing and drag term, thus, scattering the vortex 
array. The resilience of the staircase is studied by increasing disorder in the vortex crystal through F⍵  

→ The “vortex array” is simply the array of cells and “fluctuation” is related to turbulence induced 
variability in the structure. The fluctuating vortex array (FVA) allows us to study a less constrained version 
of the array! Improved model of cells near marginality.

The streamfunction, ψ, at different evolutionary stages of the “fluctuating” vortex array is inserted into 
the passive scalar equation to study the resilience of the staircase structure.

Why are we doing this? We know that a system with two disparate time scales forms a staircase!
● Now consider fluctuations… → Will staircase survive?
Vortex array is an alternative way to view convection cells!



FVA Cell Dynamics
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● Contour plots of the streamfunction (ψ), illustrating the different stages of a FVA. 
● As Ω is slowly increased, there is a merger of vortices along with distortions of the cellular array.

○ Vibrating vortex crystal that goes into melting state!

We characterize different stages of the fluctuating process by analyzing the 
contour plot of the FVA and the FVA’s energy trace during each different stage.  
There are five different stages: 

● Stable (SX) [Ω < 6.5]
● Stable Distorted (SXA) [6.5 < Ω < 8]
● Periodic (OPXA) [8 < Ω < 10]
● Quasiperiodic (OQPXA) [10 < Ω < 13]
● Spatiotemporal chaotic/turbulent (SCT) [13 < Ω] 

Streamfunction 
(ψ) is inserted 
into passive 
scalar equation.



FVA Cell Dynamics
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To understand the dynamics of the flow, it is necessary to introduce a 
nondimensional number which measures the ratio of the nonlinear term to 
the damping term in the NS equation.

We will call this ratio R,

Note: R and Re are coupled together via the amplitude of the forcing!

Here R is a measure of large scale flow and Re is a 
measure of turbulence in the flow (Re ≠ R).
● α controls large scale flow structures (when α is 

large, α damps large scale flows).
Our simulations, operate in the R > Re regime. Here large 
scale flows dominate the flow structure.



What Happens to Staircase?
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The Staircase
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● For a weakly FVA we get a baseline staircase structure. 
● On the left figure the blue and red box correspond to the blue and red 

plot line on the right. Note that steps are evenly spaced!
○ Both blue and red average scalar concentration have the same 

profile in stable stage.

x’

x’ x’

y’

y’

Example of baseline staircase structure!

So what happens to 
the staircase if we 
increase the Reynolds 
number in the VA?



Staircase Resiliency to Fluctuations
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● As we increase fluctuations in VA through Ω, we can see merger/connections of vortex 
structures in the flow. 

● These vortex mergers are shown in the scalar profile plot as mergers in steps. 
→ As we increase jittering, staircase steps merge together.  

x’

x’ x’

y’

y’



Behaviour of Staircase as Cells Fluctuate
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● To quantify the different stages of the fluctuating 
process, we look at the curvature & step length in 
scalar concentration. 

● In general, as we increase Ω, the curvature 
decreases. 

○ Steps are starting to merge together as we 
increase Ω, thus scalar profile has less curvature. 

Main Point: Despite that vortex 
array becoming more turbulent, the 
staircase structure does not collapse. 

● Staircase steps become less 
regular. They merge into 
longer steps.



The Scalar Field
(transport in the VA)



The Web
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Λ = mean sq. vorticity - mean sq. shear

Before the staircase structure forms, scalar concentration field 
forms a “web”:

● Scalar flows quickly in regions of strong shear and 
around vortices! 

○ Staircase barriers form first! Scalar travels along 
cell boundaries.

○ Overtime, vortex entrains scalar by a kind of 
“homogenization” process via the synergy of 
differential rotation and diffusion.

We use Okubo-Weiss field (Λ) to study the evolution of the flow 
structure as we increase Ω. 

● As we steadily increase Ω, the regions of saddles (Λ<0) 
increase compared to areas of centers (Λ>0).

○ Recall increase in large flow structures!
● Increase in regions of strong shear means the web will form 

thicker web fibers.
○ Wider scalar concentration path!

What does this mean for 
scalar front propagation?



Trajectory in Scattered VA → How Avalanches Propagate
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Scalar concentration travels fast along areas of strong shear (Λ<0)
● Using Okubo-Weiss field, we can connect regions of strong 

shear to their nearest strong shear neighbor.
● Path can be mapped to scalar concentration contour to show that 

indeed scalar travels along areas of strong shear.
○ Distance travel can be quantified. 

Idea relevant here is the least time criterion. As the vortex array 
fluctuates, the path of least time would increase in length.

In addition to distance travel, we also quantify the time scalar takes to 
travel from one end to the other using a pulse train.

● As the scalar concentration gets injected into the flow, a 
flamelet network pattern forms (Pocheau 2008).

○ Fingers propagate through array. Over time, the scalar 
slowly enters the vortex structures. 

The scattering of vortices leads to an overall decrease in scalar 
concentration velocity! Agrees with least time criterion (similar idea to 
scattered path of light in atmosphere).

● Staircase curvature and scalar velocity are proportional.



Transport in FVA
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As cells fluctuate, the effective diffusivity deviates but 
remains close to the Rosenbluth effective diffusivity.

● Note: we fix flow velocity and background 
diffusivity.

○ Only dimensions of cells affect transport.
This suggests that the Rosenbluth effective diffusivity is 
a good approximation even if cells are irregular!

We find that as long as the boundaries and speed of 
the cells are maintained, the effective diffusivity and 
transport does not change.

● Since effective diffusivity is proportional to β 
= dx/dy, only through geometric properties of 
the cells does transport change!

Effective diffusivity increases/decreases if the cells 
length along the gradient (dx) increases/decreases 
compared to the length perpendicular to the gradient 
(dy).



Transport in FVA
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Effective diffusivity increases/decreases if the cells length along the gradient (dx) 
increases/decreases compared to the length perpendicular to the gradient (dy).
● Cells on average remain around β ~ 1, but there are cells that are larger in size 

due to cell mergers which cause the deviation of the effective diffusivity. 



Summary



Summary
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In a much more general and less constrained version of a cell array, we study the behaviour and flow structure of a 
scalar concentration (AGAIN, all in a very simple model with no feedback). In this study, we find the following:

● Staircase form and are resilient and persistent to increasing Reynolds number (i.e., fluctuating vortex 
array).

○ Mean curvature decreases with increase in Reynolds number.
○ Average step size increases due to cell mergers.

● Scalar concentration travels along regions of strong shear creating a “web” structure.
○ Web area correlates with increase in shear regions. 

■ Web fibers become thicker!
○ IMPORTANT: Staircase barriers form first in the regime of R > Re! Vortex “homogenizes” 

scalar at a later time!
● The scattering of vortices leads to an overall decrease in scalar concentration velocity.

○ Agrees with least time criterion. 
○ Plot of scalar concentration velocity and curvature imply there is a linear relationship between 

the two. 
■ As curvature decreases, the scalar velocity decreases linearly. 

● If flow velocity and background diffusion are kept fixed, only cell geometric properties affect the 
effective diffusivity!

○  Effective diffusivity of the perturbed VA does not deviate significantly! Next: Future plans



Future Work



1) Re > R Regime
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?

Flamelet

Pocheau 2008

In this project we only explored the regime where R > Re, but what about the regime where Re > R instead?
● We found that flow structure creates a network pattern of Flamelet structures, which appear only in the case 

where Pe >> 1 and Da >> 1.
○ Here shear velocity is stronger than cell velocity, thus scalar will travel around vortex before its 

homogenized. 
● We might expect that scalar flow will resemble the well-stirred case in Re > R regime (Pe >>1 and Da << 1).

○ Here vortex structures will be dominant in the flow compared to large scale flows.  
○ Since Re will grow faster than R, we could expect that vortex structures will grow in size compared to 

large scale flows (crit. R value?). Increase in Re could result in regions of stronger mixing! 
○ We predict a much more rigid staircase structure with larger difference in height between steps.



2) Active Scalar
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A logical next step to explore is the effects than an active scalar has on the 
cellular array and inhomogenous mixing. 

● Converting passive to active will result in effects such as flux expulsion
○ Flux expulsion is simplest dynamic problem in non-ideal MHD.

Why this model?
● B expelled to boundaries, thus holds cells together! → Rigid staircase.

We turn passive scalar into an active scalar, creating a feedback between 
magnetic field and vortices:

Now, forcing of turbulence induced mixing on the cellular array will 
include the forcing of cell turn-over.

● Combination of large and small scale forcing (three controls Re, 
R, and Rm)

● Can combine two by using Prandtl number (Pm = Rm/Re).

Flux expulsion:
● Background B is wind up and 

folded by an eddy → field inside 
eddy drops → expelled to 
boundary layer of eddy.

● Time scale for flux expulsion is, 
τfe = Rm

1/3 τH
● Note: Larger Rm results in greater 

expulsion (weaker field in 
interior).



2) Active Scalar (cont.d)

34

Consider a linear magnetic potential profile:
● We expect that the vortex array will homogenize (𝛁A=0) the profile in 

areas of vortices.
● Expect that magnetic field will maintain or restore the cell array structure 

when fluctuations are present (i.e., B0 will elasticise the cell array).

Important: Flux expulsion only occurs in the kinematic regime
● Useful to explore dynamic regime (aka Vortex bursting).

Since vA ∝ B0, the strength of the magnetic field will play a role in the 
dynamics of the cellular array.

● If B0 is sufficiently small, we get cell strengthening.
● If B0 is large, vortices will not be allowed to form. 

Through scans of B0, we will address what occurs to expulsion of 
neighbor cells and their interaction… Will there be ‘interference’ of 
boundary layers? What about staircase dynamics? As magnetic fields 
get threaded around vortices, will this result in a more robust staircase? 

?

A = B0 x
Cells homogenize A!

𝛁A=0

(vA
2 / ＜v2＞) Rm < 1 (Flux expulsion) 

(vA
2 / ＜v2＞) Rm ≥ 1 (Vortex bursting) 

B

B



2) Main Idea of Active Scalar Problem (Preliminary Results)
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This problem is important and can be related back to the idea of feedback!
● We have only address the idea that staircases are resilient and robust in the presence of cell 

fluctuations.
● But could the scalar affect the dynamics or maintain the cell structure which is responsible for 

the staircase? Preliminary results show that magnetic field restores cell structure!
○ Only a small window where this occurs (i.e., small Bo)...



3) LAPD Experiment
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A vortex array can be created in the large linear 
magnetized plasma device (LAPD)

● Modification of a cathode plasma source 
with designer masks that form multiple 
current channels in a cellular pattern → form 
staircase!

○ Experiment will be conducted in the 
afterglow phase of the main discharge.

● Staircase structure can be subject to 
controllable amount of of low frequency 
density fluctuations, which act as a noise 
source.

○ Allow us to test hypotheses and 
models of staircase resiliency!

Results of experiment will yield a unique set of 
observations that can be used to test staircase 
models.



3) LAPD Experiment (cont.d)
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The vortex/filament array is a compelling realization of an 
inhomogeneous mixing flow. It allows us to investigate the following 
scientific questions:

1) Will a vortex cellular flow produce a staircase in the density 
profile of the afterglow? What are the structural characteristics of 
the staircase? How does the staircase evolve in time?

2) Is the staircase robust in a fluctuating VA? Do vortex mergers 
occur and do these induce step mergers? Here “fluctuating” can be 
realized by lowering the external axial B-field, thus allowing 
filaments to interact, scatter, and wander.

3) How does controllable external noise affect the staircase? Here 
noise can be produced by residual resistive drift waves, generated 
during the main discharge. The amplitude - noise strength - can be 
adjusted via profile variation, B0 field scans, etc.

Addressing the above will yield new insights into profile evolution, 
layering, and staircase resiliency. 

Experimental results can be compared 
to the fluctuating VA calculations and 
to BOUT++ simulations of LAPD 
plasmas.

Experiment happening July 2023!



Thank you!
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Extras
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Global Transverse Shear Effects on FCA
(Why? → time scale ratio)
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Global Transverse Shear
The streamline function used to create the Bénard convection patterns in the fluid flow is,

m = 1

The addition of global shear introduces a shear dispersion time scale, τsh= 2π/ũαm.

As the shear strength increases, the staircase profile breaks down. 
Global shear flow dissolves staircase steps, by destroying the cellular 
mixing structure:
Important:

● Corrugation breaks down for 
critical α and m.

● Shear dispersion rate gives 
effective mixing rate faster than 
diffusion.

● Let’s introduce PeSh= τD/τSh 
(measure of diffusion to shearing 
time).
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Global Transverse Shear (cont.d)
● PeSh= τD/τSh ~ αm/D >> 

1
Corrugation decays!

● PeSh /Pe = τH/τSh = 
αm/6
Shear gives effective 
mixing rate faster than 
circulation when αm>6.

● Global shear flow 
reduces the slow-fast 
time scale ratio.

● Variance measures the deviation/breakdown 
of the scalar staircase profile. 

● For different mode numbers m, the variance 
grows logistically. Linear up to PeSh /Pe~1.

● Conclude that for large α, the average scalar 
concentration profile will be of similar form 
for different m.

● As staircase steps break down what happens to 
scalar concentration confinement?

● Plot of ntot vs σx, shows that as profile deviates 
from staircase profile, scalar concentration 
decreases.

● Increase in global shear strengthens mixing (i.e., 
increases irreversible process).

43Next: lets relax FCA


