Theory of mean E × B shear in a stochastic magnetic field: ambipolarity breaking and radial current

Weixin Guo^{1*}, Min Jiang^{2*}, P. H. Diamond^{2, 3}, C.-C. Chen³

M. Y. Cao³, Hanhui Li¹, Ting Long²

¹ HUST, Wuhan, China
² SWIP, Chengdu, China
³ UCSD, San Diego, USA

Jiang* and Guo* are joint first authors.

Acknowledgement: 10th festival in Aix (work was initiated) 2019 Xavier Garbet, Lu Wang, Lothar Schmitz, Minjun Choi, George Mckee, Zheng Yan, T S Hahm and Yunfeng Liang

Outline

- Motivation and background
 - > Why? \rightarrow Interaction and co-existence of stochastic B field and turb.
 - > Key issues (L \rightarrow H transition with RMP, island, stellarator, etc)
- Mean field model $\langle E_r \rangle$ —follow radial force balance
 - Key fundamentals:
 - Break ambipolarity
 - Mean radial current density
 - Turbulent transport
 - Momentum transport (poloidal and toroidal rotation)
 - Particle transport
 - Ion heat transport
- Applications
 - L-H transition with \tilde{b}^2 , 0D at present
- Implications and future work

Outline

- Motivation and background
 - > Why? \rightarrow Interaction and co-existence of stochastic B field and turb.
 - > Key issues (L \rightarrow H transition with RMP, island, stellarator, etc)
- Mean field model $\langle E_r \rangle$ —follow radial force balance
 - Key fundamentals:
 - Break ambipolarity
 - Mean radial current density
 - Turbulent transport
 - Momentum transport (poloidal and toroidal rotation)
 - Particle transport
 - Ion heat transport
- Applications
 - L-H transition with \tilde{b}^2 , 0D at present
- Implications and future work

Motivation

- 40 years ago, H-mode with enhanced confinement makes great sense! While, attention has shifted to control it for now (←ELM)
 - \checkmark need to reconcile good power handling with good confinement
- Resonant magnetic perturbations (RMPs) suppress or mitigate ELM, and induces stochastic layer
 - Stochastic occurs when separation of magnetic field lines grows exponentially
 - good working criterion for stochasticity: magnetic island overlapping
 - ✓ degree of stochastization: auto-correlation length to the scattering length l_{ac}/l_c , where $l_{ac} = 1/|\Delta k_{\parallel}|, \ l_c = \left(\frac{k_{\theta}^2 D_M}{3L_s^2}\right)^{-1/3}$ with stochastic magnetic diffusivity $D_M = \sum_{k} |\tilde{b}_{r,k}^2| \pi \delta(k_{\parallel})$

Operation with RMP encounter challenge : $L \rightarrow H$ transition with a pre-existing, thin stochastic layer at the boundary

 Interestingly, interaction and co-existence of stochastic magnetic field and turbulence
 L→H occurs precisely in

✓ Doubt?! But indeed localized precisely where the L-H transition is trigged
 ✓ Edge turbulence and flows evolve in stochastic layer → physics of L-H transition conflated with RMP pump-out and Reynolds stress decoherence

Interactions among the plasma profiles, flows and turbulence preceding the L-H transition with RMP application are not clear

- Increase in the power threshold added new challenges to the understanding of the L \rightarrow H transition
- An explanation: edge stochasticity and a resonant electromagnetic torque → reduction of the E × B flow shear → increase in the turbulent transport and a reduction of the Reynold stress driven poloidal flow

It is of prime importance to understand the physics of E \times B shear layer structure in a stochastic magnetic field

Our goal – understand effects of stochastic field on $\langle E_r \rangle$ and $\langle v'_E \rangle$

- In this work, we present a mean field theory for E × B shear in an ambient stochastic layer
- Novel approach: revisit mean radial electric field (radial force balance Eq.) $\langle E_r \rangle = \frac{\langle \nabla P_i \rangle}{en_i} - \langle V_\theta \rangle B_\phi + \langle V_\phi \rangle B_\theta.$

 $\langle v'_E \rangle$ Heat, particles \perp , || flows \rightarrow momentum

- ✓ Study turbulence, particle, momentum and heat transport to ascertain change of $\langle E_r \rangle$ due to stochastic B field.
- ✓ Goal is towards $\langle J_r \rangle$ $\Box \langle E_r \rangle$ relation— effective "Ohm's law"
- □ Stochastic B-field, externally excited but self-consistent within plasma (Ampere's law), enters $\langle J_r \rangle$
- $\Box \langle V_{\theta} \rangle, \langle V_{\phi} \rangle, \nabla \langle P_i \rangle \text{ and } \langle n_i \rangle \text{ are all are modified by the mean radial current density } \langle J_r \rangle \text{ induced by } \langle \tilde{J}_{\parallel} \tilde{b}_r \rangle$

Outline

- Motivation and background
 - > Why? \rightarrow Interaction and co-existence of stochastic B field and turb.
 - \triangleright Key issues (L \rightarrow H transition with RMP, island, stellarator, etc)
- Mean field model $\langle E_r \rangle$ —follow radial force balance
 - Key fundamentals:
 - Break ambipolarity
 - Mean radial current density
 - Turbulent transport
 - Particle transport
 - Momentum transport (poloidal and toroidal)
 - Ion heat transport
- Applications
 - L-H transition with \tilde{b}^2 , 0D at present
- Implications and future work

Ambipolarity breaking $\Rightarrow \langle J_r \rangle$

• Most general expression of the net mean radial current density $\langle J_r \rangle$ from $\nabla \cdot \mathbf{J} = 0$

$$\frac{\partial \langle J_r \rangle}{\partial r} = \frac{\partial \langle V_r \tilde{\rho}_{pol} \rangle}{\partial r} + \frac{\partial \langle b_r J_{\parallel} \rangle}{\partial r}$$

with evident counterpart

$$\langle J_r \rangle = \langle \tilde{V}_r \tilde{\rho}_{pol} \rangle + \langle \tilde{b}_r \tilde{J}_{\parallel} \rangle \implies Both can break ambipolarity, thus influence $\langle E_r \rangle$$$

 flux of polarization charge preferentially transports ions due to greater ion inertia:

 $\tilde{\rho}_{pol} \rightarrow$ fluctuation vorticity $\nabla_{\perp}^2 \tilde{\phi} \rightarrow$ vorticity flux, i.e., Reynolds stress

 net flow along radially tilted field lines preferentially transports electrons:

How this relates to? Maxwell stress !!!

Ambipolarity breaking $\Rightarrow \langle J_r \rangle$

- Ambipolarity breaking due to stochastic field $\Rightarrow \langle J_r \rangle$ projection $\langle J_r \rangle = \langle \vec{J}_{\parallel} \cdot \vec{e}_r \rangle = \frac{\langle \tilde{J}_{\parallel} \widetilde{B}_r \rangle}{B} \quad \langle J_{\parallel} \rangle = \langle J_{\parallel,e} \rangle + \langle J_{\parallel,i} \rangle$
- From Ampere law: $\tilde{J}_{\parallel} = -\frac{c}{4\pi} \nabla^2 \tilde{A}_{\parallel}$ (Self- consistency)

Stochastic field produces currents in plasmas

$$\langle J_r \rangle = \frac{\langle \tilde{J}_{\parallel} \tilde{B}_r \rangle}{B} = -\frac{c}{4\pi B} \left\langle \frac{\partial}{\partial y} \tilde{A}_{\parallel} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \tilde{A}_{\parallel} \right.$$
$$= -\frac{c}{4\pi B} \frac{\partial}{\partial x} \left\langle \left(\frac{\partial}{\partial x} \tilde{A}_{\parallel} \right) \left(\frac{\partial}{\partial y} \tilde{A}_{\parallel} \right) \right\rangle = \frac{c}{4\pi B} \frac{\partial}{\partial x} \left\langle \tilde{B}_x \tilde{B}_y \right\rangle$$

$$= \frac{cB}{4\pi} \frac{\partial}{\partial x} \langle \tilde{b}_{\chi} \tilde{b}_{y} \rangle \Rightarrow \frac{cB_{0}}{4\pi} \frac{\partial}{\partial r} \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle \quad \text{Maxwell stress!!!}$$

Note: (1) Stochasticity excited externally (RMP) but
Ampere's law must be satisfied in plasma.
(2) Further progress is determined by cross phase

Cross Phase in Maxwell stress

$$\frac{\partial A}{\partial t} + V \cdot \nabla A = \mu \mathbf{J}$$
$$\frac{\partial A}{\partial t} + V'_E \frac{\partial A}{\partial y} + \tilde{V} \cdot \nabla A = \mu \mathbf{J}$$

fluctuating magnetic potential A_k tilted by developing $E \times B$ flow, scattered by fluctuation.

 \checkmark phase set by $\langle k_r k_{\theta} \rangle$

/3

Shear flow Fluctuation scattering

- Maxwell stress: $\langle \tilde{b}_r \tilde{b}_\theta \rangle = \frac{1}{B^2} \sum_k |\tilde{A}_k|^2 \langle k_r k_\theta \rangle$
- Evolution of radial wave number k_r :

$$\frac{dk_r}{dt} = -\frac{\partial}{\partial x}(\omega + k_\theta \langle V_E \rangle) \rightarrow k_r = k_r^0 - k_\theta V'_E \tau_c$$

$$\langle \tilde{b}_r \tilde{b}_\theta \rangle = \langle \tilde{b}_r \tilde{b}_\theta \rangle_0 + \frac{1}{B_0^2} \langle V_E \rangle' \sum_k \left(|\tilde{A}_k|^2 k_\theta^2 \tau_c \right)$$
 $\checkmark \text{ coherence time of MP}$
 $\tau_c = \left(\frac{k_\theta^2 V_E'^2 D_T}{3} \right)^{-1/3}$

- \checkmark $\langle \tilde{b}_r \tilde{b}_{\theta} \rangle_0$ defined by k_r^0 , differs dramatically from often-discussed test particle approach \rightarrow Discuss the detail later
- \checkmark **E** \times **B** shear aligns phases, regardless of mechanism.
- Tilting will tend to align turbulent RS and stochastic Maxwell stress.

Expression of $\langle J_r \rangle$ and its implication

- $\langle J_r \rangle = \frac{cB_0}{4\pi} \frac{\partial}{\partial r} \left[\langle \tilde{b}_r \tilde{b}_\theta \rangle_0 \langle V_E \rangle' \sum_{k} \left(\left| \tilde{b}_{r,k}^2 \right| \tau_{c,b} \right) \right]$ • Ultimately Notable features (1):
 - \checkmark No explicit dependence on electron inertia, $\mathbf{k} \cdot \mathbf{B}_0$ resonance ... of test particle transport by magnetic stochasticity. Still successful [Pavan, NF 1995
 - \checkmark Our analysis \rightarrow a more solid fundamental foundation
 - uses exact Ampere's law to relate \tilde{J}_{\parallel} to stochastic fields \tilde{b}_r ,
 - entails no linearization, and not require $\langle J_r \rangle = 0$
 - Recall $\langle J_r \rangle \sim |\tilde{A}_k|^2 \langle k_\theta k_r \rangle$ with ✓ How resolve discrepancy? $\rightarrow k_r^0$ is key!! $k_r = k_r^0 - k_{\theta} \langle V_{F} \rangle' \tau_c$

from Ampere's law: $-(k_r^2 + k_\theta^2)\tilde{A}_k = \frac{4\pi}{c}\int n_0|e|v_{\parallel}\tilde{f}_k d^3v$ for $k_r^2 > k_{\theta}^2$, linear response for \tilde{f}_k to $\tilde{A}_k \rightarrow k_r^2 = -\frac{4\pi n_0 |e|}{c} \int v_{\parallel} \left(-i\frac{k_{\theta}}{k}\right) \frac{\delta f_k}{8A} d^3 v$ Here, $\frac{\delta f_k}{\delta A_k}$ relates \tilde{f}_k , and thus \tilde{J}_{\parallel} , to \tilde{A}_k by the linear response. $-k_r^0 k_{\theta}$ capture stochastic field effects on electrons Detailed analysis is ٠ $-k_{\theta}^2 \langle V_E \rangle' \tau_c$ is due mainly to ion effects. left for future

Ashourvan, NF 2022]

Expression of $\langle J_r \rangle$ and its implication

- Ultimately $\langle J_r \rangle = \frac{cB_0}{4\pi} \frac{\partial}{\partial r} \left[\langle \tilde{b}_r \tilde{b}_\theta \rangle_0 \langle V_E \rangle' \sum_k \left(\left| \tilde{b}_{r,k}^2 \right| \tau_{c,b} \right) \right]$ Notable features (2):
 - ✓ $\langle J_r \rangle \sim \frac{\partial}{\partial r} (|\tilde{b}_r^2|)$ → Dependence on magnetic fluctuation envelope structure
 - ✓ Thus, introduce novel scale, the radial envelope or spectral scale, $\ell_{env}^{-1} = |\tilde{b}_r^2|^{-1} \frac{\partial}{\partial r} (|\tilde{b}_r^2|)$ i.e., characteristic scale of the fluctuation intensity profile

 $-\ell_{env}$ is quite small, only a few centimeters in radial extension - rather modest $|\tilde{b}_r^2|$ can produce significant effects near separatrix $-\langle J_r \rangle$ is not necessarily "small", even in the absence of electron inertia

Notable features (3):

✓ multi-scale character

 Δ_c (mode width) is set by drift wave propagation

Expression of mean radial electron current density $\langle J_{r,e} \rangle$

- Analysis of the L \rightarrow H transition, requires $\langle J_{r,e} \rangle = \langle J_r \rangle n_0 |e| \langle \tilde{b}_r \tilde{V}_{\parallel,i} \rangle$
- Net ion flow along the tilted lines $\langle \tilde{b}_r \tilde{V}_{\parallel,i} \rangle$ by [Chen C.C et al PPCF2021]

-- weak turbulence $(\omega < k_{\parallel}c_{s})$ $\langle \tilde{b}_{r}\tilde{V}_{\parallel,i}\rangle \cong -D_{M}\frac{\partial\langle V_{\parallel,i}\rangle}{\partial r}$ with $D_{M} = \sum_{k} |\tilde{b}_{r,k}^{2}| \pi \delta(k_{\parallel})$ $\langle J_{r,e}\rangle$ $= \frac{cB_{0}}{4\pi |e|}\frac{\partial}{\partial r}\sum_{k} [\langle \tilde{b}_{r}\tilde{b}_{\theta}\rangle_{0}$ $- |\tilde{b}_{r,k}^{2}| \langle V_{E}\rangle'\tau_{c,b}] + n_{0}|e|D_{M}\frac{\partial\langle V_{\parallel,i}\rangle}{\partial r}$ -- $|\tilde{b}_{r,k}^{2}| \langle V_{E}\rangle'\tau_{c,b}] + n_{0}|e|D_{M}\frac{\partial\langle V_{\parallel,i}\rangle}{\partial r}$ -- $|\tilde{b}_{r,k}^{2}| \langle V_{E}\rangle'\tau_{c,b}] + n_{0}|e|D_{M}\frac{\partial\langle V_{\parallel,i}\rangle}{\partial r}$ -- $|\tilde{b}_{r,k}^{2}| \langle V_{E}\rangle'\tau_{c,b}] + n_{0}|e|\frac{D_{st}}{\rho c_{s}^{2}}\frac{\partial\langle P_{i}\rangle}{\partial r}$

- ✓ $\langle J_{r,e} \rangle$ cannot be written as the divergence of a flux
- ✓ $\langle J_{r,e} \rangle$ is proportional to $|\tilde{b}_{r,k}^2|$, driven by magnetic fluctuation intensity gradient as well as by $\frac{\partial \langle V_{\parallel,i} \rangle}{\partial r}$ and $\frac{\partial \langle P_i \rangle}{\partial r}$

Flow 1: Stochastic B-field affects $\langle V_{\theta} \rangle$

Poloidal momentum balance

Turbulence Reynold stress

Maxwell stress of stochastic field perturbation

$$\frac{\partial \langle V_{\theta} \rangle}{\partial t} = -\mu(\langle V_{\theta} \rangle - V_{\theta,neo}) - \frac{\partial}{\partial r} \left(\left\langle \tilde{V}_{\theta} \tilde{V}_{r} \right\rangle - \frac{1}{4\pi\rho} \left\langle \tilde{B}_{r} \tilde{B}_{\theta} \right\rangle \right)$$

• For SS: $\langle V_{\theta} \rangle = \langle V_{\theta} \rangle_{neo} + \Delta V_{\theta}$

$$\Delta V_{\theta} = -\frac{1}{\mu} \frac{\partial}{\partial r} \left[\left\langle \tilde{V}_{\theta} \tilde{V}_{r} \right\rangle - V_{A}^{2} \left\langle \tilde{b}_{r} \tilde{b}_{\theta} \right\rangle \right] \quad \text{Competition}!!!$$
$$= \frac{1}{\mu} \frac{\partial}{\partial r} \left\langle V_{E} \right\rangle' \left[\sum_{k} \left| \tilde{V}_{r,k} \right|^{2} \tau_{c,\phi} - V_{A}^{2} \left| \tilde{b}_{r,k}^{2} \right| \tau_{c,b} \right]$$

□ V'_E phasing via tilt tends to align turbulence and stochastic Bfield, which counteracts the spin-up of $\langle V_{\theta} \rangle$.

□ $\frac{\partial}{\partial r} |\tilde{b}_r|^2$, i.e., profile of stochastic enters → introduce stochastic layer width as novel scale

Flow 2: Stochastic B-field affects $\langle V_{\phi} \rangle$

• For
$$V_{\phi}$$
: $\frac{\partial \langle V_{\phi} \rangle}{\partial t} + \nabla \cdot \langle \tilde{V}_{r} \tilde{V}_{\phi} \rangle = \frac{1}{\rho c} \langle J_{r} \rangle B_{\theta} + S_{\phi}$
 $\langle \tilde{V}_{r} \tilde{V}_{\phi} \rangle = -\chi_{\phi} \frac{\partial}{\partial r} \langle V_{\phi} \rangle, \quad \chi_{\phi} = \chi_{T} = \frac{\rho_{s}^{2} C_{s}}{L_{T}}, \quad S_{\phi} = S_{a} \exp(-\frac{r^{2}}{2L_{M,dep}^{2}})$
Only consider diffusive term.
 $\Rightarrow \frac{\partial \langle V_{\phi} \rangle}{\partial t} = \frac{\partial}{\partial r} \left(\chi_{\phi} \frac{\partial}{\partial r} \langle V_{\phi} \rangle \right) + \frac{1}{4\pi\rho} \frac{B_{\theta}}{B} \frac{\partial}{\partial r} \langle \tilde{B}_{r} \tilde{B}_{\theta} \rangle + S_{\phi}$
• For SS: $\frac{\partial}{\partial r} \left(\chi_{\phi} \frac{\partial}{\partial r} \langle V_{\phi} \rangle \right) = -\frac{V_{T_{i}}^{2} B_{\theta}}{\beta} \frac{\partial}{\partial r} \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle - S_{\phi} \quad \frac{\text{Stochasticity affects}}{\text{edge toroidal velocity, shear}}$
 $\Rightarrow \frac{\partial}{\partial r} \langle V_{\phi} \rangle|_{r_{sep}} = -\frac{1}{\chi_{\phi}} \left[\int_{0}^{r_{sep}} S_{\phi} dr + \frac{V_{T_{i}}^{2} B_{\theta}}{\beta \chi_{\phi} B} \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle|_{r_{sep}} \right]$
Integrated external torque with $\langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle = V_{E}' \tau_{c}' |\tilde{b}_{r}|^{2}$
Note: $\langle V_{\phi} \rangle'$ proportional to $|\tilde{b}_{r}|^{2} / \chi_{\phi}$. Quenched $\chi_{\phi} \Rightarrow$ stronger $\langle V_{\phi} \rangle'$ effects!

Stochasticity contribution to particle flux: two ingredients

• For electron density : $\frac{\partial n_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (r\Gamma_e) = S_p$ with $\Gamma_e = \left[-(D_{neo} + D_T) \frac{\partial n}{\partial r} + \Gamma_{e, stoch} \right] \leftarrow \begin{array}{c} D_{neo} = (m_e/m_i)^{1/2} \chi_{i,neo} \\ D_T \sim b D_{GB} \text{ with } b < 1 \end{array}$ $S_p = \Gamma_a \frac{a - r + d_a}{L_{den}^2} \exp(-\frac{(a + d_a - r)^2}{2L_{den}^2})$

• The stochastic field can induce particle flux $(n_e = n_i)$:

$$\Gamma_{e, stoch} = \frac{c}{4\pi eB} \langle \tilde{b}_r \nabla_{\perp}^2 \tilde{A}_{\parallel} \rangle + n \langle \tilde{V}_{\parallel,i} \tilde{b}_r \rangle$$
with
$$\frac{c}{\langle \tilde{b}_r \tilde{J}_{\parallel} \rangle} \langle \tilde{b}_r \tilde{J}_{\parallel,i} \rangle$$

$$\frac{c}{\langle \tilde{b}_r \tilde{J}_{\parallel,i} \rangle} \langle \tilde{b}_r \tilde{b}_{\theta} \rangle \checkmark \langle \tilde{b}_r \tilde{b}_{\theta} \rangle \text{ phasing via } V'_E \text{ tilt.}$$

$$n \langle \tilde{V}_{\parallel,i} \tilde{b}_r \rangle: \text{ parallel ion flow along tilted field lines} \qquad - \text{ Kinetic stress } \langle \tilde{b}_r \delta P \rangle \qquad - \text{ Kinetic stress } \langle \tilde{b}_r \delta P \rangle \qquad - \text{ Kinetic stress } \langle \tilde{b}_r \delta P \rangle \qquad - \text{ Kinetic stress } \langle \tilde{b}_r \delta P \rangle \qquad - \text{ Kinetic stress } \langle \tilde{b}_r \delta P \rangle \qquad - \frac{c}{4\pi e} \frac{c}{2\pi e} \frac{$$

Stochasticity contribution to particle flux: feature

• After integrating in the absence of source

$$\frac{\partial \langle n_e \rangle}{\partial t} = \frac{1}{|e|} \frac{\partial}{\partial r} \langle J_{r,e} \rangle \rightarrow \qquad \frac{\partial N_e}{\partial t} = A_{sep} \frac{1}{|e|} \langle J_{r,e} \rangle |_{r_{sep}} + C_{sep}'.$$

- N_e is the total electron number
- ber $\langle J_{r,e} \rangle$ is proportional to $|\tilde{b}_{r,k}^2|$
- A_{sep} is the surface area of the plasma at the separatrix.
- C'_{sep} is an integration constant, set by SOL physics.
- ✓ Determines "pump out" caused by RMP induced stochasticity
- ✓ Mean quasi-neutrality is maintained during pump-out by the ion polarization charge flux, → balances against $\langle J_{r,e} \rangle$ to maintain constant net charge \rightarrow → competition contributes to determining $\langle E_r \rangle$
- Particle transport is very sensitive to the envelope scale of the magnetic perturbations

$$\frac{\partial \langle n_e \rangle}{\partial t} \sim \left| \tilde{b}_r^2 \right| / l_{env}^2$$

A narrow edge stochastic layer can trigger a significant change in density, even for modest $|\tilde{b}_r^2|$

Ion heat flux with stochastic field

- Mean ion pressure evolves $\frac{\partial \langle P_i \rangle}{\partial t} + \frac{\partial}{\partial r} \langle \tilde{V}_r \tilde{P}_i \rangle = -\rho c_s^2 \frac{\partial}{\partial r} \langle \tilde{b}_r \tilde{V}_{\parallel,i} \rangle$
 - ✓ principal magnetic effect is due to the divergence of the ion flow along tilted magnetic field lines

 $\begin{array}{l} - \text{ weak turbulence } (\omega < k_{\parallel}c_{s}) \\ \langle \tilde{b}_{r}\tilde{V}_{\parallel,i} \rangle \cong -D_{M} \frac{\partial \langle V_{\parallel,i} \rangle}{\partial r} \\ \text{with } D_{M} = \sum_{k} \left| \tilde{b}_{r,k}^{2} \right| \pi \delta(k_{\parallel}) \end{array} \end{array} \begin{array}{l} - \text{ strong turbulence } (\omega > k_{\parallel}c_{s}) \\ \langle \tilde{b}_{r}\tilde{V}_{\parallel,i} \rangle \cong -\frac{1}{\rho c_{s}^{2}} D_{st} \frac{\partial \langle P_{i} \rangle}{\partial r} \\ \text{with } D_{st} = c_{s}^{2} \left| \tilde{b}_{r,k}^{2} \right| \tau_{c} \end{array}$

- \checkmark the radial current density $\langle J_r \rangle$ does not enter to determine $\langle P_i \rangle$
- ✓ for typical $|\tilde{b}_r^2|$, direct effects on ion heat transport are rather modest.
- Ion sound propagation (c_s) sets the fundamental speed for ion heat transport along wandering magnetic field lines.

$$\chi_i = c_s \sum_k \left| \tilde{b}_{r,k} \right|^2 \delta(k_{\parallel})$$
 much smaller than $\chi_e = v_{the} \sum_k \left| \tilde{b}_{r,k} \right|^2 \delta(k_{\parallel})$

Effects of stochastic magnetic fields on turbulence

• Common theme: a simple model $\nabla \cdot J = 0$ (Kadomtsev and Pogutse '78) A low-k single test mode + a high-k stochastic magnetic field

$$\vec{k} \cdot \vec{B}_{0} = 0$$
Spectrum of prescribed static
magnetic fluctuations
$$\int \phi = 0$$
Spectrum of prescribed static
magnetic fluctuations
$$\int \phi = 0$$

$$\int \phi =$$

$$\frac{\partial}{\partial t} \nabla_{\perp}^{2} \bar{\varphi} = -\frac{S}{\tau_{A}} \left(\nabla_{\parallel}^{(0)} + \tilde{\boldsymbol{b}} \cdot \nabla_{\perp} \right)^{2} \bar{\varphi} - \frac{g B_{0}}{\rho_{0}} \frac{\partial p}{\partial y}$$

Analogy	Kadomtsev and Pogutse '78	This model	
Base state	$\langle T(r) \rangle$	$ar{arphi}_{m{k}}$	electrostatic
External fluctuation	$\widetilde{\boldsymbol{b}}$	Ď	potential
Constraint	$ abla \cdot oldsymbol{q} = 0$	$\nabla \cdot \boldsymbol{J} = 0$	induced by $\widetilde{\boldsymbol{h}}$
Resulting fluctuation	$ ilde{T}$	$ ilde{arphi}_{igstackingtacking}$	$\frac{1}{2}$

See more details: M. Y. Cao, F-I8, this meeting

Towards an expression for $\langle V_E \rangle'$

• From Ohm's law, $\langle E_r \rangle$ and $\langle J_r \rangle$ are related :

$$E_r = \frac{1}{enB} \frac{\partial}{\partial r} P_{\rm i} + v_{\phi} B_{\theta} - v_{\theta} B_{\phi}.$$

$$\langle \tilde{J}_{\parallel} \tilde{B}_r \rangle \rightarrow \langle J_r \rangle \xrightarrow{\qquad \qquad n_e \text{ via } \langle \tilde{b}_r J_{\parallel} \rangle \\ \langle V_{\theta} \rangle \text{ via } \langle J_r \rangle B_t \\ \langle V_{\phi} \rangle \text{ via } \langle J_r \rangle B_{\theta}$$

- Elements for *E*×*B* shear:
 - ✓ Poloidal flow → a modification in the $\langle V_{\theta} \rangle$ since $\langle \tilde{V}_{\theta} \tilde{V}_{r} \rangle V_{A}^{2} \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle$ $\Delta V_{\theta} = -\frac{1}{\mu} \frac{\partial}{\partial r} \Big[\langle \tilde{V}_{\theta} \tilde{V}_{r} \rangle - V_{A}^{2} \langle \tilde{b}_{r} \tilde{b}_{\theta} \rangle_{0} + \langle V_{E} \rangle' V_{A}^{2} \sum_{k} \Big(\left| \tilde{b}_{r,k}^{2} \right| \tau_{c,b} \Big) \Big],$
 - ✓ Toroidal flow → induce a "intrinsic torque"

$$\frac{\partial}{\partial r} \langle V_{\phi} \rangle |_{r_{\text{sep}}} = -\frac{1}{\chi_{\phi}} \left[\int_{0}^{r_{\text{sep}}} S_{\phi} dr - \frac{v_{\text{thi}}^2}{\beta} \frac{B_{\theta}}{B_0} \left[\left\langle \tilde{b}_{r} \tilde{b}_{\theta} \right\rangle_0 - \left\langle V_E \right\rangle' \sum_{k} \left(\left| \tilde{b}_{r,k}^2 \right| \tau_{c,b} \right) \right] |_{r_{\text{sep}}} + C_{\text{sep}} \right] \right]$$

✓ Density \rightarrow necessarily also closely linked to RMP pump-out

$$\frac{\partial \langle n_{\rm e} \rangle}{\partial t} = \frac{1}{|e|} \frac{\partial}{\partial r} \langle J_{\rm r, e} \rangle, \quad \langle J_{\rm r, e} \rangle = \frac{cB_0}{4\pi |e|} \frac{\partial}{\partial r} \left\langle \tilde{b}_{\rm r} \tilde{b}_{\theta} \right\rangle - n_0 |e| \left\langle \tilde{b}_{\rm r} \tilde{V}_{\parallel, i} \right\rangle.$$

 $\checkmark \chi_i$ is modified by magnetic effects, albeit rather slightly

Five different radial scales in the model

Additional comments

1 $\langle \tilde{V}_{\theta}\tilde{V}_{r}\rangle - V_{A}^{2}\langle \tilde{b}_{r}\tilde{b}_{\theta}\rangle$, competition appears not due to Alfvenization since the static magnetic fluctuations \tilde{b}_{r} are externally driven, while the drift waves are dynamic, and heat flux driven and evolving

2 The problem is multi-scale, even in its most simple manifestation.

Table 1. Five radial scales in our model, their corresponding physics and impact.

Scale	Physics	Impact
$\overline{L_n, L_T}$	Profile gradient	Drive of turbulence
u'/u	Flow damping profile scale	Rotation shear, $\langle V_E \rangle'$
$\ell_{\text{env},\phi}$	Drift wave intensity	Reynolds stress drive
$\ell_{\mathrm{env},b}$	Stochastic field envelope scale	Magnetic stress scale
<i>k</i> _r	Stochastic field radial wavenumber	Magnetic stress phase

Outline

- Motivation and background
 - > Why? \rightarrow Interaction and co-existence of stochastic B field and turb.
 - > Key issues (L \rightarrow H transition with RMP, island, stellarator, etc)
- **D** Mean field model $\langle E_r \rangle$ —follow radial force balance
 - Key fundamentals:
 - phases
 - instability in stochastic field
 - Turbulent transport
 - Particle transport
 - Momentum transport (poloidal and toroidal)
 - Ion heat transport

Applications

- > L-H transition with \tilde{b}^2 , 0D at present
- Implications and future work

Increment of LH threshold power

Kim and Diamond model, 2003 PRL, predator: zonal flow, prey: turbulence

intensity, zonal flow, and pressure gradient.

Increment of LH threshold power

$$\alpha \equiv \frac{b^2}{\sqrt{\beta}\rho_*^2} \frac{q}{\epsilon} = 0.0, \, 0.2, \, 0.4, \, 0.6, \, 0.8..., \, 2.0$$

 P_{LI} v.s. α

More details: C.C. Chen, O 3.2, this meeting

 P_{IH} v.s. α

Testable prediction: The threshold power increase linearly with α~b²/ρ_{*}².
 Could compare directly with Δω (k₁²v_AD_M)

Outline

- Motivation and background
 - > Why? \rightarrow Interaction and co-existence of stochastic B field and turb.
 - > Key issues (L \rightarrow H transition with RMP, island, stellarator, etc)
- **D** Mean field model $\langle E_r \rangle$ —follow radial force balance
 - Key fundamentals:
 - phases
 - instability in stochastic field
 - Turbulent transport
 - Particle transport
 - Momentum transport (poloidal and toroidal)
 - Ion heat transport
- Applications
 - L-H transition with \tilde{b}^2 , 0D at present
- Implications and future work

Results and implications

Торіс	Goal	Key physical results	prediction
Reynold stress (C C Chen)	Flow shear evolution	Dephasing when $\Delta \omega \sim v_A D_M k_\perp^2$	Critical parameter $lpha \sim b^2 / ho_*^2 \sqrt{eta}$
Parallel flow and ion heat transport (P.H. Diamond)	Calculate kinetic stress $\left< \widetilde{b}_r \delta P \right>$ in turbulence	Physical understanding of stochasticity- turbulence interaction	Hybrid stochastic field + turbulence viscosity
Instability evolution in stochastic field (M.Y. Cao)	Understand how prescribed \tilde{b} affect instability evolution	Maintaining $\nabla \cdot J =$ 0 forces generation of small scale cells by \tilde{b}	$\left< \tilde{b}_r \tilde{\phi} \right> \neq 0$ \rightarrow turbulence "lock on" to \tilde{b} .
Mean field theory for $\langle E_r \rangle$ (All)	Understand electric field shear evolution	Unified model including all transport channels	$\langle V_E \rangle'$ aligns stochastic field, particle flux due to \tilde{b}

Future work

- □ Towards to the 1D model to study the interplay in L-H transition.
- **Related to experiments:**
- 1 Understand the relationship between the RMP effects on power threshold and micro-physics? [stress, fluctuations, transport...]
- 2 How does the RMP change the evolution of the shear layer (Er well)? How it builds up?
- 3 How the **cross-phase** of Reynolds stress change (evolution) vs RMP current?
- 4 How does the RMP change the **LCO** (limit cycle oscillation)?
- 5 How **toroidal velocity** change at pedestal region?
- Related work in density limit, esp. effect of RMP on Er shear

Thanks for your attention!!!