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I. Motivation

Zonal flow is an important issue in Tokamak physics:LH transition, avalanche dynamics,… 

Its existence has been confirmed both by experiment and simulation,  
BUT 

nonlinear study of its generation and especially its saturation mechanisms(by DWs) is limited…  
The most frequently involved mechanism of ZF generation is modulational instability[Diamond1998, 

Chen2000], 
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I. Motivation

HOWEVER
there is an apparent drawback of modulational analysis:

 it requires a seed ZF, furthermore the structure of the generated ZF is sensitive to the seed ZF(i.e., 
initial condition). It should treat the intrinsic features of the system.

 so far such models have not explained the spatial distribution of ZF, which is crucial to 
understanding avalanche dynamics.

In other words, a deeper understanding of ZF physics in Tokamak requires an expanded 
framework that can describe the global dynamical process of the ZF generation.  
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In this work, we report a new ZF generation mechanism, which can overcome the drawbacks 
of modulation models.  

⇓



The general logic:

I. Motivation

Zonal flow is a meso-scale structure, while drift wave is a micro-scale structure.  

An essential step of generating zonal flow by drift waves is the global coupling of 
these micro-structures. 

⬇

⬇
Toroidal coupling  provides a mechanism of global coupling of the local structures!

A natural question: how toroidal coupling induces macro/meso-scale dynamics of the 
local structures? 

Answer in this work: via phase coupling!

note: In modulational analysis, it is the seed ZF that induces the nonlocal(in space) coherence of the local 
structures, which in turn amplifies the seed ZF. Thus, the long range coherence is not induced in an 
intrinsic way.
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General form of toroidal drift wave evolution equation

∂
∂t
φm = −iωmφm − iky V + γ lφm + i2(ω deφ)m + Nm

ωm (γ l )− linear local eigen frequency
(growth rate) of the DW(i.e., ITG, TEM...)

ω de − toroidicity induced drift

ω de =
ρscs
R0

(ky cosθ + kx sinθ )

Nm − nonlinear interaction terms

Employing direct-interaction-approximation,  Nm can be written as

Nm = −γ nlφm + Fm
−γ nlφm : coherent interaction

Fm : incoherent interaction(e.g., noise)

2(ω deφ)m = ρscs
R0

ky φm+1 +φm−1( )+ kx φm+1 −φm−1( )⎡⎣ ⎤⎦

is rewritten as2(ω deφ)m

Here the toroidal mode # is fixed.

II. From linear coupled phase lattice to global phase continuum

➠ linear coupled phase lattice
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Evolution of each mode follows as:
∂
∂t
φm = −iωmφm − iky V + (γ l − γ nl )φm + iVD[ky(φm+1 +φm−1)+ kx (φm+1 −φm−1)]+ Fm

VD ≡ ρscs
R0

φm (x,t) = φm (t) e
iSm (t )+ikx (x−xm )+imθ Sm :phase of the mode at a certain rational surface;

xm : location of rational surface

Introducing an envelope function: Φ(x,t) = Φ(x,t) eiS(x,t )

Neighboring modes are overlapped, i.e., toroidal mode number is large(strong coupling limit).

Assumption:

with Φ(xm ,t) = φm (t) , S(xm ,t) = Sm (t)

II. From linear coupled phase lattice to global phase continuum

➠ Global phase continuum

Substituting it into the single mode evolution equation and taking continuous limit, 
one has:
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∂
∂t
S = −ω − ky V + 2kyVD +VDkyΔ

2 1
Φ

∂2

∂x2
Φ + 2kxVDΔ

1
Φ

∂
∂x

Φ − kyVDΔ
2 ∂

∂x
S⎛

⎝⎜
⎞
⎠⎟
2

+ FS

∂
∂t

Φ = (γ l − γ nl )Φ − kyVDΔ
2 ∂2

∂x2
S + 2kxVDΔ

∂
∂x
S

⎛
⎝⎜

⎞
⎠⎟
Φ − 2kyVDΔ

2 ∂
∂x
S ∂
∂x

Φ + FΦ

Δ = q
nq '

 distance between rational surfaces. FS = Im(−ie
− iSm Fm
|φm |

) phase scatter

Fφ = Im(e
− iSmFNL ) amplitude scatter

(I)

(II)

(I) is equivalent to an inviscid burgers equation after taking its spatial derivative 
(II) explicitly shows how the spatial structure of the envelope-intensity is modulated by the 

global phase patterning. 

In order to account the minimal nonlinear phase dynamics, we keep our expansion to         ~O(Δ2 )

Note: (I) and (II) are not closed system. Its closure  requires knowing the evolution equation of 
the zonal flow <V>. 
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II. From linear coupled phase lattice to global phase continuum



How does phase patterning drives ZF??

∂
∂t

V =∑m ∂x
2φm ∂yφm

* − γ d 〈V 〉 ! ∂x
2Φ∂yΦ

* − γ d V

‘spiky’ distribution of the local 
structures. At each rational surface, we 

only keep the resonance mode.

−γ d V  represents a ZF friction term. 

Zonal flow evolution 

vorticity flux

〈∂x
2Φ∂yΦ

*〉 = ky ∂x S∂x Φ
2 + ky Φ

2 ∂x
2S

turbulence-intensity 
inhomogeneity

To drive a ZF, inhomogeneity of turbulence intensity is not a necessary condition.  
Phase curvature can drive a net vorticity flux, too!

phase  
curvature  

∂
∂t

V = ky ∂x S∂x Φ
2 + ky Φ

2 ∂x
2S − γ d V➠ (III)

Note:  
k_y, S flip sign simultaneously.

Note: ZF is driven by radial coherence of the micro-structures, we replaced      by its envelope       φ Φ.
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 III. Roughening of the phase-gradient profile and ZF generation



∂
∂t

′S = −ky V ′ − kyVDΔ
2 ′S

∂
∂x

′S + FS′

∂
∂t

Φ = γ l − γ nl( )− kyVDΔ
2 ∂2

∂x2
S − 2kxVDΔ

∂
∂x
S

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ Φ + FΦ

(I’)

(II’)

quasi-translation invariant of the local structures, i.e.,                   

Assumptions:

∂x φ ! 0

Then, (I),(II)&(III) are significantly simplified:

A Langevin equation with a dynamical friction coefficient  

∂
∂t

V = ky Φ
2 ∂x

2S − γ d V (III’)
indicates phase curvature can drive a ZF from zero!

Physically, phase gradient is of interest, so  we do a spatial derivative on (I).

′S ≡ ∂
∂x
S

eigenfrequency of the local structures is homogeneous ∂
∂x

ω = 0
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 III. Roughening of the phase-gradient profile and ZF generation

The turbulence 
intensity-ZF feedback 

loop is not included  
here.



In the initial stage, detuning effect by ZF shear is neglected, so that the 
global-phase gradient evolution follows a noisy inviscid Burgers equation:

∂
∂t

′S = −kyVDΔ
2 ′S

∂
∂x

′S + FS′

The spatial profile of        is dominant by shock waves.′S

The short-short interaction among DWs is weak due to their strong dispersive property, so  
it is reasonable to make a weak noise assumption.

 III. Roughening of the phase-gradient profile and ZF generation

The roughness of the phase-gradient pattern is described by 

′S 2 =∑κ ′S( )κ
2

While the “energy spectrum” of Burgers turbulence is ′S( )κ
2 ∝κ −2

➠ ′S 2 ∝ a a−1  is the lower limit of κ
i.e,  a is the minor radius

The roughness of the phase-gradient pattern is proportional to the system size!

κ :  wave number of ′S
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It’s known that the Burgers turbulence is compose of shock&ramp regions: 

In shock region, ′′S < 0 :  ZF generate effectively;

In ramp region, ′′S > 0 :  ZF grows slowly and 
stops growing because of the smooth process of the ramp;

 III. Roughening of the phase-gradient profile and ZF generation

The rougher the phase-gradient, the larger the phase curvature  will be.

ZF is more pervasive in larger system.

′′S > 0 ′′S < 0

′S

x
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′S system size 
 increasing

′S

shock wave train

ZF lattice(staircase)



 III. Roughening of the phase-gradient profile and ZF generation

➠ shock regions( ′′S < 0) corresponds to transport barriers;

ramp regions( ′′S > 0) corresponds to avalanche regions;

Knowing the PDFs of shocks and ramps are greatly important in assessing the degree of 
Gyro-Bohm breaking. 

Fortunately, there are enormous studies of Burgers equation, their conclusions can be used 
immediately. 

P ′′S < 0( )∝ ′′S( )−4 :larger scale shocks are more prominent 

(Guraie 1995)P ′′S > 0( )∝ e−C ′′S 3
:Zero curvature ramps are dominant 

(Yakhot 1995)
valid for ′′S ≪ 0

PDF of shocks:

PDF of ramps:
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a new feedback loop forms:

Phase-
gradient

roughening

Zonal Flow
shear detuning

enhance roughness

reduce the degree of Gyro-Bohm breaking

IV. Nonlinear stage: an expanded feedback loop: phase gradient-ZF 

With the appearance of ZF, its shearing effect tends to detuning the phase-gradient  dynamics, so that

This is a positive feedback, so the ZF is nonlinearly enhanced.
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0 = ky Φ
2 ∂x

2S − γ d V .

∂
∂t

′S = −ky
2 Φ 2 ∂2

∂x2
′S − kyVDΔ

2 ′S
∂
∂x

′S + Fs′

IV. Nonlinear stage: an expanded feedback loop: phase gradient-ZF 

When the ZF approaches to a steady state, one has 

Substituting it into Eqn. (I’) yields a Burgers equation with negative viscosity

the negative viscosity

➠ The phase-gradient profile is steeper under the impact of ‘negative’ diffusion,
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and eventually, become singular.

Resolving of the singularity requires higher order expansion terms  
in the phase-gradient equation… 

~



V. Summary 

Global phase patterning provides a new paradigm of ZF generation: 

roughening of phase-gradient phase curvature vorticity flux

ZFenhance

ZF structures is determined by shock waves in the phase-gradient profile.
Strength of ZF is proportional to the size of the system.

This paradigm provides an intriguing way to understand avalanche 
dynamics, i.e., Gyro-Bohm breaking.
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