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Why need two di�erent approaches to CR transport?
simple facts about CRs in SNR and in ISM

D‖ ' DBohm (B/δB)2→D‖ varies between ∼ DB (in CR source, e.g.
SNR) and DISM ∼ 105DBohm (�quiet� ISM).

Away from the sources (SNR), CR energy is comparable to
magnetic energy, thermal plasma & star light and CMB all
∼ eV /cc

Therefore, in and around a CR source (SNR) PCR � B2/8π

Therefore, CRs cannot escape the source without driving strong
MHD waves, so

need to evolve CR from strong self-con�nement regime D ∼ DBohm

in and around the source to their dissolution into the ambient ISM,
D ∼ DISM � DBohm

→Interface Problem
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Problems addressed under self-con�nement/free di�usion
regime

Self-con�nement

acceleration (Bell
77)

propagation
(Voelk, Wentzel,
rev. ca 73-74)

illumination of
adjacent MC (e.g.,
Aharonian, Drury,
Voelk)

source morphology

source
calorimetry...

�Free� propagation

CR background spectra

CR chemical composition, spectral
anomalies

p/He Pamela (Adriani 2011)

Explanations: Drury; Ohira; Blasi;
Ptuskin; MM, Diamond, Sagdeev 2012

CR anisotropy, particularly sharp ∼ 10◦

Milagro (Abdo 2008)

Interpretations: Drury&Aharonian;
Desiati&Lazarian; MM, Diamond, Drury
and Sagdeev (ApJ 2010), Giacinti, Ahlers
(coh. turb. realization, statistical e�ects),
(MM, PoP 2015) 4 / 28



CR escape from SNR/Problem setting/geometry

CR escape along MF from
two polar cusps of SNR

CR di�use along MF (⊥-
propagation may be important,
but too many issues, e.g. Kirk,
Du�y and Gallant 96)

generate Alfvén waves that
suppress di�usion

to obtain CR distribution both
processes are to be treated
self-consistently

result will determine MC
emissivity

5 / 28



Equations

CR propagation in self-excited waves

d

dt
PCR (p) =

∂

∂z

κB
I

∂PCR
∂z

PCR (p) -partial pressure, I (p) -wave energy, resonance kp = eB0/c,
d/dt = [∂/∂t + (U + CA) ∂/∂z] , κB ∼ crg (p)

Wave generation by ∇PCR associated with the CR pitch-angle
anisotropy

d

dt
I = −CA

∂PCR
∂z

− ΓI

QL integral (Sagdeev et al '61)

PCR (z , t) = PCR0
(
z ′
)
− κB

CA

∂

∂z
ln

I (z , t)

I0 (z ′)

z ′ = z − (U + CA) t
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Equations

CR/Alfven wave coupling

∂W

∂t
− ∂

∂z

1

W

∂W

∂z
= − ∂

∂z
P0 (z)

W = CAa(p)
κB(p)

I -dimensionless wave energy, d/dt ≈ ∂/∂t, P0-initial CR distribution,

|z/a| < 1

Self-similar solution in variable ζ = z/
√
t, W (z , t) = w (ζ) for

|z | > a, outside initial CR cloud

d

dζ

1

w

dw

dζ
+
ζ

2

dw

dζ
= 0

solution depends on a background turbulence level W0 � 1, and
integrated CR pressure in the cloud:

Π =

∫
1

0

P0dz � 1

7 / 28



CR self-similar distribution

Self-con�nement vs test-particle escape,
√
tPCR vs

z/
√
t for di�erent values of CR pressure Π (from

MM, P. Diamond, R. Sagdeev, F. Aharonian and I.
Moskalenko ApJ 2013)

Comparing and Contrasting with

conventional TP predictions:�
�

�
�Π ' 3

CA
c

a (p)

rg (p)

P̄CR (p)

B2

0
/8π

� 1

considerable delay of CR
escape

narrower spatial
distribution of CR cloud

extended self-similar,
P ∝ 1/z region
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Results/CR pressure distribution

CR partial pressure (found in closed but implicit form) is well
approximated by:

√
tP = 2

[
ζ5/3 + (DNL)5/6

]−3/5
e−W0ζ2/4, ζ = z/

√
t

particle di�usivity is strongly suppressed by self-con�nement

e�ect:
DNL ∼ DISMe−Π,

integrated CR pressure parameter is typically large:

Π ' 3
CA
c

a (p)

rg (p)

P̄CR (p)

B2

0
/8π

� 1
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Breaks in Spectra of Escaping CRs

normalized partial pressure P (p) approximation

P ≈ 2
{
z5/3 + [DNL (p) t]5/6

}−3/5
for DNL (p) < z2/t momentum independent (DSA TP f ∼ p−4)

at p = pbr, DNL (pbr) = z2/t, DNL ∝ pδ, break index = δ/2

δ from DISM (p) and CR pressure Π (p)

if exp (−Π) ∝ p−σ and DISM ∝ pλ at p ∼ pbr, so δ = λ− σ, then
P is �at at p < pbr for δ > 0 and steepens to p−δ/2 at p = pbr.

if δ < 0, P raises with p as p−δ/2 at p < pbr and it levels o� at
p > pbr
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Morphological Signatures of CR Self-Con�nement

Fermi-LAT γ-image of SNR
W44, Uchiyama et al 2012

central source (magenta radio image)
emission is masked

bi-polar morphology of escaping CR is
clearly seen

not everywhere correlated with the
dense gas (green contours) distribution:
strong γ-�ux is expected from
overlapping regions of CR and gas
density

strong indication of �eld aligned
propagation

CR di�usivity is suppressed by up to a
factor of ten (e.g. Uchiyama et al 2012)
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Spectral Signatures of the DSA and subsequent escape
from W 44

γ -emission from MC near
SNR W44

Fermi-LAT - Agile
combined spectrum

presumably from dense MC
illuminated by CR

best �t is given by a TP source
spectrum E−q, q = 2, no
cut-o� required within

CR subjected to propagation
in evanescent Alfven waves
inside MC

wave evanescence and damping
are due to ion-neutral
collisions in MC

→break in the CR spectrum of
index unity E−q → E−q−1
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Escape Summary and Conclusions

escape of CR from accelerator is treated self-consistently with

self-generated Alfven waves

resulting CR distribution is obtained in a closed form

strong self-con�nement of CR is demonstrated for PCR � B2/8π

results are consistent with recent observations of W44 by
Fermi-LAT

escape spectra are roughly DSA-like power laws with breaks (not
peaked at Emax)

environment (target for pp reactions) is equally important to
interpret observed emission from adjacent MC
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Test Particle Transport: Basic Equation

CR transport driven by pitch-angle scattering, gyro-phase averaged

∂f

∂t
+ vµ

∂f

∂z
=

∂

∂µ

(
1− µ2

)
D (µ)

∂f

∂µ

z -along B; µ -cosine of CR pitch angle

need evolution equation for

f0 (t, z) ≡ 〈f 〉 (t, z) ≡ 1

2

1∫
−1

f (µ, t, z) dµ.

Answer deems well known (e.g., Parker 65, Jokipii 66): average and
expand in 1/D:

∂f0
∂t

= −v

2

∂

∂z

〈(
1− µ2

) ∂f
∂µ

〉
,

∂f

∂µ
' − v

2D

∂f0
∂z
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�Master� Equation

equation for f0

∂f0
∂t

=
∂

∂z
κ
∂f0
∂z

κ =
v2

4

〈
1− µ2

D

〉
Critical step: ∂f /∂t is neglected compared to v∂f /∂z

Justi�cation: for Dt & 1 anisotropic part f̃ = f − f0 must largely
decay ∝ e−λ1Dt

higher orders → suggest retaining ∂f /∂t →∂2f0/∂t2 and higher
derivative terms in �master� equation, e.g. Earl 1973, Litvinenko &
Schlickeiser 2013

arrive at telegrapher's equation:

∂f0
∂t
− ∂

∂z
κ
∂f0
∂z

+ τ
∂2f0
∂t2

= 0

where τ ∼ 1/D, κ ∼ v2/D
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Pros and Cons of telegraph equation
∂f0
∂t −

∂
∂zκ

∂f0
∂z + τ ∂

2f0
∂t2 = 0

Pros

ameliorates the major defect of di�usive approximation, in�nite
propagation velocity (UHECR: Aloisio $ Berezinsky, 2013)

allows for a wave-like transport of CR clouds

keeps the transport description simple

Cons

parabolic equation becomes hyperbolic

no longer an evolution equation

cannot be solved with no recourse to lower-level equation (needed
to compute ∂f0/∂t at t = 0)

in�nite sequence of ∂nf0/∂t
n -terms will result from iterations

smells of not properly handled (eliminated) secular terms
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Looking ahead: Is the telegraph term real? TE:
∂f0
∂t −

∂
∂zκ

∂f0
∂z + τ ∂

2f0
∂t2 = 0

In a sense... yes, BUT!

coe�cient τ at ∂2f0/∂t
2-term obtained by simple iteration in 1/D,

is numerically incorrect

neglected ∼ ∂4f0/∂z4-term contributes to the same order

∼ ∂3f0/∂z3 contribute to even lower order unless D (µ) is
symmetric and the term zeroes out

being converted into ∂2f0/∂t
2 term the term ∼ ∂4f0/∂z4 alters τ

τ -term is subdominant compared to the other two for Dt & 1 and
may largely be ignored altogether in the long time transport

17 / 28



Basic Equation with magnetic focusing

gyro-phase averaged equation with magnetic focusing

∂f

∂t
+ vµ

∂f

∂z
+ v

σ

2

(
1− µ2

) ∂f
∂µ

=
∂

∂µ
νD (µ)

(
1− µ2

) ∂f
∂µ

σ = −B−1∂B/∂z - magnetic mirror inverse scale; ν -pitch angle
scattering rate, while D (µ) ∼ 1

small parameter

ε =
v

lν
=
λ

l
=

CR m.f .p.

problem scale
� 1

l - scale of the problem;
τν → τ ; z/l → z ; σl → σ ∼ 1

∂f

∂t
− ∂

∂µ
D (µ)

(
1− µ2

) ∂f
∂µ

= −ε
(
µ
∂f

∂z
+
σ

2

(
1− µ2

) ∂f
∂µ

)
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Formal Expansion in ε� 1

f = f0 + εf1 + ε2f2 + · · · ≡ f0 + f̃

where

〈f 〉 = f0, with 〈·〉 =
1

2

1∫
−1

(·) dµ

�Master� equation

∂f0
∂t

= −ε
(
∂

∂z
+ σ

)〈
µf̃
〉

=
ε2

2

(
∂

∂z
+ σ

) ∞∑
n=1

εn−1
〈(

1− µ2
) ∂fn
∂µ

〉
�xed evolutionary structure
similarly to Lorenz's gas (Gurevich 61, Kruskal &Bernstein) f0
depends on �slow time� t2 = ε2t rather than on t.
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Regular Expansion

slow time in f0 evolution suggests to attribute time derivative term
to higher orders, so term ∝ ∂2f0/∂t2 appears, converting the
convection - di�usion equation into a �telegraph� equation.

However, f̃ does depend on t (as on the �fast� time)

Ordering should be di�erent (f = f0 + εf1 + · · · ≡ f0 + f̃ ):

∂fn
∂t
− ∂

∂µ
D (µ)

(
1− µ2

) ∂fn
∂µ

= −µ∂fn−1
∂z

− σ

2

(
1− µ2

) ∂fn−1
∂µ

≡ Φn−1 (t, µ, z)
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Chapman-Enskog analysis

Solubility condition for f2:
〈Φ1〉 = 1

2
(∂/∂z + σ)

〈(
1− µ2

)
/D
〉
∂f0/∂z = 0

Too strong restriction...

However, f0 depends on slow time t2 suggesting multi-time
expansion:

CE: ∂/∂t = (∂/∂t)
0

+ ε (∂/∂t)
1

+ . . .

more customary is a hierarchy of independent variables
t → t0, t1, . . .

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
. . .

∂fn
∂t0
− ∂

∂µ
D (µ)

(
1− µ2

) ∂fn
∂µ

= Ln−1 [f ] (t0, . . . , tn;µ, z)

≡ −µ∂fn−1
∂z

− σ

2

(
1− µ2

) ∂fn−1
∂µ

−
n∑

k=1

∂fn−k
∂tk
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Chapman-Enskog analysis

Solution can be written as

fn = f n (t2, . . . ;µ) + f̃n (t0, . . . ;µ)

where f̃n and f n satisfy, respectively, the following equations:

∂ f̃n
∂t0
− ∂

∂µ
D (µ)

(
1− µ2

) ∂ f̃n
∂µ

= Ln−1
[
f̃
]

(t0, . . . , tn;µ, z)

and

− ∂

∂µ
D (µ)

(
1− µ2

) ∂ f̄n
∂µ

= Ln−1
[
f̄
]

(t2, . . . , tn;µ, z)

The solution for f̃n takes the form
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Chapman-Enskog analysis

f̃n =
∞∑
k=1

C
(n)
k (t) e−λk t0ψk (µ)

can be easily found for any n using eigenfunctions of di�usion operator

− ∂

∂µ
D (µ)

(
1− µ2

) ∂ψk

∂µ
= λkψk ,

For D = 1, for example, ψk are the Legendre polynomials with
λk = k (k + 1), k = 0, 1, . . . .

constants C
(n)
k are determined by initial conditions for f̃n

all f̃n exponentially decay in time for t & 1

Starting from n = 0

∂ f̄0
∂t0

= 0
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Chapman-Enskog analysis

solubility condition for f̄1

∂ f̄0
∂t1

= 0.

f̄1 = −1

2
W
∂f0
∂z

where

∂W

∂µ
=

1

D
, 〈W 〉 = 0.

solubility condition for f2 yields nontrivial result for master eq., the
leading term of the ∂f0/∂t expansion in ε� 1

∂f0
∂t2

=
1

4

(
∂

∂z
+ σ

)
m
∂f0
∂z

, m =

〈(
1− µ2

)
D

〉
.
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Chapman-Enskog analysis

solubility condition for f3 and f4, ...

∂f0
∂t3

= −1

4

(
∂

∂z
+ σ

)(
∂

∂z
+
σ

2

)〈
µW 2

〉 ∂f0
∂z

∂f0
∂t4

=
1

8

(
∂

∂z
+ σ

)
×

{(
∂

∂z
+
σ

2

)2 〈
W 2

(
U ′ −m

)〉
+

(
∂

∂z
+ σ

)
∂

∂z

〈
[m (1− µ) + U]2

2D (1− µ2)

〉}
∂f0
∂z

where

U ≡
µ∫
−1

1− µ2

D
dµ, U ′ = ∂U/∂µ
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Chapman-Enskog analysis

process may be continued ad in�nitum since terms containing〈(
1− µ2

)
∂fn/∂µ

〉
can be expressed through fn−1, fn−2, ...

interested in evolving f0 on time scales t2 & 1 or t & ε−2 neglect
contributions of f̃n and retain only f̄n's:

master equation up to ε4 :

∂f0
∂t

=
ε2

4
∂′z
{
m − ε∂′′z

〈
µW 2

〉
+

ε2

2

[(
∂′′z
)2 〈

W 2
(
U ′ −m

)〉
+ ∂′z∂z

〈
[m (1− µ) + U]2

2D (1− µ2)

〉]}
∂f0
∂z

here ∂′z = ∂z + σ and ∂′′z = ∂z + σ/2.
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Is Telegraph Equation recoverable?

The structure of ME (magnetic focusing, asymmetry dropped)

∂t f = ε2∂2z
(
1− τε2∂2z

)
f

or, to the leading order in ε, �formally�

ε2∂2z f ≈ ∂t f , ε4∂4z f ≈ ∂2t f

∂f0
∂t
− ε2∂

2f0
∂z2

+ τ
∂2f0
∂t2

= 0

τ -term belongs to the fast time part of the CE reduction scheme

associated with the anisotropic part of f , ε→ 0:

(1 + τ∂t)∂t f = O
(
ε2
)

First solution: transient phenomenon, decays at t & τ

Second solution: long time evolution f = const for ε = 0

27 / 28



Conclusions (Test Particle CR transport)

CR transport, constrained by scattering on magnetic irregularities
revisited

Chapman-Enskog approach revealed convective terms arising from
the magnetic focusing e�ect, only

no �telegrapher� (second order time derivative) term emerges in
any order of the proper asymptotic expansion

the telegraph ∂2/∂t2 -term may formally be back-converted from
the fourth order of expansion, (usually not entertained in the
literature) as well as higher time derivative terms but they do not
play any signi�cant role in the CR transport within the method's
validity range
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