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Outline
• Introduction:

– Why	intrinsic	rotation	+	weak	shear?
– Intrinsic	flow	at	zero	shear:	CSDX	experiments;	ion	features
– Theory:	Dynamical	Symmetry	Breaking	in	Collisional	Drift	Wave	

turbulence
• Symmetry	Breaking	in	ITG	turbulence	at	zero	magnetic	shear?

– PSF-ITG	system
– Symmetry	breaking	in	3	instability	regimes
– Summary:	𝛻𝑉∥ effects	on	ITG	turbulence

• Lesson	for	tokamaks:	interaction	with	symmetry	breaking	based	
on	magnetic	shear
– Rotation	profiles
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• JET:	Weak	shear	AND Rotation	à Enhanced	confinement
• But	external	torque	limited	in	ITER	

• Need	understand:	Intrinsic	rotation	in	weak	shear	regimes

Intrinsic	Rotation	in	Weak	Shear

• Important	for:

• Total	effective	torque	

𝜏 = 𝜏&'( + 𝜏*+(,

• Contribution	to	𝑉-×/0

[P. Mantica, PRL, 2011;
Rice, PRL, 2013] 3



Intrinsic	𝛻 𝑣2 in	Drift	Wave	Turbulence

[Rice,	PRL,	2011]

• Axial	flow	in	CSDX:
• 𝛻𝑛4 is	free	energy	source
• 𝑣2 0 ∼ 6

+7
𝛻𝑛4

• Compare:

• Intrinsic	𝛻 𝑣2 in	C-Mod	pedestal:

• Δ 𝑣9 ∼ 𝛻𝑇

4(Zero	magnetic	shear) (Standard	shear)



Theory	of	Intrinsic	Rotation	at	Zero	Shear
• Intrinsic	flow	accelerated	by	residual	stress	(𝜏*+(, = −𝛻 ⋅ Π>&?)

𝑣@,𝑣@∥ = −𝜒9
𝑑 𝑣∥
𝑑𝑟 + 𝑉D 𝑣∥ + Π,∥>&?

• Residual	stress	driven	by	turbulence,	i.e.	Π,∥>&? ∼ 𝛻𝑃, 𝛻𝑇, 𝛻𝑛4
• Π,∥>&? ∼ 𝑘V𝑘∥ etc.	requires	symmetry	breaking	in	𝑘V𝑘∥ space,	at	ZERO	shear
• à Dynamical	symmetry	breaking
• Negative	viscosity	increment	induced	by	Π>&?

– 𝛿Π>&? = 𝜒9>&? 𝛿 𝑣2 0 à Total	viscosity:	𝜒9(X( = 𝜒9 − 𝜒9>&?

– 𝜒9(X( < 0àModulational	growth	of	𝛿 𝑣2 0

• Broader	lesson	for	tokamaks
– Synergy	of	 𝑣9 0 self-amplification	and	Π>&?

– 𝑣9 0 driven	by	𝜏[/\,	Π>&? 𝛻𝑛4, 𝛻𝑇 ,	and	enhanced	by	− 𝜒9>&?

– 𝑣9 0 ∼ ]^_`+abcd e+7,ef
ghi gh

bcd
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Compare	Symmetry	Breaking	Mechanisms
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Ion	Features	in	CSDX

• Mode	Coexistence

7

• 𝑇* profile	steepening

Electron	drift	
direction

Ion	drift	
direction



Questions

• What	happens	to	ITG	turbulence?
– How	does	𝛻𝑉∥ affect	the	ITG	turbulence?
– Does	ITG	turbulence	have	dynamical	symmetry	
breaking?

• How	does	𝛻𝑉∥ induced	symmetry	breaking	
interact	with	symmetry	breaking	by	magnetic	
shear?
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PSF-ITG	System
• Fluid	model	with	ion	dissipation
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• Landau	damping	closure:
(Hammett	and	Perkins,	PRL,	1995)

• 2	free	energy	sources:	𝛻𝑉∥ and	𝛻𝑇*
• Magnetic	shear	=	0

à No	correlation	between	parallel	and	
perpendicular	directions
à Simplified	geometry	(cylindrical)

• Dispersion	relation:

𝜏 ≡
𝑇&
𝑇*

k∥ g∥
ld

∼ mnop
ld

= 6
]�
< 1 in	CSDX

• Landau	damping	effect	ignored	
because

• ITG	Instability: 𝜔 ∼ 𝑒*uv w⁄ 𝜔f𝑘∥u𝑐?u 𝜏𝐴⁄ 6 w⁄𝐴Ωw − 𝐷 ≈ 0,

• PSFI	(parallel	shear	flow	instability):

𝜔 ∼ 𝑒*v u⁄ 𝑉0 − 𝐶4 𝐴⁄�𝐴Ωw + 𝑉0 − 𝐶4 Ω ≈ 0,

• Criterion	for	instability:

𝛻𝑉∥ and	𝛻𝑇* are	
coupled	nonlinearly

Can	be	decoupled	by	limiting	
relative	scale	length

𝐿f 𝐿�⁄ ≡ 𝜕,ln𝑇*4 𝜕,ln𝑉∥⁄

E.g.	consider	two	extreme	cases:



Instability	Regimes
• Goal:	decouple	𝛻𝑉∥ and	𝛻𝑇*

– Residual	stress	à 𝜒9>&?

– 𝜒9(X( = 𝜒9\f� + 𝜒9D��\ + 𝜒9>&?
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⇒Flow	profile	𝑉∥0 ∼ Π,∥>&? 𝜒9(X(�

• Regimes	in	𝛻𝑉∥-𝛻𝑇* space:

(1) Marginally	unstable	regime:	Δ ≳ 0
(2) ITG	dominant	regime

𝑘∥ 𝐿f
u w⁄

𝑘∥ 𝐿�
<

3
2u w⁄

𝑐?
𝑉∥

A6 w⁄

𝑘V𝜌? 6 w⁄ 𝜏6 w⁄

(3) PSFI	dominant	regime
𝑘∥ 𝐿f

u w⁄

𝑘∥ 𝐿�
>

3
2u w⁄

𝑐?
𝑉∥

A6 w⁄

𝑘V𝜌? 6 w⁄ 𝜏6 w⁄

(4) Stable	regime:	Δ < 0

Flow	profile	in	different	instability	regimes.	
The	regimes	are	identified	according	to	the	

magnitude	of	relative	scale	length	 k∥ �n
� �⁄

k∥ ��
and	magnitude	of	Δ.



Residual	Stress	Direction	Determined	by	
Mode	Phase

• Residual	stress:
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• Mode	phase	𝜃k:
– Defined	as	𝜔 = 𝜔k + 𝑖𝛾k ≡ 𝜔 𝑒*V�

à 𝜃k\f� =
uv
w ,	𝜃k

D��\ = v
u

• Residual	stress	due	to	𝛿𝑉∥0:

given	by	𝛿𝑉∥0 induced	
spectral	imbalance

𝛿Π,∥>&? = −𝜒9>&?𝛿𝑉∥0,	with

𝛿𝑉∥0à 𝛿𝜔 ≡ 𝛿𝜔 𝑒*�V�, 𝛿𝜃k:	perturbed	mode	phase

Deterimined	by	mode	phase 𝜃k:	ℜ
*
��
∼ cos v

u
− 2𝜃k



𝛻𝑉∥ Effects	on	ITG	Turbulence
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Mode	phase	𝛿𝜃k
àCross	phase	𝛿Θk

𝛿Π,∥>&? ∼ −𝜒9>&?𝛻𝑉∥

𝛻𝑉∥
Spectral	imbalance
à 𝑘V𝑘∥ 𝑉∥0 > 0

PSFI	Turbulence

Direction

Flow	Saturation



Guideline:	Physics	of	the	3	Regimes
• Marginal	regime:

– Dual	perspective:	PSFI	enhanced	by	𝛻𝑇*4;	ITG	enhanced	by	𝛻𝑉∥
– Coexistence	of	PSFI	and	ITG	turbulence

• ITG	regime:	
– Negative viscosity	increment	induced	by	𝛿𝑉∥0 à 𝜒9>&? < 0
– Total	viscosity	positive	𝜒9(X( = 𝜒9 − 𝜒9>&? > 0
– Flow	profile	enhanced	by	𝜒9>&?:	𝑉∥0 ∼ Π,∥>&? 𝜒9 − 𝜒9>&?�

• PSFI	regime:
– Flow	saturated	by	PSFI,	profile	gradient	stay	at	the	threshold:	𝑉∥0 ∼ 𝑉∥,l,*(0
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Marginal	Regime:	Flow	Profile	and	Symmetry	Breaking
• Weakly	unstable	ITG	turbulence:	𝛾k ∼ 𝜔fu − 𝜔f,l,*(u�

• 𝜔f,l,*(u nonlinear	in	𝛻𝑉∥
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à Π,∥>&? and	𝜒9 are	nonlinear	in	𝛻𝑉∥,	but	𝑉∥0 ∼ their	ratio	independent	on	𝛻𝑉∥

𝑉0 = 𝑘V𝑘∥𝑉∥0 > 0 lowers	𝜔f,l,*(u

ITG	more	unstable	for	𝑘V𝑘∥𝑉∥0 > 0

Spectral	imbalance,	setting	 𝑘V𝑘∥ 𝑉∥0 > 0

• Symmetry	breaking	by	𝛻𝑉∥:

𝛿Π,∥>&? = −𝜒9>&?𝛻𝑉∥
due	to	spectral	imbalance

• Mode	phase	𝜃k = 𝜋 − 𝜖,	because	𝛾k ≪ 𝜔k
• 𝛻𝑉∥ induced	mode	phase	𝛿𝜃k = v

u
à cos v

u + 𝛿𝜃k − 3𝜃k > 0

> 0



PSFI	and	ITG	Coexists	in	Marginal	Regime

• ITG	turbulence	with	𝛻𝑉∥ in	this	regime	is	equivalent	to	weakly	
unstable	PSFI	turbulence

• 𝛾k ∼ 𝜔fu − 𝜔f,l,*(u� ⟺ 𝛾k ∼ 𝑉0 − 𝑉l,*(0 	� ,	with	𝑉l,*(0 = 𝐶4 −
u£¤�n

�

¥]�k∥
�ld�

6 w⁄

• à 𝛻𝑇*4 lowers	the	PSFI	threshold
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• Dual	perspective:	
ITG	turbulence	enhanced	by	𝛻𝑉∥ ⟺ PSFI	turbulence	enhanced	by	𝛻𝑇*4

• Both	PSFI	and	ITG	turbulences	exist	in	marginal	regime
• 𝛻𝑇*4 and	𝛻𝑉∥ effects	are	coupled	nonlinearly



ITG	Regime
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𝜔fu ≫ 𝜔f,l,*(u

With	𝜃k =
uv
w
,	𝛿𝜃k =

uv
w

• Growth	rate	and	frequency:

• Symmetry	breaking	by	𝛻𝑉∥
à Spectral	imbalance	in	𝑘V𝑘∥ space	
à 𝑘V𝑘∥ 𝑉∥0 > 0

𝜒9>&? ∼ cos
𝜋
2 + 𝛿𝜃k − 3𝜃k < 0

Negative	viscosity	induced	by	residual	stress	
due	to	perturbed	mode	phase	set	by	𝛻𝑉∥

• Dominated	by	𝛻𝑇*4,	with	𝛻𝑉∥ as	perturbation



Symmetry	Breaking	by	𝛻𝑉∥ Compared	to	Drift	Wave

• In	ITG	turbulence,	the	𝛻𝑉∥ induced	spectral	imbalance:
– Negative	viscosity	increment:	𝜒9>&? < 0

– Total	viscosity	positive:	𝜒9(X( = 𝜒9\f� − 𝜒9>&? = u
w
𝜒9\f� > 0

– Evolution	of	a	test	flow	shear	set	by
𝜕(𝛿𝑉∥0 = 𝜒9(X(𝜕,u𝛿𝑉∥0 à 𝛾¬ = −𝜒9(X(𝑞,u < 0
à 𝛿𝑉∥0 cannot	reinforce	itself!
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ITG	turbulence Drift	Wave turbulence
Direction	of	correlator 𝑘V𝑘∥ 𝑉∥0 > 0 𝑘V𝑘∥ 𝑉∥0 > 0
Viscosity	increment 𝜒9>&? < 0 𝜒9>&? < 0

Total	viscosity 𝜒9(X( > 0 𝜒9(X( can	be	negative

Modulational instability No Can	exist



Flow	Profile	in	ITG	Regime
• 𝛻𝑉∥ decoupled	from	𝛻𝑇*4

18

Need	geometrical	
symmetry	breaking	

• 𝑉∥0 below	PSFI	regime	threshold	
𝑉∥,,&®*¯&0

𝑉∥0 enhanced	by	− 𝜒9>&? :

𝛻𝑉∥ induced	symmetry	breaking	
not	self-sustained



PSFI	Regime
• Dominated	by	𝛻𝑉∥,	with	𝛻𝑇*4 as	a	correction
• Regime	threshold	is	different	from	PSFI	threshold

– Regime	threshold:	𝛻𝑉∥ and	𝛻𝑇*4 are	well	above	threhold,	and	𝛻𝑉∥ is	larger	than	𝛻𝑇*4
– PSFI	threshold:	𝛻𝑉∥ is	large	enough	to	trigger	instability,	in	presence	of	𝛻𝑇*4
– Consider	 𝑉∥,l,*(0 ≪ 𝑉∥0 ≲ 𝑉∥,,&®*¯&0

• 𝛾k nonlinear	in	𝛻𝑉∥,	𝜔k ≲ 0 due	to	𝛻𝑇*4 correction:
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• à Π,∥>&? and	𝜒9 are	nonlinear	in	𝛻𝑉∥

• à 𝛻𝑉∥ saturated	since	 Π,∥>&? drops	as	𝛻𝑉∥ increases



Flow	Profile	in	PSFI	Dominant	Regime

• Π,∥>&? and	𝜒9 nonlinear	in	𝛻𝑉∥
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• 𝑉∥0 driven	by	ITG	turbulence	always	below	 𝑉∥,,&®*¯&0

à Additional	flow	drive	can	lead	to	PSFI	regime	 𝑉∥0 ≳ 𝑉∥,,&®*¯&0

à Result:	 𝑉∥0 saturated	by	strong	PSFI	turbulence	à 𝑉∥0 ≲ 𝑉∥,,&®*¯&0

< 𝑉∥,,&®*¯&0

• 𝑉∥0 stays	at	PSFI	threshold	due	to	balance	between	flow	drive	and	
PSFI	saturation



𝑉∥0 profile	saturated	by	PSFI
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Additional	flow	drive	
+	ITG	turbulence

𝑉∥0 hit	PSFI	
threshold	

𝑉∥0 saturated	
by	PSFI



Summary
• 𝛻𝑉∥ plays	3	roles	in	ITG	turbulence

– Drive	PSFI	à saturate	𝑉∥0 profile
– Symmetry	breaking	à spectral	imbalance,	 𝑘V𝑘∥ 𝑉∥0 > 0

– Modify	mode	phase	à 𝜒9>&? ∼ cos v
u + 𝛿𝜃k − 3𝜃k

• Interaction	between	symmetry	breaking	set	by	𝛻𝑉∥ and	by	magnetic	shear	
depends	on	instability	regimes
– In	marginal	regime:	

à Π,∥>&? primarily	set	by	geometrical	symmetry	breaking	mechanisms
à Ratio	Π,∥>&? 𝜒9� independent	from	𝛻𝑉∥
• Coexistence	of	PSFI	and	ITG	turbulence

– In	ITG	regime:	
à Π,∥>&? primarily	set	by	geometrical	symmetry	breaking	mechanisms
à − 𝜒9>&? enhances	𝑉∥0 profile

– In	PSFI	regime:	
à 𝑉∥0 saturated	by	PSFI	à 𝑉∥0 stays	at	the	PSFI	threshold
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