

#### Intrinsic Axial Flows in CSDX and Dynamical Symmetry Breaking in ITG Turbulence

-- Negative Viscosity Effects and Flow Saturation

J.C. Li, P.H. Diamond, R. Hong, S.C. Thakur, G. Tynan -- CMTFO, CER, and CASS; UCSD, USA X.Q. Xu -- LLNL, USA

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738 and DE-SC0008378.

## Outline

- Introduction:
  - Why intrinsic rotation + weak shear?
  - Intrinsic flow at zero shear: CSDX experiments; ion features
  - Theory: Dynamical Symmetry Breaking in Collisional Drift Wave turbulence
- Symmetry Breaking in ITG turbulence at zero magnetic shear?
  - PSF-ITG system
  - Symmetry breaking in 3 instability regimes
  - Summary:  $\nabla V_{\parallel}$  effects on ITG turbulence
- Lesson for tokamaks: interaction with symmetry breaking based on magnetic shear
  - Rotation profiles

#### Intrinsic Rotation in Weak Shear

- JET: Weak shear AND Rotation  $\rightarrow$  Enhanced confinement
- But external torque limited in ITER
- Need understand: *Intrinsic rotation in weak shear regimes*
- Important for:
  - Total effective torque
    - $\tau = \tau_{ext} + \tau_{intr}$
  - Contribution to  $V'_{E \times B}$



[P. Mantica, PRL, 2011; Rice, PRL, 2013]

FIG. 4 (color online).  $q_i^{\text{GB}} \text{ vs } R/L_{T_i} \text{ at } \rho_{\text{tor}} = 0.33 \text{ for similar}$ plasmas with different rotation and *s* values.

#### Intrinsic $\nabla \langle v_z \rangle$ in Drift Wave Turbulence

- Axial flow in CSDX:
- $\nabla n_0$  is free energy source
- $\langle v_Z \rangle' \sim \frac{1}{n_0} \nabla n_0$



<sup>(</sup>Zero magnetic shear)

- Compare:
- Intrinsic  $\nabla \langle v_z \rangle$  in C-Mod pedestal:



#### Theory of Intrinsic Rotation at Zero Shear

• Intrinsic flow accelerated by residual stress ( $\tau_{intr} = -\nabla \cdot \Pi^{Res}$ )

$$\langle \tilde{v}_{r} \tilde{v}_{\parallel} \rangle = -\chi_{\phi} \frac{d \langle v_{\parallel} \rangle}{dr} + V_{P} \langle v_{\parallel} \rangle + \Pi_{r\parallel}^{Res}$$

- Residual stress driven by turbulence, i.e.  $\Pi_{r\parallel}^{Res} \sim \nabla P, \nabla T, \nabla n_0$
- $\Pi_{r\parallel}^{Res} \sim \langle k_{\theta}k_{\parallel} \rangle$  etc. requires symmetry breaking in  $k_{\theta}k_{\parallel}$  space, at ZERO shear
- $\rightarrow$  Dynamical symmetry breaking
- Negative viscosity increment induced by  $\Pi^{Res}$

$$- \ \delta \Pi^{Res} = |\chi_{\phi}^{Res}| \delta \langle v_z \rangle' \rightarrow \text{Total viscosity:} \ \chi_{\phi}^{tot} = \chi_{\phi} - |\chi_{\phi}^{Res}|$$

$$-\chi_{\phi}^{tot} < 0$$
  $\rightarrow$  Modulational growth of  $\delta \langle v_z \rangle'$ 

- Broader lesson for tokamaks
  - Synergy of  $\langle v_{\phi} \rangle'$  self-amplification and  $\Pi^{Res}$
  - $-\langle v_{\phi} \rangle'$  driven by  $\tau_{NBI}$ ,  $\Pi^{Res}(\nabla n_0, \nabla T)$ , and enhanced by  $-|\chi_{\phi}^{Res}|$

$$- \langle v_{\phi} \rangle' \sim \frac{\tau_{NBI} + \Pi^{Res}(\nabla n_0, \nabla T)}{\chi_{\phi} - |\chi_{\phi}^{Res}|}$$

#### **Compare Symmetry Breaking Mechanisms**

|                     | Standard Symmetry Breaking                                                                                                                                                                                                                                       | Dynamical Symmetry Breaking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Free energy         | $\nabla T_i, \nabla T_e, \nabla n_0, \dots$                                                                                                                                                                                                                      | $\nabla n_0$ , $\nabla T_e$ electron drift waves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Symmetry<br>breaker | $E'_r$ , $I(x)'$ ,<br>All tied to magnetic field configuration                                                                                                                                                                                                   | Test toroidal flow shear, $\delta \langle v_{\phi} \rangle'$ ;<br>No requirement for shear of <b>B</b> structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Effect on flow      | Intrinsic torque, $-\partial_r \Pi^{Res}_{r\parallel}$                                                                                                                                                                                                           | Negative viscosity, $- \chi_{\phi}^{Res} $ driven by $ abla n_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Flow profile        | $\langle v_{\parallel} \rangle' = rac{\Pi_{r\parallel}^{Res}}{\chi_{\phi}}$                                                                                                                                                                                     | $\langle v_{\phi} \rangle' = rac{\text{Flow drive (e. g. } \Pi_{r\phi}^{Res}, \Delta P_i)}{\chi_{\phi}(\nabla n_0, \nabla \langle v_{\phi} \rangle) -  \chi_{\phi}^{Res} }$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Feedback loop       | Heat flux $rac{\nabla T_i + \text{geometry}}{(\text{magnetic shear})}$<br>Open loop $rac{}{}$<br>$\langle v_{\parallel} \rangle' \qquad $ | $\begin{array}{c} \hline \text{Test flow}\\ \text{shear } \delta \langle v_{\phi} \rangle' & & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ |

### Ion Features in CSDX

 Mode Coexistence average removed #43 b τ=0.175ms 0.5 **Ion drift** direction (p-(p) / σ<sub>max</sub> **Electron drift** -0.5 direction 100 20 80 4∩ 60 x (pixel)

• *T<sub>i</sub>* profile steepening



7

### Questions

- What happens to ITG turbulence?
  - How does  $\nabla V_{\parallel}$  affect the ITG turbulence?
  - Does ITG turbulence have dynamical symmetry breaking?
- How does \(\nabla V\_{\|}\) induced symmetry breaking interact with symmetry breaking by magnetic shear?

### **PSF-ITG System**

• Fluid model with ion dissipation •  $\frac{d}{dt}(1 - \nabla_{\perp}^2)\phi + \mathbf{v}_E \cdot \frac{\nabla n_0}{n_0} + \nabla_{\parallel} \tilde{v}_{\parallel} = 0,$ 

$$\frac{d\tilde{v}_{\parallel}}{dt} + \mathbf{v}_E \cdot \nabla V_{\parallel} = -\nabla_{\parallel} \phi - \nabla_{\parallel} \tilde{p}_i,$$
$$\frac{d\tilde{p}_i}{dt} + \frac{1}{\tau} \mathbf{v}_E \cdot \frac{\nabla P_0}{P_0} + \frac{\Gamma}{\tau} \nabla_{\parallel} \tilde{v}_{\parallel} + \nabla_{\parallel} Q_{\parallel} = 0.$$

• Dispersion relation:

 $A\Omega^3 - (C_0 - V')\Omega - D = 0$ 

$$\begin{split} A &\equiv 1 + k_{\perp}^2 \rho_s^2, \qquad \Omega \equiv \frac{\omega}{|k_{\parallel} c_s|}, \\ C_0 &\equiv 1 + \frac{1 + k_{\perp}^2 \rho_s^2}{\tau} \Gamma, \quad V' \equiv \frac{k_{\theta} k_{\parallel} \rho_s c_s}{k_{\parallel}^2 c_s^2} \frac{\partial V_{\parallel}}{\partial r}, \\ D &\equiv \frac{\omega_T}{\tau |k_{\parallel} c_s|}. \qquad \tau \equiv \frac{T_e}{T_i} \end{split}$$

 Landau damping effect ignored because

$$\frac{|k_{\parallel}|\chi_{\parallel}}{c_s} \sim \frac{v_{Thi}}{c_s} = \frac{1}{\sqrt{\tau}} < 1 \text{ in CSDX}$$

- 2 free energy sources:  $\nabla V_{\parallel}$  and  $\nabla T_i$
- Magnetic shear = 0 → No correlation between parallel and perpendicular directions
  - $\rightarrow$  Simplified geometry (cylindrical)
- Landau damping closure:  $Q_{\parallel,k} = -\chi_\parallel n_0 i k_\parallel ilde{T}_{i,k}$

(Hammett and Perkins, PRL, 1995)  $\chi_{\parallel}=2\sqrt{2}v_{Thi}/(\sqrt{\pi}|k_{\parallel}|)$ 

• Criterion for instability:  $\Delta \equiv \left(\frac{D}{2A}\right)^2 - \left(\frac{C_0 - V'}{3A}\right)^3 > 0$ 

 $\nabla V_{\parallel}$  and  $\nabla T_i$  are coupled nonlinearly

Can be decoupled by limiting relative scale length  $L_T/L_V \equiv \partial_r \ln T_{i0}/\partial_r \ln V_{\parallel}$ 

E.g. consider two extreme cases:

- ITG Instability:  $A\Omega^3 D \approx 0$ ,  $\omega \sim e^{i2\pi/3} (\omega_T k_{\parallel}^2 c_s^2 / \tau A)^{1/3}$
- PSFI (parallel shear flow instability):

$$A\Omega^3 + (V' - C_0)\Omega \approx 0, \quad \omega \sim e^{i\pi/2}\sqrt{V' - C_0/A}$$

## **Instability Regimes**

- Goal: decouple  $\nabla V_{\parallel}$  and  $\nabla T_{i}$ - Residual stress  $\rightarrow \chi_{\phi}^{Res}$ -  $\chi_{\phi}^{tot} = \chi_{\phi}^{ITG} + \chi_{\phi}^{PSFI} + \chi_{\phi}^{Res}$  $\Rightarrow$ Flow profile  $V_{\parallel}' \sim \Pi_{r\parallel}^{Res} / \chi_{\phi}^{tot}$
- Regimes in  $\nabla V_{\parallel}$ - $\nabla T_i$  space:
  - (1) Marginally unstable regime:  $\Delta \gtrsim 0$ (2) ITG dominant regime

 $\frac{\left(\left|k_{\parallel}\right|L_{T}\right)^{2/3}}{\left|k_{\parallel}\right|L_{V}} < \frac{3}{2^{2/3}} \frac{c_{s}}{V_{\parallel}} \frac{A^{1/3}}{(k_{\theta}\rho_{s})^{1/3}\tau^{1/3}}$ (3) PSFI dominant regime  $\frac{\left(\left|k_{\parallel}\right|L_{T}\right)^{2/3}}{\left|k_{\parallel}\right|L_{V}} > \frac{3}{2^{2/3}} \frac{c_{s}}{V_{\parallel}} \frac{A^{1/3}}{(k_{\theta}\rho_{s})^{1/3}\tau^{1/3}}$ (4) Stable regime:  $\Delta < 0$ 



Flow profile in different instability regimes. The regimes are identified according to the magnitude of relative scale length  $\frac{(|k_{\parallel}|L_T)^{2/3}}{|k_{\parallel}|L_V}$ and magnitude of  $\Delta$ .

### Residual Stress Direction Determined by Mode Phase

- Mode phase  $\theta_k$ :
  - Defined as  $\omega = \omega_k + i\gamma_k \equiv |\omega|e^{i\theta_k}$  $\rightarrow \theta_k^{ITG} = \frac{2\pi}{3}, \ \theta_k^{PSFI} = \frac{\pi}{2}$
- Residual stress due to  $\delta V'_{\parallel}$ :

• Residual stress:

Deterimined by mode phase  $\theta_k$ :  $\Re \frac{i}{\omega^2} \sim \cos \left(\frac{\pi}{2} - 2\theta_k\right)$ 

 $\Pi_{r\parallel}^{Res} \approx \Re \sum_{k} \frac{i}{\omega^2} \frac{\omega_T}{\tau} k_{\theta} k_{\parallel} \rho_s c_s |\phi_k|^2$ 

 $\delta V'_{\parallel} \rightarrow \delta \omega \equiv |\delta \omega| e^{i \delta \theta_k}, \, \delta \theta_k$ : perturbed mode phase

## $\nabla V_{\parallel}$ Effects on ITG Turbulence



### Guideline: Physics of the 3 Regimes

- Marginal regime:
  - Dual perspective: PSFI enhanced by  $\nabla T_{i0}$ ; ITG enhanced by  $\nabla V_{\parallel}$
  - Coexistence of PSFI and ITG turbulence
- ITG regime:
  - Negative viscosity increment induced by  $\delta V_{\parallel} \rightarrow \chi_{\phi}^{Res} < 0$
  - Total viscosity positive  $\chi_{\phi}^{tot} = \chi_{\phi} |\chi_{\phi}^{Res}| > 0$
  - Flow profile enhanced by  $\chi_{\phi}^{Res}: V_{\parallel}' \sim \Pi_{r\parallel}^{Res} / (\chi_{\phi} |\chi_{\phi}^{Res}|)$
- PSFI regime:
  - Flow saturated by PSFI, profile gradient stay at the threshold:  $V'_{\parallel} \sim V'_{\parallel,crit}$

|                                                               | Marginally Unstable                            | ITG Dominant                             | PSFI Dominant                            |
|---------------------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------|
| Primary Turbulence Drive                                      | $ abla T_{i0} 	ext{ and }  abla V_{\parallel}$ | $ abla T_{i0}$                           | $ abla V_{\parallel}$                    |
| Mode Phase $\theta_k$                                         | $\lesssim \pi$                                 | $2\pi/3$                                 | $\gtrsim \pi/2$                          |
| $\nabla V_{\parallel}$ Effect on Mode Phase $\delta \theta_k$ | $\pi/2$                                        | $\pi/3$                                  | NA                                       |
| $\nabla V_{\parallel}$ Induced Symmetry Breaking              | $k_{	heta}k_{\parallel}V_{\parallel}'>0$       | $k_{	heta}k_{\parallel}V_{\parallel}'>0$ | $k_{	heta}k_{\parallel}V_{\parallel}'>0$ |

#### Marginal Regime: Flow Profile and Symmetry Breaking

- Weakly unstable ITG turbulence:  $\gamma_k \sim \sqrt{\omega_T^2 \omega_{T,crit}^2}$
- $\omega_{T,crit}^2$  nonlinear in  $\nabla V_{\parallel}$   $\longleftrightarrow$   $\omega_{T,crit}^2(V_{\parallel}') = \frac{4\tau^2 k_{\parallel}^2 c_s^2 (C_0 V')^3}{27A}$

 $\rightarrow \Pi_{r\parallel}^{Res}$  and  $\chi_{\phi}$  are nonlinear in  $\nabla V_{\parallel}$ , but  $V'_{\parallel} \sim$  their ratio independent on  $\nabla V_{\parallel}$ 

- Symmetry breaking by  $\nabla V_{\parallel}$ :  $V' = k_{\theta}k_{\parallel}V'_{\parallel} > 0$  lowers  $\omega_{T,crit}^2$
- Mode phase  $\theta_k = \pi \epsilon$ , because  $\gamma_k \ll \omega_k$ •  $\nabla V_{\parallel}$  induced mode phase  $\delta \theta_k = \frac{\pi}{2}$   $\rightarrow \cos\left(\frac{\pi}{2} + \delta \theta_k - 3\theta_k\right) > 0$  $\chi_{\phi}^{Res} \cong \frac{4^{4/3}}{3^{5/2}} \sum_k \frac{C_0^2}{A^{1/3}} \frac{\tau^{5/3}}{\omega_T^{2/3}} \frac{k_{\theta}^2 \rho_s^2 |k_{\parallel} c_s|^{2/3}}{\sqrt{\omega_T^2 - \omega_{T, crit}^2(0)}} |\phi_k|^2 > 0$

ITG more unstable for  $k_{\theta}k_{\parallel}V_{\parallel}' > 0$ 

Spectral imbalance, setting  $\langle k_{\theta}k_{\parallel}\rangle V_{\parallel}'>0$ 



### PSFI and ITG Coexists in Marginal Regime

• ITG turbulence with  $\nabla V_{\parallel}$  in this regime is equivalent to weakly unstable PSFI turbulence

• 
$$\gamma_k \sim \sqrt{\omega_T^2 - \omega_{T,crit}^2} \Leftrightarrow \gamma_k \sim \sqrt{V' - V'_{crit}}$$
, with  $V'_{crit} = C_0 - \left(\frac{27A\omega_T^2}{4\tau^2 k_{\parallel}^2 c_s^2}\right)^{1/3}$ 

•  $\rightarrow \nabla T_{i0}$  lowers the PSFI threshold

- Dual perspective: ITG turbulence enhanced by  $\nabla V_{\parallel} \iff$  PSFI turbulence enhanced by  $\nabla T_{i0}$
- Both PSFI and ITG turbulences exist in marginal regime
- $\nabla T_{i0}$  and  $\nabla V_{\parallel}$  effects are coupled nonlinearly

## ITG Regime

• Dominated by  $\nabla T_{i0}$ , with  $\nabla V_{\parallel}$  as perturbation



Negative viscosity induced by residual stress due to perturbed mode phase set by  $\nabla V_{\parallel}$ 

Symmetry Breaking by  $\nabla V_{\parallel}$  Compared to Drift Wave

- In ITG turbulence, the  $\nabla V_{\parallel}$  induced spectral imbalance:
  - Negative viscosity increment:  $\chi_{\phi}^{Res} < 0$
  - Total viscosity positive:  $\chi_{\phi}^{tot} = \chi_{\phi}^{ITG} |\chi_{\phi}^{Res}| = \frac{2}{3}\chi_{\phi}^{ITG} > 0$
  - Evolution of a test flow shear set by

$$\partial_t \delta V'_{\parallel} = \chi_{\phi}^{tot} \partial_r^2 \delta V'_{\parallel} \xrightarrow{} \gamma_q = -\chi_{\phi}^{tot} q_r^2 < 0$$

$$\rightarrow \delta V'_{\parallel}$$
 cannot reinforce itself!

|                          | ITG turbulence                                            | Drift Wave turbulence                                     |
|--------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Direction of correlator  | $\langle k_{\theta}k_{\parallel}\rangle V_{\parallel}'>0$ | $\langle k_{\theta}k_{\parallel}\rangle V_{\parallel}'>0$ |
| Viscosity increment      | $\chi_{\phi}^{Res} < 0$                                   | $\chi_{\phi}^{Res} < 0$                                   |
| Total viscosity          | $\chi_{\phi}^{tot} > 0$                                   | $\chi_{\phi}^{tot}$ can be negative                       |
| Modulational instability | No                                                        | Can exist                                                 |

### Flow Profile in ITG Regime

•  $\nabla V_{\parallel}$  decoupled from  $\nabla T_{i0}$ 

 $\Pi_{r\parallel}^{Res}(\nabla V_{\parallel}, \nabla T_{i0}) \approx \Pi_{r\parallel}^{Res}(\nabla T_{i0}) + |\chi_{\phi}^{Res}(\nabla T_{i0})|\nabla V_{\parallel}$  $\nabla V_{\parallel}$  induced symmetry breaking Need geometrical symmetry breaking not self-sustained  $V_{\parallel}'$  enhanced by  $-|\chi_{\phi}^{Res}|$ :  $|V'_{\parallel}| = \frac{|\Pi^{Res}_{r\parallel}(\nabla T_{i0})|}{|\nabla_{\perp}(\nabla T_{i0}) - |\nabla^{Res}_{r\parallel}(\nabla T_{i0})|} \sim \frac{3}{2} A^{1/3} \left(\frac{\omega_{T}}{\tau |k_{\parallel}c_{s}|}\right)^{2/3} \frac{|k_{\parallel}|c_{s}|}{k_{\theta}\rho_{s}}$ 

•  $|V_{\parallel}'|$  below PSFI regime threshold  $|V_{\parallel,regime}'| \sim \frac{3}{2^{2/3}} A^{1/3} \left(\frac{\omega_T}{\tau |k_{\parallel} c_s|}\right)^{2/3} \frac{|k_{\parallel}|c_s}{k_{\theta} \rho_s}$ 

18

### **PSFI** Regime

- Dominated by  $\nabla V_{\parallel}$ , with  $\nabla T_{i0}$  as a correction
- Regime threshold is different from PSFI threshold
  - Regime threshold:  $\nabla V_{\parallel}$  and  $\nabla T_{i0}$  are well above threhold, and  $\nabla V_{\parallel}$  is larger than  $\nabla T_{i0}$
  - PSFI threshold:  $\nabla V_{\parallel}$  is large enough to trigger instability, in presence of  $\nabla T_{i0}$
  - Consider  $|V'_{\parallel,crit}| \ll |V'_{\parallel}| \lesssim |V'_{\parallel,regime}|$
- $\gamma_k$  nonlinear in  $\nabla V_{\parallel}$ ,  $\omega_k \leq 0$  due to  $\nabla T_{i0}$  correction:

$$\gamma_k \cong \frac{|k_{\parallel} c_s|}{\sqrt{A}} \sqrt{V' - C_0}, \ \omega_k \cong -\frac{\omega_T}{2\tau (V' - C_0)}.$$

•  $\rightarrow \Pi_{r\parallel}^{Res}$  and  $\chi_{\phi}$  are nonlinear in  $\nabla V_{\parallel}$ 

$$\Pi_{r\parallel}^{Res} \cong -\sum_{k} \frac{\omega_{T}^{2}}{\tau^{2}} \frac{A^{3/2}}{|k_{\parallel}c_{s}|^{3}(V'-C_{0})^{5/2}} k_{\theta}k_{\parallel}\rho_{s}c_{s}|\phi_{k}|^{2}, \ \chi_{\phi} = \sum_{k} \frac{\sqrt{A}}{|k_{\parallel}c_{s}|\sqrt{V'-C_{0}}} k_{\theta}^{2}\rho_{s}^{2}|\phi_{k}|^{2}.$$

•  $\rightarrow \nabla V_{\parallel}$  saturated since  $|\Pi_{r\parallel}^{Res}|$  drops as  $\nabla V_{\parallel}$  increases

#### Flow Profile in PSFI Dominant Regime

- $|V'_{\parallel}|$  driven by ITG turbulence always below  $|V'_{\parallel,regime}|$   $\rightarrow$  Additional flow drive can lead to PSFI regime  $|V'_{\parallel}| \gtrsim |V'_{\parallel,regime}|$  $\rightarrow$  Result:  $|V'_{\parallel}|$  saturated by strong PSFI turbulence  $\rightarrow |V'_{\parallel}| \lesssim |V'_{\parallel,regime}|$
- $\Pi_{r\parallel}^{Res}$  and  $\chi_{\phi}$  nonlinear in  $\nabla V_{\parallel}$

$$|V_{\parallel}'| = \frac{|\Pi_{r\parallel}^{Res}(\nabla T_{i0}, \nabla V_{\parallel})|}{\chi_{\phi}(\nabla T_{i0}, \nabla V_{\parallel})} \sim \frac{A}{(V_{\parallel}')^2} \left(\frac{\omega_T}{\tau |k_{\parallel} c_s|}\right)^2 \left(\frac{|k_{\parallel}| c_s}{k_{\theta} \rho_s}\right)^3$$
$$\implies |V_{\parallel}'| \sim A^{1/3} \left(\frac{\omega_T}{\tau |k_{\parallel} c_s|}\right)^{2/3} \frac{|k_{\parallel}| c_s}{k_{\theta} \rho_s} < |V_{\parallel,regime}|$$

•  $|V'_{\parallel}|$  stays at PSFI threshold due to balance between flow drive and PSFI saturation

# $|V'_{\parallel}|$ profile saturated by PSFI



### Summary

- $\nabla V_{\parallel}$  plays 3 roles in ITG turbulence
  - − Drive PSFI → saturate  $V'_{\parallel}$  profile
  - Symmetry breaking  $\rightarrow$  spectral imbalance,  $\langle k_{\theta}k_{\parallel}\rangle V_{\parallel}' > 0$
  - Modify mode phase  $\rightarrow \chi_{\phi}^{Res} \sim \cos\left(\frac{\pi}{2} + \delta\theta_k 3\theta_k\right)$
- Interaction between symmetry breaking set by  $\nabla V_{\parallel}$  and by magnetic shear depends on instability regimes
  - In marginal regime:
    - $\rightarrow \Pi_{r\parallel}^{Res}$  primarily set by geometrical symmetry breaking mechanisms
    - → Ratio  $\Pi_{r\parallel}^{Res}/\chi_{\phi}$  independent from  $\nabla V_{\parallel}$ 
      - Coexistence of PSFI and ITG turbulence
  - In ITG regime:
    - $\rightarrow \Pi_{r\parallel}^{Res}$  primarily set by geometrical symmetry breaking mechanisms
    - $\rightarrow -|\chi_{\phi}^{Res}|$  enhances  $V_{\parallel}'$  profile
  - In PSFI regime:
    - $\rightarrow V'_{\parallel}$  saturated by PSFI  $\rightarrow V'_{\parallel}$  stays at the PSFI threshold