Journal Club Talk, Nov 13, 2015

Modified from poster by J. Li et al in 57th APS-DPP meeting

Dynamics of **intrinsic axial flow** in a cylindrical experimental plasma

J. Li, P. H. Diamond, UCSD X. Q. Xu, LLNL Y. Kosuga, Kyushu University, Japan O. D. Gurcan, Ecole Polytechnique, France

Ackn: R. Hong, A. Ashourvan, S. C. Thakur, L. Cui, G. R. Tynan, P. Vaezi, UCSD

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738

Outline

- Background:
 - Linear Device Configuration and Results: CSDX & PANTA
 - Problem: Origin of axial flow?
- Review of intrinsic rotation
 - Residual stress, with applicability of conventional wisdom
- Dynamical Symmetry Breaking Mechanism
 - Dynamical symmetry breaking
 - Compare to standard mechanism: negative viscosity vs intrinsic torque
- Negative Viscosity Phenomena
 - Modulational instability for a test flow shear $\delta \langle v_z \rangle' <-> \chi_{\phi} vs |\chi^{Res}|$
 - What stops $\langle v_z \rangle'$ growth? Parallel Shear Flow Instability (PSFI)
- Flow structure
 - Turbulent pipe flow model: ΔP_z , neutral boundary layer
 - Flow profile: Including PSFI effect $\rightarrow \langle v_z \rangle'$ structure
- Significance for tokamaks
- Conclusion

Summary

- Intrinsic flow suggested by experiments in linear devices, where conventional wisdom does not apply
- Dynamical symmetry breaking: Seeded by test flow shear $\delta \langle v_z \rangle' \rightarrow$ Intrinsic flow $\rightarrow \delta \langle v_z \rangle'$ feeds back on itself
- Perturbed residual stress $\delta \Pi^{Res} \sim |\chi^{Res}| \delta \langle v_z \rangle'$ induces **negative viscosity increment** $|\chi^{Res}|$, total viscosity $\chi_{\phi}^{\text{tot}} = \chi_{\phi} - |\chi^{Res}|$
- Flow shear $\langle v_z \rangle'$ stays below Parallel Shear Flow Instability threshold; total viscosity stays positive
- For tokamaks: synergy of standard residual stress driven by ∇T , ∇P , etc. and $\delta \Pi^{Res}$ induced negative viscosity increment

• Gas input from side

\rightarrow No axial momentum input

Gas input from the source end

\rightarrow Axial momentum input

Parameters	CSDX Typical Values	PANTA Typical Values
Source	< 5 kW	3 kW
Pressure	0.1~1.3 Pa	0.1 Pa, 0.4 Pa
B field	Up to 2400 G	900 G
T _e	3~6 eV	3 eV
n _e	0.5~2 x 10 ¹⁹ m ³	1 x 10 ¹⁹ m ³
T_i	0.3~0.8 eV	

* [1] S. Thakur et al, Plasma Sources Sci. Technol. 23 (2014) 044006;

[2] T. Kobayashi (2014, Jun). Parallel flow structure formation by turbulent momentum transport in linear magnetized 4 plasma. Asia Pacific Transport Working Group, Kyushu University, Japan.

Profile of Axial Flow

* [1] L. Cui (2015, Nov). Spontaneous Profile Self-Organization in a Simple Realization of Drift-Wave Turbulence. Invited talk, Session BI3, 57th APS-DPP meeting, Savannah, Georgia.

[2] T. Kobayashi (2014, Jun). Parallel flow structure formation by turbulent momentum transport in linear magnetized 5 plasma. Asia Pacific Transport Working Group, Kyushu University, Japan.

Evidence of Intrinsic Flow

Device	Cause of Driven Flow	Evidence of Intrinsic Flow
CSDX	 Neutral gas → Ionized & heated during helicon discharge → Ion pressure gradient in axial direction ΔP_z → Driven flow 	 Flow profile, density profile steepen as <i>B</i> increases: ∇N ↑ → Drift Wave (DW) turbulence ↑ → Turbulent transport of axial momentum ↑ → Intrinsic flow interacts with driven flow → Total flow structure changes
PANTA	Gas thruput into the source end → External momentum source → Drives flow from source to endplate	Flow reversal → Intrinsic flow interacts with driven flow → Global net flow direction: Source → Endplate

Problem

- Axial flows
 - CSDX, PANTA both suggest the existence of intrinsic axial flows
- Questions:
 - (1) What generates the intrinsic flow?
 - (2) How does intrinsic flow interact with driven flow?
- Clue:
 - Analogous to intrinsic rotation in tokamaks: axial <-> parallel

7

Intrinsic Rotation in Tokamaks

- Cancellation experiment: existence of intrinsic torque
- Neutral Beam Injection (NBI) \rightarrow Heating, external torque
- 1 co + 2 ctr \rightarrow 0 total \rightarrow Intrinsic torque = 1 co NB

Figure 1. 'Cancellation' experiment of Solomon *et al* from DIII-D [21]. A mix of 1 co and 2 counter beams yield a flat rotation profile with $\langle v_{\phi} \rangle \cong 0$. This shows that the intrinsic torque for these parameters is approximately that of 1 neutral beam, in the co-current direction.

Standard Approach

• Mean flow equation:

$$\partial_t \langle v_{\parallel} \rangle + \partial_r \langle \tilde{v}_r \tilde{v}_{\parallel} \rangle = 0$$

• Intrinsic flow is accelerated by the residual piece of the momentum flux:

$$\langle \tilde{v}_{r}\tilde{v}_{\parallel}\rangle = -\chi_{\phi}\frac{d\langle v_{\parallel}\rangle}{dr} + V_{P}\langle v_{\parallel}\rangle + \Pi_{r\parallel}^{Res}$$

- Ignore momentum pinch V_P
- Correlated by **B** field structure, $k_{\parallel} = k_{\theta} \frac{x}{L_s}$, $L_s =$ magnetic shear length

•
$$\Pi_{r\parallel}^{Res} \sim \langle k_{\theta} k_{\parallel} \rangle = \sum_{k} k_{\theta} k_{\parallel} |\phi_{k}|^{2} = k_{\theta}^{2} \frac{\langle x \rangle}{L_{s}}$$

- x : distance from rational surface
- Needs symmetry breaking!

Symmetry Breaking

• Summary of conventional symmetry breaking mechanisms*:

Conventional mechanisms	Key physics
Electric field shear E_r'	Centroid shift \rightarrow parallel acoustic wave asymmetry \rightarrow mean $\langle k_{\parallel} \rangle$
Intensity gradient I'	Spectral dispersion from intensity gradient
Stress from polarization acceleration $\langle \tilde{E}_{\parallel} \nabla^2_{\!\!\perp} \tilde{\phi} \rangle$	Guiding center stress from acceleration due to polarization charge
Stress from $\partial_r \langle \tilde{v}_r \tilde{v}_\perp \rangle \rightarrow B_\theta \langle J_r \rangle$	$J \times B$ torque from polarization flux

- Preference of wave propagation in parallel direction, $\langle k_{\parallel} \rangle \neq 0$
- Do not apply to CSDX or PANTA Straight **B** fields

* P.H. Diamond et al, Nucl. Fusion 53 (2013) 104019; P.H. Diamond et al, Nucl. Fusion 49 (2009) 045002.

Summary of Conventional Wisdom

- Intrinsic flow accelerated by $\Pi_{r\parallel}^{Res} \sim \langle k_{\theta} k_{\parallel} \rangle$ \rightarrow Needs symmetry breaking
- Standard approach
 - → Intrinsic torque, $-\partial_r \Pi_{r\parallel}^{Res}$ accelerates flow
 - \rightarrow Does **NOT** apply to straight *B* fields
- Dynamical Symmetry Breaking
 - Drift wave turbulence in presence of axial flow shear
 - $\delta \langle v_z \rangle'$ seeds symmetry breaking
 - \rightarrow Negative viscosity increment

Model Equations

• Hasegawa-Wakatani + Axial flow:

$$\begin{split} & \frac{D}{Dt}(1-i\delta-\nabla_{\perp}^{2})\phi + \frac{1}{L_{n}}\frac{1}{r}\frac{\partial\phi}{\partial\theta} + \begin{vmatrix} \overline{\partial v_{z}} \\ \overline{\partial z} \end{vmatrix} = 0, \\ & \frac{D}{Dt}v_{z} - \langle v_{z} \rangle' \frac{1}{r}\frac{\partial\phi}{\partial\theta} = -(1-i\delta)\frac{\partial\phi}{\partial z}, \end{split}$$
 Acoustic coupling

- Acoustic coupling
 - Couple axial flow fluctuation to DW
 - Familiar: Convert parallel compression into zonal flow*
- $i\delta$: nonadiabatic electron response \rightarrow Drift wave instability

• Dispersion relation:
$$1 + k_{\perp}^2 \rho_s^2 - i\delta - \frac{\omega_*}{\omega} + \frac{k_{\theta}k_z \rho_s c_s \langle v_z \rangle'}{\omega^2} - (1 - i\delta) \frac{k_z^2 c_s^2}{\omega^2} = 0$$

Drift wave Symmetry breaking Ion acoustic wave

* Wang et al, Plasma Phys. Control. Fusion 54 (2012) 095015

Dynamical Symmetry Breaking

Quasilinear Reynolds Stress

• Reynolds stress = diffusive flux + residual stress

$$\langle \tilde{v}_r \tilde{v}_z \rangle = \Re \sum_k \frac{i}{\omega} \left(k_\theta k_z \rho_s c_s - k_\theta^2 \rho_s^2 \langle v_z \rangle' \right) |\phi_k|^2 + \sum_k \frac{\delta}{\omega} k_\theta k_z \rho_s c_s |\phi_k|^2 = -\chi_\phi \langle v_z \rangle' + \Pi_{rz}^{\text{Res}}$$

• Turbulent diffusivity:
$$\chi_{\phi} = \sum_{k} \frac{\nu_{\text{ei}}}{k_z^2 v_{\text{The}}^2} \frac{k_{\perp}^2 \rho_s^2}{1 + k_{\perp}^2 \rho_s^2} k_{\theta}^2 \rho_s^2 |\phi_k|^2$$

- Residual stress: $\Pi_{rz}^{\text{Res}} = \sum_{k} \left(\frac{\gamma_k}{\omega_k^2} + \frac{\delta}{\omega_k} \right) k_{\theta} k_z \rho_s c_s |\phi_k|^2$ $= \sum_{k} \frac{\nu_{\text{ei}}}{k_z^2 v_{\text{The}}^2} (2 + k_{\perp}^2 \rho_s^2) \left[\frac{k_{\perp}^2 \rho_s^2}{1 + k_{\perp}^2 \rho_s^2} + \frac{k_{\theta} k_z \rho_s c_s \langle v_z \rangle'}{\omega_*^2} \right] k_{\theta} k_z \rho_s c_s |\phi_k|^2$
- Sum over 2 domains, accounting for the spectral imbalance

$$\Pi_{rz}^{\text{Res}} = \text{Sign}(\delta \langle v_z \rangle') \sum_{\{k+\}} \frac{\nu}{k_{\parallel}^2 v_{\text{The}}^2} (2 + k_{\perp}^2 \rho_s^2) \frac{k_{\perp}^2 \rho_s^2}{1 + k_{\perp}^2 \rho_s^2} |k_y k_{\parallel}| \rho_s c_s \Delta I_k(\delta \langle v_z \rangle')$$

$$\downarrow$$

$$\Delta I_k(\delta \langle v_z \rangle') \equiv |\phi_k|^2 |_{\{k+\}} - |\phi_k|^2 |_{\{k-\}} \longleftrightarrow \text{Spectral imbalance} \sim \delta \langle v_z \rangle'$$

14

Contrast the 2 Stories

	Standard Symmetry Breaking	Dynamical Symmetry Breaking
Free energy source	∇T_i , ∇n , depending on turbulence type	Only drift wave turbulence so far, ∇n
Symmetry breaker	Radial electric field shear, E'_r ; Intensity gradient, $I(x)'$, etc. All tied to magnetic field configuration.	Test axial flow shear, $\delta \langle v_z \rangle'$; No requirement for shear of B structure.
Effect on the flow	Intrinsic torque, $-\partial_r \Pi^{Res}_{r\parallel}$	Negative viscosity, $\delta\Pi_{rz}^{Res} = \chi^{Res} \delta\langle v_z\rangle'$
Flow profile	$\langle v_{\parallel} \rangle' = \frac{\Pi_{r\parallel}^{Res}}{\chi_{\phi}}$	$\langle v_z \rangle' = rac{\text{Flow drive } (\Pi_{rz}^{Res}, \Delta P_z)}{\chi_{\phi} - \chi^{Res} }$
Feedback loop	Heat flux \longrightarrow ∇T_i + geometry (magnetic shear) Open loop \checkmark $\langle v_{\parallel} \rangle'$ \longleftarrow $\Pi_{r\parallel}^{Res}$	$\begin{array}{c} \mbox{Test flow}\\ \mbox{shear } \delta \langle v_z \rangle' \mbox{ \ \ } \mbox{ \ } \mbox{ \ \ } \mbox{ } \mbox{ \ \ } \mbox{ \ } \ \ } \mbox{ \ \ } \mbox{ \ \ } \ \ \ } \mbox{ \ \ } \mbox{ \ \ } \ \ } \mbox{ \ \ } \ \ \ } \mbox{ \ \ } \ \ } \mbox{ \ \ } \mbox{ \ \ } \mbox{ \ \ } \ \ \ \ \ } \ \ \ \ \ } \mbox{ \ \ \ \ \ \ \ } \mbox{ \ \ \ \ \ } \ \ \ \ \ \ \ \ \ \ \ \ \ $

Negative Viscosity Increment

- Calculate negative diffusion $\delta \Pi_{rz}^{Res} \sim |\chi^{Res}| \delta \langle v_z \rangle'$, back-of-envelope style
- Quasilinear residual stress: $\Pi_{rz}^{\text{Res}} \sim \sum_{k} \frac{\gamma_k}{\omega_k} k_{\theta} k_z \rho_s c_s N_k$
- $N_k \sim |\phi_k|^2 / \omega_k$ wave action density governed by wave kinetic equation: $\frac{\partial}{\partial t}N + v_{gr}\frac{\partial}{\partial r}N - \frac{\partial}{\partial r}\left(\omega_{k} + \mathbf{k} \cdot \mathbf{V}\right)\frac{\partial}{\partial k'_{r}}N = \gamma_{k}N - \Delta\omega_{k}N_{r}$ Convection by
 Refraction
 Linear growth
 Se Self-interaction wave packet • Recall: $\gamma_k \cong \frac{\nu_{\text{ei}}}{k_z^2 v_{\text{TD}}^2} \frac{\omega_*^2}{(1+k_\perp^2 \rho_z^2)^2} \left(\frac{k_\perp^2 \rho_s^2}{1+k_\perp^2 \rho_z^2} + \frac{k_\theta k_z \rho_s c_s \langle v_z \rangle'}{\omega_\perp^2} \right) \Rightarrow \delta \gamma_k = \frac{\nu_{\text{ei}}}{k_z^2 v_{\text{TD}}^2} \frac{k_\theta k_z \rho_s c_s}{(1+k_\perp^2 \rho_z^2)^2} \delta \langle v_z \rangle'$ 16

Negative Viscosity Increment: cont'd

• Dynamics of a test flow shear

$$\begin{aligned} \frac{\partial}{\partial t} \delta \langle v_z \rangle' + \frac{\partial^2}{\partial r^2} \left(\delta \Pi_{rz}^{\text{Res}} - \chi_\phi \delta \langle v_z \rangle' \right) &= 0 \\ \delta \Pi_{rz}^{\text{Res}} &= \frac{\nu_{\text{ei}} L_n^2}{v_{\text{The}}^2} \sum_k (1 + k_\perp^2 \rho_s^2) (4 + k_\perp^2 \rho_s^2) |\phi_k|^2 \delta \langle v_z \rangle' \\ &= |\chi^{\text{Res}} |\delta \langle v_z \rangle' \\ \text{(From formal calculation)} \end{aligned}$$

$$\frac{\partial}{\partial t} \delta \langle v_z \rangle' - \frac{\partial^2}{\partial r^2} \left(\chi_\phi - |\chi^{\text{Res}}| \right) \delta \langle v_z \rangle' = 0$$

• Negative viscosity increment:

$$|\chi^{\text{Res}}| = \nu_{\text{ei}} L_n^2 / v_{\text{The}}^2 \sum_k (1 + k_\perp^2 \rho_s^2) (4 + k_\perp^2 \rho_s^2) |\phi_k|^2$$

• Growth rate of flow shear modulation

$$\gamma_q = -q_r^2(\chi_\phi - |\chi^{\text{Res}}|)$$

Limits on $\langle v_z \rangle'$

- $\chi_{\phi}^{\text{tot}} = \chi_{\phi} |\chi^{Res}| < 0 \rightarrow \delta \langle v_z \rangle'$ grows, profile steepens, until...
- $\langle v_z \rangle'$ hits Parallel Shear Flow Instability (PSFI) threshold
 - PSFI: recall dispersion relation of the model with adiabatic electrons:

$$\left(1+k_{\perp}^{2}\rho_{s}^{2}\right)\omega^{2}-\omega_{*}\omega+k_{\theta}k_{z}\rho_{s}c_{s}\langle v_{z}\rangle'-k_{z}^{2}c_{s}^{2}=0$$

• Unstable \leftrightarrow discriminant $\equiv \omega_*^2 - 4(1 + k_\perp^2 \rho_s^2)(k_\theta k_z \rho_s c_s \langle v_z \rangle' - k_z^2 c_s^2) < 0$

•
$$\rightarrow \langle v_z \rangle' > \langle v_z \rangle'_{\text{crit}} \equiv \frac{1}{k_\theta k_z \rho_s c_s} \left[\frac{\omega_*^2}{4(1+k_\perp^2 \rho_s^2)} + k_z^2 c_s^2 \right] \rightarrow \mathsf{PSFI}$$

• PSFI turbulence $\rightarrow \chi_{\phi}^{\text{PSFI}}$ adds on to the ambient χ_{ϕ}^{tot}

$$\Rightarrow \chi_{\phi}^{\text{tot}} = \chi_{\phi}^{\text{DW}} + \chi_{\phi}^{\text{PSFI}} \Theta(\langle v_z \rangle' - \langle v_z \rangle'_{crit}) - |\chi^{\text{Res}}|$$

- $\chi_{\phi}^{\text{PSFI}}$ switched on, $\chi_{\phi}^{\text{PSFI}} > |\chi^{\text{Res}}| \rightarrow \chi_{\phi}^{\text{tot}} > 0$
- $\langle v_z \rangle'$ stays below PSFI threshold; total viscosity stays positive.
- Similar to nonlinear damping of zonal flow

Flow Structure in Linear Device

- Idea of Model: Turbulent pipe flow, Prandtl + Residual Stress
- Prandtl (momentum balance): $\pi R^2 \Delta P_z = 2\pi R L_z \rho_0 \langle v_r v_z \rangle$
- Reynolds stress: $\langle v_r v_z \rangle = -(\chi_{\phi} |\chi^{\text{Res}}|) \langle v_z \rangle'$
- \rightarrow Flow profile: $\langle v_z \rangle' = -\frac{R\Delta P_z}{2L_z \rho_0(\chi_\phi |\chi^{\text{Res}}|)}$

Flow Structure: cont'd

- PSFI \rightarrow Enhance turbulent diffusion, $\chi_{\phi}^{\text{eff}} = \chi_{\phi}^{\text{DW}} + \chi_{\phi}^{\text{PSFI}}\Theta(\langle v_{z} \rangle' - \langle v_{z} \rangle'_{crit})$
- Including PSFI effect:

$$\langle v_z \rangle' = -\frac{R\Delta P_z}{2L_z \rho_0 \left[\chi_\phi^{\rm DW} + \chi_\phi^{\rm PSFI} \Theta \left(\langle v_z \rangle' - \langle v_z \rangle'_{\rm PSFI}\right) - |\chi^{\rm Res}|\right]}$$

- $\chi_{\phi}^{\text{PSFI}}$ nonlinear in $\langle v_z \rangle' \rightarrow \chi_{\phi}^{\text{eff}} > |\chi^{\text{Res}}| \rightarrow \text{Profile relaxes}$
- $\langle v_z \rangle'$ stays below PSFI threshold

Implication for Tokamaks

- Synergy of $\Pi^{Res}(\nabla T, \nabla P, \nabla N)$ and $\delta \Pi^{Res} = |\chi^{Res}| \delta \langle v_z \rangle'$
 - DW turbulence, **B** shear
 - Symmetry breaker
 (E'_r, I(x)', ...)
 - \rightarrow residual stress $\Pi_{r\parallel}^{Res}$

- DW turbulence
- Test flow shear
- \rightarrow negative viscosity $|\chi^{Res}|$

• Flow profile set by momentum flux balance:

$$\langle v_r v_{\parallel} \rangle = -\left(\chi_{\phi} - |\chi^{\text{Res}}|\right) \frac{d\langle v_{\parallel} \rangle}{dr} + \Pi_{r\parallel}^{\text{Res}} = 0$$

• Enhanced flow profile

$$\frac{d\langle v_{\parallel}\rangle}{dr} = \frac{\Pi_{r\parallel}^{\text{Res}}}{\chi_{\phi} - |\chi^{\text{Res}}|}$$

→ Mechanism to
 enhance intrinsic
 rotation predictions
 21

Applicable to

electron DW's

 \rightarrow CTEM

Conclusion

- Results from CSDX, PANTA suggest intrinsic axial flow;
- Intrinsic mechanism to generate axial flows and to build up a mean flow profile is introduced:
 - Test flow shear $\delta \langle v_z \rangle'$ seeds symmetry breaking and feeds back on itself;
- Different from standard symmetry breaking mechanism:
 - Intrinsic torque $-\partial_r \Pi^{Res}$ driven by ∇T , ∇P , ... v.s. Negative viscosity increment $|\chi^{Res}|$ induced by $\delta \Pi^{Res}$;
- Flow structure in a linear device: $\langle v_z \rangle' = -\frac{R\Delta P_z}{2L_z \rho_0(\chi_{\phi} |\chi^{\text{Res}}|)}$
- Implication for tokamaks:
 - Synergy of $\Pi^{Res}(\nabla T, \nabla P, ...)$ and $\delta \Pi^{Res} = |\chi^{Res}| \delta \langle v_z \rangle';$
 - Enhanced intrinsic rotation profile: $\frac{d\langle v_{\parallel}\rangle}{dr} = \frac{\Pi_{r\parallel}^{\text{Res}}}{\chi_{\phi} |\chi^{\text{Res}}|}$