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Benchmarks in observed CR spectrum
Possible interpretations of the breaks

need universal acceleration mechanism that works up to the
knee for protons

may argue that the spectrum extends to the ankle because

heavier nuclei

superposition of sources, exceptional SNRs, pre-supernova
dense wind (Völk & Biermann 1988)

change in acceleration regime (M & Diamond 2006)

di�usive shock acceleration -DSA operating in SNRs embodies
above ingredients thus appearing plausible, BUT...
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Maximum energy: knee

predictions for maximum energy/knee for DSA in SNR are model
dependent

major problem: CR scattering environment: dominant turbulence
mode and saturation level

under optimistic assummptions might reach PeV ;

-Bohm di�usion of CR-κB ∼ rgc on resonant Alfven waves (e.g.

Berezhko et al 90s);
-spreading of short non-resonant waves to resonance at krg ∼ 1 -Bell
04; Bykov et all 11,13; Diamond & M 2007; Simulations:
Zirakashvili & Ptuskin, Spitkovsky+

pessimistic estimates: DSA falls short by two orders of magnitude
(Laggage & Cesarsky 1983, partially also Bell 2013)

bottom line: DSA needs an order of magnitude boost to reach the
knee during SNR active life
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In both cases momentum gain is small ∆p/p ∼ U/c can be
deduced from adiabatic invariant∮

p‖dl = const
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DSA: why slow?

long idling upstream and downstream: number of scattering

N ∼ c/U � 1

needed before momentum is increased upon shock crossing by

∆p/p ∼ U/c

acceleration time grows with momentum, as both the collision
time ( in the linear case ω−1c ∝ p) and precursor crossing time
[κ (pmax)/U2 =τacc in NL regime] increase

17 / 78



institution-logo-./UCSDlogo.jpg

Why need faster acceleration? options
SNR and other large scale shocks
Proton Zevatrons in DM �laments

Summary

Knee, Ankle and GZK cuto�
DSA sluggishness
Selection of astrophysical settings

DSA: why slow?

long idling upstream and downstream: number of scattering

N ∼ c/U � 1

needed before momentum is increased upon shock crossing by

∆p/p ∼ U/c

acceleration time grows with momentum, as both the collision
time ( in the linear case ω−1c ∝ p) and precursor crossing time
[κ (pmax)/U2 =τacc in NL regime] increase

18 / 78



institution-logo-./UCSDlogo.jpg

Why need faster acceleration? options
SNR and other large scale shocks
Proton Zevatrons in DM �laments

Summary

Knee, Ankle and GZK cuto�
DSA sluggishness
Selection of astrophysical settings

DSA times cont'd

τacc '
κ (p)

U2
∼ λc/U2 ∼ τcolc

2/U2 = τcolN
2

λ -particle mean free path (m.f.p.)
τcol -collision time (ω−1c at least)

DSA time hierarchy

τacc : τcycl : τcol ∼
c2

U2
:
c

U
: 1

improvement strategy: decouple one of these ratios (or
both) from the small parameter U/c
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Case studies for enhanced acceleration

1 DSA in large scale shocks such as SNR

working hypothesis of CR origin
DSA is robust and well established acceleration mechanism
plethora of new SNR observations

2 Accretion �ow on DM �lament � suitable site for UHECR
acceleration

weak magnetic and photon �elds in accelerator surroundings
synchrotron-Compton losses negligible
pair production losses insigni�cant
photo-pion losses are signi�cant but beatable
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Possible ways to accelerate DSA

p (t) grows linearly (slow) both in unmodi�ed and modi�ed
shocks but for di�erent reasons

ṗ/p ∝ 1/τacc ∝ 1/p

in modi�ed shocks due to precursor in�ation Lp ∝ pmax, as
τacc= precursor crossing time
→ attempt to prevent precursor from growing

nonlinear shock modi�cation with �xed precursor scale

ṗ/p ∝ U/Lp (pfixed) = const

-exponential growth of momentum

shock corrugation resulting in partially quasi-perpendicular
acceleration regime without particle loss downstream

- reduction in acceleration time by making τcycle short
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ṗ/p ∝ U/Lp (pfixed) = const

-exponential growth of momentum

shock corrugation resulting in partially quasi-perpendicular
acceleration regime without particle loss downstream

- reduction in acceleration time by making τcycle short

28 / 78



institution-logo-./UCSDlogo.jpg

Why need faster acceleration? options
SNR and other large scale shocks
Proton Zevatrons in DM �laments

Summary

NL shock modi�cation
Shock Rippling

Possible ways to accelerate DSA

p (t) grows linearly (slow) both in unmodi�ed and modi�ed
shocks but for di�erent reasons
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Acceleration in CR shock precursor

acceleration rate in CR modi�ed shocks
ṗ
p

= 1
3

∂U
∂z
∼ U/LNL (p∗)

is the same as in ordinary shocks except LNL ∼ κ (p∗)/U instead of
Lp ∼ κ (p)/U
p∗ is where CR partial pressure is at maximum

if the spectrum is harder than p−2

p∗ ' pmax

If p∗ is �xed, p∗� pmax then p (t) grows exponentially rather
than linearly in the range

p∗ < p < pmax
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Enhanced Acceleration Scenario

1 Initial linear growth p ∝ t up to p = p∗ (M & Diamond 2006)

2 NL shock modi�cation, Drury instability on ∇PCR (Drury &
Falle 1986)

3 formation of multiple shocks in precursor and CR losses for
p > p∗→ steeper spectrum for p > p∗

4 change of CR con�nement regime to super-di�usive for p > p∗
to make a steeper spectrum

5 precursor does not grow as maxPCR (p) is �xed at PCR (p∗)

6 particle momentum grows exponentially for p & p∗

Limitation: rg (p)� κ (p∗)/U ∼ rg (p∗)c/U
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6 particle momentum grows exponentially for p & p∗

Limitation: rg (p)� κ (p∗)/U ∼ rg (p∗)c/U
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GRB origin of UHECR is likely ruled out: neutrino upper limit
factor ~3.7 below predictions (Abbasi et al, IceCube, 2012)

AGN scenario encounters problems with IC/synchrotron losses,
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population 1019.5eV for the mechanism suggested here:
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nodes (M, Sagdeev & Diamond 2011)
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Schaal & Springel 2014
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Why short explosive acceleration is critical?
Overjumping the photopion �wall�

γπ �wall� at E ' 1019.5eV
(Berezinsky et al 2006)
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Summary

Galactic CR, SNR, DSA

NL shock modi�cation speeds up acceleration in the smooth
part of the upstream �ow
sizable fraction of Ushock/c � 1 factor can be used to increase
acceleration rate
shock surface is shown to be corrugationally unstable due to
CR shock re�ection
acceleration at CR-corrugated shocks is signi�cantly enhanced

UHECR

betatron acceleration in DM �laments suggested
acceleration end-thrust overcomes losses, fatal for other
mechanisms (e.g., DSA)
mechanism is capable of proton reacceleration to the
maximum energy & 1020eV
seed particles with energies ∼ 1019 eV are required
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