Physics of the Power Threshold Minimum for L-H Transition

M.A. Malkov 1 , P.H. Diamond 1 , K. Miki 2 , J.E. Rice 3 and G.R. Tynan 1

¹University of California, San Diego, ²JAEA, ³MIT

Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738

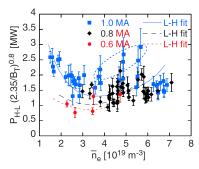
Outline

- Motivation
 - \bullet $P_{\rm thr}$ the LH transition Power Threshold
 - -Micro Macro connection \rightarrow How does physics set P_{thr} ?
- 2 Key Questions
- Reduced Model
 - Basic Structure
 - T_e and T_i equations
 - Anomalous Coupling
- Model Studies
 - Recovering the Minimum
 - Towards the Anomalous Regime (Preliminary, if time allows)
- Conclusions

Motivation and brief history of LH studies

- L \rightarrow H transition is a 33 (!) year-old story (Wagner, et al 1982)
- revolutionized confinement physics
- central to ITER ignition

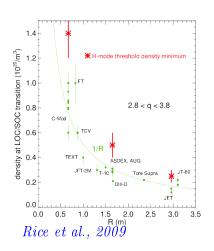
Underlying ideas


- dimensional analysis (e.g. Connor and Taylor, 1977) and simple scalings
 - in general $P_{\rm thr} \propto nBS$
 - early phenomenology (fit) $P_{thr} \propto n^{0.7}$ inconsistent with the minimum in $P_{thr}(n)$
- connection of the power threshold to the edge parameters (Fukuda et al 1988): evolving story
- Mechanism: shear suppression paradigm (Biglari, Diamond and Terry, 1990 ++)

Emerging Scenario

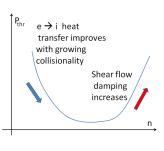
LH-triggering sequence of events

- $\Longrightarrow \nabla P_i | \uparrow \Longrightarrow \text{lock in transition (Tynan et al. 2013)}$
 - \bullet ∇T etc. drives turbulence that generates low frequency shear flow via Reynolds stress
 - Reynolds work coupling collapses the turbulence thus reducing particle and heat transport
 - Transport weakens $\to \nabla \langle P_i \rangle$ builds up at the edge, accompanied by electric field shear $\nabla \langle P_i \rangle \to \langle V_E \rangle'$
 - locks in $L \to H$ transition: (see Hinton ,Staebler 1991, 93)
 - Complex sequence of Transition Evolution and Alternative End States (I-mode) possible (*D. Whyte et al. 2011*)


Some Questions:

Ryter et al 2013

- How does the scenario relate to the Power Threshold?
 - Is $P_{\text{thr}}(n)$ minimum recoverable?
- Micro-Macro connection in threshold, if any?
- How does micro-physics determine threshold scalings?
- What is the physics/origin of P_{thr} (n)? Energy coupling?
- Will P_{min} persist in collisionless, electron-heated regimes (ITER)?


Further Questions and important Clue:

J. Hughes, Y. Ma, J. Rice, 2011,12

- Is P_{thr} set only by local properties at the edge? (Common wisdom)
- Is P_{thr} minimum related to collisional energy transfer? i.e. $\nu n (T_e T_i)$. Low n branch couples to ions, enables ∇P_i ?
- P_{thr} (n) minimum correlates
 with n 'LOC-SOC' transition
 ⇒ i.e. min power related to
 collisional inter-species transfer
- Threshold is controlled by *qlobal* transport processes!?

Scenario (inspired partly by F. Ryter, 2013-14)

- $\nabla P_i|_{\text{edge}}$ essential to 'lock in' transition
- to form ∇P_i at low n, etc. need (collisional) energy transfer from electrons to ions

$$\frac{\partial T_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} (T_e - T_i) + Q_e$$
$$\frac{\partial T_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = +\frac{2m}{M\tau} (T_e - T_i) + Q_i$$

- suggests that the minimum is due to:
 - P_{thr} decreases due to increasing heat transfer from electrons to ions
 - P_{thr} increases (stronger edge ∇P_i driver needed) due to increase in shear flow damping
 - Power and edge heat flux are not the only crit. variables: also need the ratio of electron energy conf. time to exceed that of e i temp. equilibration $T_r = \tau_{Ee}/\tau_{ei}$ most important in pure e-heating regimes
 - $T_r \gg 1$ somewhat equivalent to direct ion heating
 - $T_r \ll 1$ ions remain cold \rightarrow no LH transition (or else, it's anomalous!)

Predator-Prey Model Equations

- Based on 1-D numerical 5-field model ($Miki\ &\ Diamond++\ 2012,13+$)
- Currently operates on 6 fields $(+P_e)$ with self-consistenly evolved transport coefficients, anomalous heat exchange and NL flow dissipation (MM, PD, K. Miki, J. Rice and G. Tynan, PoP 2015)
- Heat transport, + Two species, with coupling, i,e (anomalous heat exchange in color):

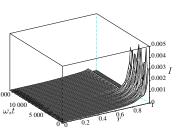
$$\begin{split} \frac{\partial P_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e &= -\frac{2m}{M\tau} \left(P_e - P_i \right) + Q_e - \gamma_{CTEM} \cdot I \\ \frac{\partial P_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i &= \frac{2m}{M\tau} \left(P_e - P_i \right) + Q_i + \gamma_{CTEM} \cdot I + \gamma_{ZFdiss} \cdot I \\ \Gamma &= - \left(\chi_{neo} + \chi_t \right) \frac{\partial P}{\partial r}, \quad \gamma_{ZFdiss} &= \gamma_{visc} \left(\frac{\partial \sqrt{E_0}}{\partial r} \right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{E_0}}{\partial r^2} \right)^2 \end{split}$$

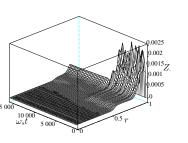
 \bullet / and E_0 - DW and ZF energy (next VG), plasma density and the mean flow, as before

Equations cont'd; Anomalous Heat Exchange

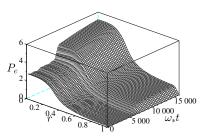
- ITG Turb Reyn. stress Shear fl.
- in high T_e low n regimes (pure e-heating) the thermal coupling is anomalous (through turbulence) • ZF dissip. (KH?) supplies energy to ions,

and returns energy to turbulence


• DW turbulence: $\frac{\partial I}{\partial t} = \left(\gamma - \Delta\omega I - \alpha_0 E_0 - \alpha_V \langle V_E \rangle^2\right) I + \chi_N \frac{\partial}{\partial r} I \frac{\partial I}{\partial r}, \quad \chi_N \sim \omega_* C_s^2$

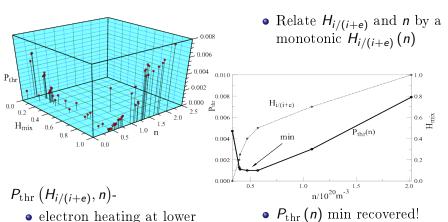

Driver:
$$\gamma = \gamma_{ITG} + \gamma_{CTEM} + NL$$
 ZF Dissip less P_i Heat (currently balanced)

Driver:
$$\gamma = \gamma_{ITG} + \gamma_{CTEM} + NL \ ZF \ Dissip \ less \ P_i \ Heat (currently balanced)$$
• ZF energy:


 $\frac{\partial E_0}{\partial t} = \left(\frac{\alpha_0 I}{1 + c_0 \left\langle V_E \right\rangle'^2} - \gamma_{damp}\right) E_0, \quad \gamma_{damp} = \gamma_{col} + \gamma_{ZFdiss} \cdot I/E_0$ $\gamma_{ZFdiss} = \gamma_{visc} \left(\frac{\partial \sqrt{E_0}}{\partial r}\right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{E_0}}{\partial r^2}\right)^2$ toy model form (work in progress) 9/19

Model studies: Transition (Collisional Coupling)

- ion heat dominated transition $H_{i/(i+e)} = 0.7$
- strong pre-transition fluctuations of all quantities
- well organized post-transition flow
- \bullet strong P_e edge barrier


Model Studies: Control Parameters

• Heating mix

$$H_{i/(i+e)} \equiv rac{Q_i}{Q_i + Q_e}$$
 (aka $H_{
m mix}$)

- Density (center-line averaged) is NOT a control parameter. It is measured at each transition point
- Related control parameter is the reference density given through BC and fueling rate
- There is a complicated relation between density and ref. density
- Other control parameters:
 - fueling depth
 - heat deposition depth and width, etc.
 - \rightarrow they appear less critical than $H_{i/(i+e)}$

$P_{th}\left(n, H_{i/(i+e)}\right)$ scans: Recovering the Minimum

• ion heating at higher densities

densities

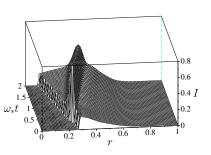
Summary of collisional coupling results

- $P_{\text{thr}}(n)$ grows monotonically in both pure ion $H_{i/(i+e)} = 1$ and pure electron $H_{i/(i+e)} = 0$ heating regimes with collisional coupling
- The descending (low-density) branch, followed by a distinct minimum, results from a combination of:
 - 1 increase in electron-to-ion collisional heat transfer and
 - ② growing fraction of heat $H_{i/(i+e)} \uparrow$ deposited to ions (relative to total heat)
- The later upturn of $P_{\text{thr}}(n)$ is due to increase of the shear flow damping
- The heating mix ratio $H_{i/(i+e)} \neq 0$ is essential for the heat transport from the core to build up the ion pressure gradient at the edge, ∇P_i , which is the primary driver of the LH transition
- There are many possibilities to render $H_{i/(i+e)} \neq 0$

Anomalous Regime (Preliminary)

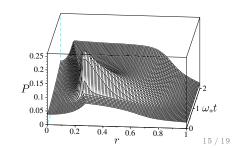
- Anomalous Regime: $\nu_{ei} n (T_e T_i) < \gamma_{\text{anom-eicoupl}} \cdot I$ (Manheimer, '78; Zhao, PD, 2012; Garbet, 2013)
 - Anomalous regime, strong electron heating (ITER)
 - n scaling coupling \implies Anomalous coupling

$$\frac{\partial T_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} (T_e - T_i) + Q_e$$


$$\frac{\partial T_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = + \frac{2m}{M\tau} (T_e - T_i) + Q_i$$

- Anomalous coupling dominates
 - scaling + intensity dependence \Longrightarrow coupling

$$\begin{split} &\frac{\partial T_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = Q_e + \langle \boldsymbol{E} \cdot \boldsymbol{J}_e \rangle \rightarrow (<0) \\ &\frac{\partial T_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = Q_e + \langle \boldsymbol{E} \cdot \boldsymbol{J}_i \rangle \rightarrow (>0) \end{split}$$


LH transition: Anomalous Transfer Dominates

Extreme limit to illustrate temperature relaxation: Pure electron heating, $\nu_{ei} \rightarrow 0$

 $P_{e}^{0.05}$

- $\bullet \ \, \mathbf{CTEM} \to \mathbf{Heat} \,\, \mathbf{Exch} \, {\stackrel{\textstyle \nearrow}{\searrow}} \,\, \mathbf{turbulence} \\ \stackrel{\textstyle \longleftarrow}{\searrow} \,\, \mathbf{ions}$
 - Is P_{thr} set only by local properties at the edge?
- ullet e-i -temperature equilibration front
- $P_i \uparrow \text{globally} \rightarrow \text{strong } \nabla P_i \text{ at the edge}$ $\rightarrow \text{LH transition}$

Anomalous Regime: Issues

- An Issue:
 - Predator-Prey \Rightarrow Shear Flow Damping
 - ⇒Anomalous regime: collisional drag problematic
 - Low collisionality \rightarrow what controls heat exchange?
 - NL damping ⇔ mediated by ZF instability (i.e. KH, tertiary; Rogers et al 2000; Kim, PD, 2003)
 - ⇒ hyperviscosity, intensity dependent
 - Returns ZF energy to turbulence $\rightarrow P_i$

Results so far

- transition with anomalous heat exchange happens!
- requirements for LH transition in high T_e regimes when the collisional heat exchange is weak:
 - efficient ion heating by CTEM turbulence
 - energy return to turbulence by ZF damping (caused by KH instability?!)
 - may be related to Ryter 2014. Subcritical $\nabla T_e \uparrow$ states at ultra-low density

Conclusions

- **1** density minimum in $P_{thr}(n)$ is recovered in the extended model
 - \bullet P_{thr} decrease: due to $e \to i$ heat transfer and ion heating increase
 - P_{thr} increase: due to increase in flow damping
- ② ion heat channel (direct or indirect ⇔ through electrons) is ultimately responsible for LH transitions
- The role of $T_r = \tau_{Ee}/\tau_{equil}$ (global quantity!) in LH is crucial:
 - $a^2/D_{GB}\tau_{equil}\ll 1$ no electron-heated LH transition
 - $a^2/D_{GB}\tau_{equil}\gg 1$ LH trans. originated by electron heat. is possible
- Threshold physics requires, but is not limited, to edge physics
- **3** anomalous heat exchange important in low collisionality, anomalous coupling regimes (collisional e-i heat coupling negligible)
 - Anomalous exchange \Leftrightarrow Fluctuation intensity dependent
 - CTEM driven turbulence dissipation \rightarrow ion heating
 - ITG driven turbulence dissipation \rightarrow ion heating
 - ZF dissipation \rightarrow ion heating
- Oensity minimum is TBD

Future (ongoing) work

- complete exploration of anomalous regime
- explore effects of ZF spreading
- back transitions: quantify hysteresis
- fate of minimum in anomalous regime
- what are relevant global parameters?
- toroidal rotation
- geometry/configuration (builds on Fedorczak, PD, et al. 2012)
 - ∇B -drift asymmetry
- Collisionless saturation/damping of CTEM-driven ZF is fundamental issue

Short Conclusions

- $P_{th}(n)$ minimum recovered with collisional coupling
- Threshold physics not limited to edge $a^2/\chi \tau_{eq} > 1$ required for electron heated transitions \Longrightarrow some global dependence

Predictions:

- Anomalous heat exchange and shear flow damping initiated in collisionless, electron heated regimes (ITER).
- Transition manifested as propagating thermal equilibration front; triggers ∇P_i increase at edge.