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Magnetic confinement fusion

• Nuclear fusion is a promising energy source.

• 1
2D + 1

3T → 2
4He + 0

1n

• Lawson criterion (for D-T fusion):

• 𝑛𝑇𝜏𝐸 ≥ 3 × 1021 keV s/m3.

• Confine high 𝑇 fuels of certain 𝑛 for a 
certain period of time 𝜏𝐸.

• Fusion reaction requires high 𝑇.

• For D-T fusion, 𝑇 ∼ 10 keV.

• Fuels become plasma (ions + electrons).
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Magnetic confinement fusion

• Idea: use magnetic field to build an intangible cage.

• Tokamak (Toroidal Chamber with Magnetic Coils).

• Feature: resemble a “doughnut”.

• Strong toroidal magnetic field 𝐵𝑇.

• Strong toroidal plasma current → 𝐵𝜃. 

• Winding magnetic field lines.

• Aspect ratio 𝑅/𝑎 ∼ 3 − 4.

• Safety factor 1 < 𝑞 =
𝑟𝐵𝑇

𝑅𝐵𝜃
< ~3 − 4.
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Turbulent transport in tokamaks

• 𝜏𝐸: highest leverage parameter for capital cost.

• Core problem: plasma turbulence & turbulent transport.

• In 1982: 𝜏𝐸 doubles in high-confinement mode (H-mode).

• Plasma turbulence is regulated by zonal flow.

• 𝑃 > 𝑃𝐿𝐻 ⇒ formation of edge transport barrier.

• Predator (zonal flow)–prey (drift wave turbulence) model
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Z. Lin, 1998, Science

𝑩

P.H. Diamond, 2005, PPCF



New elements of plasma turbulence

• Confinement is not the whole story.

• Tokamak is not an isolated system.

• Trade-off among confinement, heating power, 
and boundary protection.
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tokamak

heating exhaust

divertor

• Novel experimental phenomena demand deeper research on plasma turbulence.

• Features of existing theories: 

• Object: an ensemble of waves

• Configuration: a slab configuration 

• Field: a regular magnetic field

V.S.

• Reality:

• Structures co-exist with waves

• Tokamak is a torus

• Fields could be chaotic



• Nonuniform winding rate 𝑞 𝑟 : nested magnetic surfaces.

• KAM: with (intr./extr.) magnetic perturbations,

• Resonant surfaces (𝑞 is rational) are destroyed.

• Nonresonant surfaces (𝑞 is irrational) survive.

• Island chains develop on resonant surfaces.

• Field lines become stochastic when

𝜎Chirikov =
𝛿1+𝛿2

Δ12
> 1

• Plasma dynamics must be reexamined to account for the presence of stochasticity.
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Element 1: stochasticity



Element 2: toroidicity

• Toroidal geometry of the tokamak ⇒

• 𝐵𝑡 on the inboard side is stronger.

• 𝐵𝑡 has a curvature directed outward.

• Poloidal symmetry is broken as

• On high-field-side (HFS): 𝜿 ⋅ ∇𝑝 > 0

• On low-field-side (LFS): 𝜿 ⋅ ∇𝑝 < 0

• Instabilities are easier to develop on LFS.

• Toroidicity results in broader mode structure (ballooning mode).
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RtAmpère's law

• Toroidicity effect should be blended in along with stochasticity.



Element 3: nonlocality

• Diffusive description of transport in tokamaks is subjected to challenge.

• Fickian formulation (Γ𝑄 = −𝐷∇𝑄) fails.
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T. Long, 2024, NF

• Convective transport may arise from coherent 
structures (blobs & voids) generated from edge 
gradient relaxation events (GREs).

• Blob/void: plasma filaments with +/- high ෤𝑛.

• A nonlocal theory is required.



Roadmap

• Target: extending the existing framework of plasma turbulence theory.

• Plasma turbulence: a soup including waves, structures, etc.

• In other words: adding new ingredients to the recipe of plasma soup!
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How stochastic magnetic 
fields affect instability and 

turbulent relaxation

How toroidicity effects 
modify the story of 

plasma in stochastic fields  

How inward-moving voids 
lead to the coupling of 
core and edge plasmas
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Ingredient 1: stochasticity

Instability and turbulent relaxation 
in a stochastic magnetic field



Motivation

• Resonant magnetic perturbations (RMPs) is adopted to mitigate and suppress edge-
localized modes (ELMs) by exciting a stochastic magnetic field at the plasma edge.

• RMPs raise the L-H transition power threshold 𝑃𝐿𝐻.
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Suppression of ELMs by RMPs
T.E. Evans, 2015, Nature Physics

RMPs raise 𝑃𝐿𝐻
L. Schmitz, 2019, NF

Confinement

Power 
handling

Fusion scientist

RMP



Scope

• New trend: a trade-off among confinement, boundary control and power handling.

• Turbulence dynamics must be reformulated to include extrinsic stochasticity.

• Question: how does stochastic magnetic field modify the instability process?

• Requirement: capture the key physics while remaining analytically tractable.

a) Examine a simple MHD instability, resistive interchange mode (low-𝒌).

b) Incorporate a static, ambient stochastic magnetic field (high-𝒌). 

c) Maintain the quasi-neutrality (∇ ⋅ 𝑱 = 0) at all scales ⇒ ensure generality.

• The dynamics is intrinsically multi-scale ⇒ feedback loop. 
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Model development

• Formulation of the resistive interchange mode:

• Vorticity equation:          − 𝜌0/𝐵0
2 𝜕𝑡∇⊥

2𝜑 − 𝜅/𝐵0 𝜕𝑦𝑝 + 𝒃𝟎 ⋅ ∇𝐽∥ = 0 ⇔ ∇ ⋅ 𝑱 = 0.

• Ohm’s law:                       𝐸∥ = −𝒃𝟎 ⋅ ∇𝜑 = 𝜂𝐽∥.

• Pressure equation:         𝜕𝑡𝑝 − ∇𝜑 × 𝒃𝟎/𝐵0 ⋅ ∇𝑝0 = 0.  

• Magnetic perturbations:    ෩𝒃 = ෩𝑩⊥/𝐵0 = σ𝑚1𝑛1
෩𝒃𝒌𝟏 𝑥′ 𝑒𝑖(𝑚1𝜃−𝑛1𝜙) (𝑥′ = 𝑟 − 𝑟𝑚1𝑛1).
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𝜌0: mean plasma density; 
𝐵0: mean magnetic field;
𝜅: magnetic curvature; 
𝜑: electrostatic potential.

∇∥= 𝒃𝟎 ⋅ ∇

∇∥= ∇∥
0
+ ෩𝒃 ⋅ ∇

parallel gradient

𝜎Chirikov ≫ 1



Model development

• Constraint: maintaining ∇ ⋅ 𝑱 = 0 at all scales.

• ෩𝒃 leads to parallel current density fluctuations.

• ෨𝑱⊥ is driven to balance ෨𝑱∥ ⇒ ∇ ⋅ ෨𝑱⊥ + ෨𝑱∥ = 0.

• Indication: 

• ෤𝜑: (high-𝒌) microturbulence.

• Or small-scale convective cells.

• Increased “spatial roughness”?
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෪∇∥𝑱∥ = −
1

𝜂
∇∥

0 ෩𝒃 ⋅ ∇⊥ 𝜑 + ෩𝒃 ⋅ ∇⊥ ∇∥
0
𝜑 ≠ 0

෨𝑱∥

෨𝑱⊥

෨𝑱𝒕𝒐𝒕

Plasma pressure without (a) and with (b) RMPs

P. Beyer, 1998, PoP



Model development

• The resulting dynamics are intrinsically multi-scale.

• Technique: method of averaging
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𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ത𝜑 + ෤𝜑 =
𝜂𝑆

𝜏𝐴
∇∥𝐽∥ −

𝜅𝐵0
𝜌0

𝜕 ҧ𝑝1 + ෤𝑝1
𝜕𝑦

,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ҧ𝑝1 + ෤𝑝1 −

∇ ത𝜑 + ෤𝜑 × ො𝒛

𝐵0
⋅ ∇𝑝0 = 0,

𝜂𝐽∥ = −∇∥ ത𝜑 + ෤𝜑 .

ത𝜑: low-𝒌 test mode;

෤𝜑: high-𝒌 microturbulence;

𝑆 = 𝜏𝑅/𝜏𝐴; 

𝜏𝐴 = 𝑎 4𝜋𝜌0
1/2/𝐵0;

𝜏𝑅 = 4𝜋𝑎2/𝜂.

ҧ𝐴 = 𝐴 =
1

2𝜋

2

ඵ𝑑𝜃𝑑𝜙𝑒−𝑖 𝑚𝜃−𝑛𝜙 𝐴



Model development
• Full set of equations:

• Adopted assumptions:

• ത𝜑: slow interchange (𝑘𝑟 ≫ 𝑘𝜃)

• ෤𝜑: fast interchange (𝑘1𝜃 ≫ 𝑘1𝑟)
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𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ᪄𝜑 = −
𝑆

𝜏𝐴
[∇∥

(0)2
᪄𝜑 + ∇⊥ ⋅ ⟨ ƿ𝒃 ƿ𝒃⟩ ⋅ ∇⊥ ᪄𝜑

(𝑎)

+ ∇∥
(0) ƿ𝒃 ⋅ ∇⊥ ƿ𝜑

(𝑏)

+ ƿ𝒃 ⋅ ∇⊥ ∇
∥′
(0)

ƿ𝜑

(𝑐)

] −
𝑔𝐵0

𝜌0

𝜕 ᪄𝑝1

𝜕𝑦
,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ∇⊥

2 ƿ𝜑 = −
𝑆

𝜏𝐴
[∇∥

(0)2
ƿ𝜑 + ƿ𝒃 ⋅ ∇⊥ ∇∥

(0)
᪄𝜑

(𝛼)

+ ∇∥
(0) ƿ𝒃 ⋅ ∇⊥ ᪄𝜑

(𝛽)

] −
𝑔𝐵0

𝜌0

𝜕 ƿ𝑝1

𝜕𝑦
,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ᪄𝑝1 −

∇ ᪄𝜑×ƶ𝐳

𝐵0
⋅ ∇𝑝0 = 0,

𝜕

𝜕𝑡
+ ෥𝒗 ⋅ ∇ ƿ𝑝1 −

∇ ƿ𝜑×𝐳

𝐵0
⋅ ∇𝑝0 = 0,

−𝜈𝑇∇⊥
2 or 𝜒𝑇∇⊥

2

④

①

②

③

Relate ෤𝜑 to ෩𝒃

replaced by
leads to

reactsdrives

𝑘 ≫ 𝑘1



Results 

• Quasi-linear approach: ෤𝜑 driven by beat of ෩𝒃 and ത𝜑.

→ Microturbulence locks on to the perturbed fields:

ƿ𝑏𝑟 ƿ𝑣𝑟 = 𝜋
1
2
𝑘𝜃𝑅𝑟𝑚𝑛

𝐿S
2𝐵0

𝑆

𝜏A
᪄𝜑𝑘 0

× ∫ 𝑑𝑘2𝜃 𝑘2𝜃 𝑘2𝜃
𝑐2𝑍2 𝑘𝜃 − 𝑘2𝜃 𝑤𝑘2𝑜𝑘2

2

Λ𝑘2
0 − Λ𝑘2

• When RMP is switched on, for edge turbulence, its

• Bicoherence increases ⇒ ෤𝜑 enhances nonlinear transfer.

• Complexity decreases ⇒ turbulence becomes “noisier”.

• Jensen-Shannon complexity: white noise (low), chaos (high).
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M.J. Choi, 2022, PoP

Increased bicoherence and decreased 
complexity in RMP ELM suppression phase



• The 1st order correction to the growth rate of the test mode:

𝛾𝑘
1
& = −

1

3

𝑆

𝜏A
ƿ𝑏𝑟

2
−
5

6

𝜈𝑇

𝐿𝑠
2

𝜏p𝜏𝜅

𝜏A
2

1/3

𝑆2/3 ƿ𝑘𝜃
2/3

−
2 2

3

ƶ𝐼𝑆4/3 ƿ𝑘𝜃
4/3

𝜏p𝜏𝜅𝜏A
4 1/3

< 0

• Stochastic bending enhances plasma inertia ⇒ magnetic braking effect1

−
𝑆

𝜏A

𝑘𝜃
2

𝐿s
2

𝑑2

𝑑𝑘𝑥
2 ᪄𝜑𝒌 +

𝑆

𝜏A
ƿ𝑏𝑟

2
+ 𝛾𝒌 𝑘𝑥

2 ᪄𝜑𝒌 −
𝜅𝑝0
𝐿p𝜌0

𝑘𝜃
2

𝛾𝒌
᪄𝜑𝒌 = 0

• Net effect of a stochastic magnetic field on a large-scale mode is to reduce its growth.

Results:
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magnetic 
braking effect

turbulent damping electrostatic 
scattering

1. P.H. Rutherford, 1973, PoF (Nonlinear tearing mode)

inertia



Results

• Growth of the small-scale convective cells is damped by turbulent viscosity 𝜈𝑇.

• Recall 𝜕𝑡 + ෥𝒗 ⋅ ∇ → 𝜕𝑡 − 𝜈𝑇∇⊥
2 . ෤𝜑 is over-saturated if 𝜈𝑇𝑘1𝜃

2 > 𝛾𝒌𝟏
0
= 𝑐𝑠

2𝜅/𝐿𝑝
1/2

• Scaling of 𝑣𝑇 is calculated using a simple nonlinear closure theory:

𝜈𝑇 =෍

𝒌𝟐

෤𝑣𝒌𝟐
𝟐
𝜏𝒌𝟐

• In the limit of 𝜈𝑇𝑘1𝜃
2 ≫ 𝑐𝑠

2𝜅/𝐿𝑝
1/2

:

𝜈𝑇 = 𝜋
1
2
𝑅𝑟𝑚𝑛

𝐵0
2

𝑘𝜃
2

𝐿s
3

𝑆

𝜏A

2

᪄𝜑𝒌
2 0 න𝑑𝑘2𝜃

𝑐2𝑍2𝑤𝒌𝟐𝑜𝒌𝟐
2

𝑘2𝜃
5𝛾𝒌𝟐

(0)

1/3
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𝑐 and 𝑍 𝑘2𝜃 are 
normalization factor 

and spectrum of ෨𝑏𝑟𝒌𝟐



Section summary

• ∇ ⋅ 𝑱 = 0 at all scales ⇒ microturbulence.

• Large and small scales are interacted.

• ෤𝜑 driven by the beat of ෩𝒃 and ത𝜑.

• ത𝜑 damped and scattered by ෤𝜑.

• ෩𝒃 leads to a magnetic braking effect.

• Enhances plasma inertia ⇒ a drag

• Net effect of ෩𝒃 on interchange: stabilization.

• ෨𝑏𝑟 ෤𝑣𝑟 ≠ 0 ⇒ turbulence becomes noisier 

with RMPs ⇒ reduced J-S complexity.
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Large-scale cell

Small-scale 
cells

Stochastic 
magnetic field Turbulent 

viscosity

Magnetic
curvature

Pressure
gradient

Resistivity++

drive
damp

scatter

enhance
inertia

generate saturate

drive

∇ ⋅ 𝑱 = 0

maintain
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Ingredient 2: toroidicity

Quasi-mode evolution in a 
stochastic magnetic field 



Motivation: from slab to torus

• RMPs: ELMs ↓, 𝑃𝐿𝐻 ↑ ⇒ study of resistive interchange in a stochastic magnetic field.

• Peeling-ballooning mode: a probable candidate for ELMs ⇒ a more relevant instability.

• Target: a tractable theoretical model of ballooning mode in a stochastic field.

• Challenge: different geometries in ballooning mode and RMPs theories.
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𝒌 ⋅ 𝑩 = 0

Ballooning mode

Toroidicity effect

RMP

Resonant surfaces
in a cylinder



Counterpart of ballooning mode 

• Two-step scheme: 1, find the counterpart of ballooning mode in the cylindrical 
geometry and study it; 2, generalize results to ballooning mode.

• Quasi-mode in a cylinder resembles ballooning mode in a torus: broad mode structure.

• Ballooning mode: a coupling of localized poloidal harmonics.

• Quasi-mode: a wave-packet of radially localized resistive interchange modes.
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• Quasi-mode: a linear superposition of resistive interchange mode.

• Expect a similar physical picture: emergence of microturbulence.

Physical picture: microturbulence
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+

Large-scale 
quasi-mode

Background 
stochastic 

magnetic field

෨𝑱∥

෨𝑱⊥

෨𝑱𝒕𝒐𝒕

plasma could flow along chaotic field lines

+

microturbulence

Accumulation of 
polarization charge

Potential fluctuation ෤𝜑



Key change: broad mode structure

• Formulation of quasi-mode dynamics:

• Vorticity eqn : 𝜌0
𝜕

𝜕𝑡
− 𝜈𝑇 ∇⊥

2 ∇⊥
2 ( ᪄𝜑 + ƿ𝜑) +

𝐵0
2

𝜂
∇∥ + ƿ𝒃 ⋅ ∇⊥

2
( ᪄𝜑 + ƿ𝜑) − 𝑔𝐵0

𝜕( ᪄𝜌+ ƿ𝜌)

𝜕𝑦
= 0

• Continuity eqn:   
𝜕

𝜕𝑡
− 𝐷𝑇 ∇⊥

2 ( ᪄𝜌 + ƿ𝜌) = − ᪄𝑣𝑥 + ƿ𝑣𝑥 𝛼𝜌0

• Major difference: quasi-mode has a much broader radial mode structure.

→ A change in the spatial ordering of the system:
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෤𝜑, ෤𝜌, ෤𝑣𝑥: microturbulence
𝜈𝑇: turbulent viscosity

1

ҧ𝑣𝑥 ถ

𝜕

𝜕𝜉
ത𝜑

=0

≪
1

ҧ𝑣𝑥

𝜕

𝜕𝜁
ത𝜑 ≪

1

ҧ𝑣𝑥

𝜕

𝜕𝜒
ത𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝑥
෤𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝜒
෤𝜑

switched

𝜈𝑇𝑘𝑦
2 ≪ 𝛾𝒌 ≪ 𝛾𝒌1 < 𝜈𝑇𝑘1𝑦

2
1

ҧ𝑣𝑥

𝜕

𝜕𝜁
ത𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝜁
෤𝜑 ≪

1

෤𝑣𝑥

𝜕

𝜕𝜒
෤𝜑



Results

• Along with ෤𝑣𝑥 ෨𝑏𝑥 , a new correlation ෤𝑣𝑥 ෨𝑏𝑦 appears.

• Scaling of turbulent viscosity 𝜈𝑇 becomes larger.
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෤𝑣𝑥 ෨𝑏𝑥 =
𝑖𝐿𝑦𝐿𝑧

2𝜋 2
න𝑑 𝑘1𝑦

𝑠2𝑘𝑦𝑆 ሚ𝐴0𝒌1
2

𝜏𝐴𝜈𝑇 𝑘1𝑦

12 𝜋𝑜𝒌1
2

𝑤′
𝜁𝜕𝜁 ҧ𝑣𝑥

෤𝑣𝑥 ෨𝑏𝑦 = −
𝑖𝐿𝑦𝐿𝑧

(2𝜋)2
∫ 𝑑𝑘1𝑦

𝑠3𝑘𝑦𝑆 ƿ𝐴0𝒌1
2

𝜏𝐴𝜈𝑇 𝑘1𝑦

12 𝜋𝑜𝒌1
4

𝑤′
𝜁 ᪄𝑣𝑥

𝜈𝑇 =෍

𝒌𝟏

෥𝒗𝒌𝟏
2
𝜏𝒌𝟏 ≅

𝐿𝑧𝐿𝑦

2𝜋 2
න𝑑𝑘1𝑦

𝑠3𝑆2 ሚ𝐴𝒌1
2

𝜏𝐴
2 𝑘1𝑦

3

4 𝜋𝑜𝒌1
2 ҧ𝑣𝑥𝒌 0 2

𝑤′ 𝛼𝑔 Τ1 2
ณ2
old

+
𝑘1𝑦𝑜𝒌2

2

𝑘𝑦𝑤𝒌𝑤
′

2

new

1/3

1

ҧ𝑣𝑥 ถ

𝜕

𝜕𝜉
ത𝜑

=0

≪
1

ҧ𝑣𝑥

𝜕

𝜕𝜁
ത𝜑 ≪

1

ҧ𝑣𝑥

𝜕

𝜕𝜒
ത𝜑

switched



Results

• The correction to the growth of the quasi-mode is

• New terms arise because of the change in spatial ordering.

• Turbulent viscosity damping: enhanced by larger 𝜈𝑇.

• Magnetic braking effect: weakened by microturbulence scattering.

• New stabilization mechanism: reduction in the effective drive.

• Conclusion remains the same: effect of ෩𝒃 is to slow down the mode growth.
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𝛾𝒌
1
= −

5

6
𝑠2Δ2𝜈𝑇𝑘𝑦

2 1+
8

5

1

𝑠2Δ2

new

−
1

3

𝑆

𝜏𝐴
1 − 𝑓 ෨𝑏𝑥

2 +
2

𝑠2Δ2
෨𝑏𝑦
2

new



Section summary

• Lessons learned for ballooning mode dynamics (in presence of magnetic perturbations):

• Stochastic magnetic field impedes the growth of ballooning mode.

1. Enhancing the effective plasma inertia (magnetic braking effect)

2. Reducing the effective drive

3. Promoting turbulence damping

• Microturbulence is driven and yields a turbulent background.

1. 𝜈𝑇
ballooning

> 𝜈𝑇
interchange

2. Electrostatic scattering is destabilizing ⇒ opposite to result for interchange.
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Ingredient 3: nonlocality

Physics of edge-core coupling by 
inward turbulence propagation



Background: voids in tokamaks

• Turbulence: a multi-ingredient concoction (waves, structures, …)

• Coherent structures are present in tokamaks.

• Blobs/voids: plasma filaments with large +/‒ ෤𝑛 and long lifetime.

• Existing studies on coherent structures are incomplete. 

• No interaction of structures with waves and zonal flow.

• Millions of papers on blobs, very little attention on voids.

• Blobs/voids are created in pairs from edge gradient relaxation events (GREs).

• Void stay in the bulk plasma        a messenger from edge to core.
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zonal flow

drift wave
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？
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N. Bisai, 2023, RMPP
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void
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Motivation: edge-core coupling

• Physics of edge-core coupling: a critical problem for optimal plasma performance.

• Shortfall: turbulence level exceeds the prediction of Fickian gyrokinetic models.

• Edge-core coupling region ⇒ a no man’s land.

• A “known unknown”: physics setting the width of the no man’s land.

• Tail wags the dog? A long history of speculation.

• Can density void play a role in this process and address shortfall? 
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“… And, finally, we have a very strong activity at the plasma edge. It
controls the transition from one mode of confinement to another and its
influence extends well into the bulk plasma… ” —B.B. Kadomtsev, 1992



Motivation: edge-core coupling

• Experimental evidence from BES studies

• Bursts of zonal flow power usually follow the 
detection of density voids.

→ Density voids can drive zonal flow.

→ Need a model to figure out the role voids play 
in edge dynamics.
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A. Sladkomedova, 2024, JPP

waves

flows voids



Scope

• Questions to address:

1. What is the width of the turbulent layer (no man’s land) driven by the voids?

2. What are the mechanism and shearing rate of the void-driven zonal flow?

3. How do (ambient) turbulence and zonal flow affect density voids?

• Three incentives: 
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Picture: emission of drift waves 
from voids moving through the 
background plasma 

⇒ start from Hasegawa-
Wakatani model.

1. T. Long et al., 2024, NF.
2. O.E. Garcia et al., 2005, PoP.



Model: partition of the space

• Hasegawa-Wakatani model (with curvature drive):

• Divide the whole space into two parts:

• Near field regime: 𝛼 < 1 (no adiabatic electrons)

• Far field regime: 𝛼 > 1
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𝑑

𝑑𝑡
∇⊥
2𝜑 +

2𝜌𝑠
𝑅𝑐

1

𝑛0

𝜕𝑛

𝜕𝑦
= 𝐷∥∇∥

2
𝑛

𝑛0
− 𝜑

1

𝑛0

𝑑𝑛

𝑑𝑡
= 𝐷∥∇∥

2
𝑛

𝑛0
− 𝜑 near field

(𝛼 < 1)

far field
(𝛼 > 1)

at 𝑡
𝑥-axis

𝑦-axis

𝑂

LCFS

at 𝑡0

𝑑

𝑑𝑡
∇⊥
2𝜑 +

2𝜌𝑠
𝑅𝑐

1

𝑛0

𝜕𝑛

𝜕𝑦
= 0,

1

𝑛0

𝑑𝑛

𝑑𝑡
= 0.⇒ Two-field model1: 

⇒ Hasegawa-Mima (HM) equation: 
𝑑

𝑑𝑡
∇⊥
2𝜑 −

1

𝑛0

𝑑𝑛

𝑑𝑡
= 0

(𝛼 =
𝐷∥∇∥

2

𝜕𝑡
: adiabaticity)

explains scaling of convection velocity

1. O.E. Garcia, 2005, PoP.



Model: local solutions of far field eqn

• Target: turbulence field excited by a moving void ⇒ focus on far field (𝛼 > 1).

• Void enters via profile modulation, i.e., 𝑛 = 𝑛0 + 𝑛𝑣 + ෤𝑛 (akin to test particle model)

• Workflow of the rest of the calculations:
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𝑑

𝑑𝑡
∇⊥
2𝜑 − 𝜑 − 𝑣∗

𝜕𝜑

𝜕𝑦
=

1

𝑛0

𝑑𝑛𝑣
𝑑𝑡

source 𝑛𝑣 = 2𝜋𝑛0ℎΔ𝑥Δ𝑦𝛿 𝑥 + 𝑢𝑥𝑡 𝛿 𝑦 − 𝑢𝑦𝑡 𝐻 𝑡 𝐻 𝜏𝑣 − 𝑡

ℎ: magnitude;   Δ𝑥, Δ𝑦: spatial extent;    𝑢𝑥, 𝑢𝑦: convection speed;     𝜏𝑣: lifetime

Get the Green’s func of 
the linearized H-M eqn 
and then solve 𝜑 of the 
far field equation

Estimate the void-
induced turbulence 
intensity flux and width 
of the no man’s land

Compare the shearing 
rate of the void-driven 
flow to the ambient 
shear (Reynolds stress)



Model: solutions of three cases

• Desired Green’s function is obtained from geophysics (not plasma physics). 

• Still meet two challenges:

• Green’s function is complicated.

• Voids move in both 𝑥 and 𝑦 directions.

• Solution: consider three limiting cases:

Dissertation Defense38

𝐺 = −න
𝑐−𝑖∞

𝑐+𝑖∞ 𝑑𝑠

2𝜋𝑖
exp 𝑠𝜏 +

𝑣∗𝜒

2𝑠

1

2𝜋𝑠
K0 1 +

𝑣∗
2𝑠

2 1/2

𝜌 .

a) Radially moving void 𝑢𝑦 = 0 :

1) away from the 𝑥-axis ( 𝑦 ≫ 𝑥 )

2) near 𝑥-axis 𝑥 ≫ 𝑦

b) Poloidally moving void 𝑢𝑥 = 0 :

3) near 𝑦-axis 𝑦 ≫ 𝑥



Results: width of no man’s land

• 𝜓0 − 𝜓1 : penetration depth of voids.

• 𝜓2, 𝜓1 : edge-core coupling region (no man’s land)

• Balance equation for turbulence intensity:

•
𝜕

𝜕𝑡
ƿ𝑣2 = −

𝜕

𝜕𝑥
᪄Γ + 𝜅 ƿ𝑣 ƿ𝑛

• തΓ : averaged turbulence intensity flux (over 𝑦 and 𝑡).

• Integrating over NML:

• 𝑅𝑎 =
nonlocal intensity flux

local production
=

ഥΓ ȁ𝜓1

∫𝜓2
𝜓1 𝜅 ƿ𝑣 ƿ𝑛 𝑑𝑟

≈
ഥΓ ȁ𝜓1

𝜅 ƿ𝑣 ƿ𝑛 𝑤𝑛𝑚𝑙

• In NML, 𝑅𝑎 ∼ 1 ⇒ NML width 𝑤𝑛𝑚𝑙 ∼ തΓ ȁ𝜓1
/𝜅 ƿ𝑣 ƿ𝑛 .
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𝑙: spacing between emitters

Δ𝑦: width of emitters.



Results: width of no man’s land

• GREs (edge instabilities) contain 𝑁 troughs.

• After each waiting time 𝜏𝑤, 𝑁 voids are generated. 

• Each void provides a turbulence intensity burst Δ𝐼

→ Γ = σ𝑖,𝑗 𝑢𝑥Δ𝐼2𝜋Δ𝑦𝜏𝑣𝛿 𝑦 − 𝑖𝑙 𝛿 𝑡 − 𝑗𝜏𝑤 .

• Δ𝐼: evaluated from the local solution at 𝑥 → 𝜓1
− in case 2.

→ 𝑤𝑛𝑚𝑙 ∼
2𝜋

𝜅 ƿ𝑣 ƿ𝑛

ℎΔ𝑥Δ𝑦

𝑢𝑥𝜏𝑣

2 1

𝑣∗𝜏𝑣
2

𝑁Δ𝑦

𝐿𝑦

𝜏𝑣

𝜏𝑤
.

• For 𝑁 ∼ 𝒪(1) (strong ballooning), Δ𝑥 ∼ Δ𝑦 ∼ 10, 
𝑢𝑥 ∼ 𝑣∗ ∼ 10−2, 𝜏𝑣 ∼ 103, 𝑙 ∼ 103, ෤𝑣 ∼ ෤𝑛 ∼ 10−2, 
𝜅/2𝜋 ∼ 10−4, ℎ ∼ .1 → 𝒘𝒏𝒎𝒍 ∼ 𝟏𝟎𝟐𝝆𝒔.
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𝑙: spacing between emitters

Δ𝑦: width of emitters.



Results: shearing rate of void-driven flow

• Summary of the shearing rates of zonal flow driven by voids 𝜔𝑠
𝑣 in all three cases:

• As ℎ = 𝑛𝑣/𝑛0 ∈ 0.1,1 , 𝜔𝑠
𝑣 could be comparable to 𝜔𝑠

𝑎 (exceed it in case 2).

• Order-of-magnitude estimate… but flexibility in choice of parameters indicates generality.
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Case 𝜔𝑠
𝑣/𝜔𝑠

𝑎 If 𝑣𝐹
𝑎 ∼ 𝑣∗, Δ𝐹

𝑎 ∼ 10𝜌𝑠

𝒗𝒉 = −𝑢𝑥ෝ𝒙
away from 𝑥-axis

𝜔𝑠
ℎ

𝜔𝑠
𝑎 ∼

ℎΔ𝑥Δ𝑦

𝑣∗𝑢𝑥𝜏𝑣𝑎

2
Δ𝐹
𝑎

𝑣𝐹
𝑎/𝑣∗

𝜔𝑠
𝑣

𝜔𝑠
𝑎 ∼ 10ℎ2

𝒗𝒉 = −𝑢𝑥ෝ𝒙
near 𝑥-axis

𝜔𝑠
ℎ

𝜔𝑠
𝑎 ∼

ℎΔ𝑥Δ𝑦

𝑣∗𝑢𝑥𝜏𝑣

2
2 ln 𝑎/𝑣∗ Δ𝐹

𝑎

𝑥3𝑣𝐹
𝑎/𝑣∗

𝜔𝑠
𝑣

𝜔𝑠
𝑎 ∼ 10ℎ 2

𝑥

𝜌𝑠
∼ 102

𝒗𝒉 = 𝑢𝑦ෝ𝒚

near 𝑦-axis

𝜔𝑠
ℎ

𝜔𝑠
𝑎 ∼

𝜋

2

ℎΔ𝑥Δ𝑦

𝑣∗𝑢𝑦𝜏𝑣

2
𝑥

𝑎3
Δ𝐹
𝑎

𝑣𝐹
𝑎/𝑣∗

𝜔𝑠
𝑣

𝜔𝑠
𝑎 ∼ ℎ2

𝑥

𝜌𝑠
∼ 10

𝑣∗/𝑐𝑠 ∼ 𝑢𝑥/𝑐𝑠 ∼ 2𝑢𝑦/𝑐𝑠 ∼ 10−2, 𝑎/𝜌𝑠 ∼ 103, 𝜔𝑐𝑖𝜏𝑣 ∼ 103, 𝑡 ∼ 105

𝑣𝐹
𝑎: ambient flow velocity; 

Δ𝐹
𝑎 : ambient flow width;
𝑎: minor radius;
𝜔𝑠
𝑎: ambient shearing rate



Results: void lifetime 

• Effects of turbulence and flow on voids?

• Turbulence/flow can smear/shear the void.

• Consider a passive diffusion: 𝜕𝑡𝑛𝑣 = 𝐷∇⊥
2𝑛𝑣.

• A practical definition of the void lifetime:

→ half-life ⇒ 𝜏𝑣 = 2Δ𝑥2/𝐷.

• For 𝜌∗ =
𝜌𝑠

𝐿𝑛
∼ 0.01,

𝜔𝑠
𝑎

𝜔∗
∼ 𝜌∗

1

2,
𝜔∗

𝜔𝑐𝑖
∼ 𝜌∗:
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• In purely diffusive regime (𝜔𝑠
𝑎 < 𝐷𝑘⊥

2 or 
1

2
< 𝛿 < 1): 𝜏𝑣 ∝ 𝜌∗

−𝛿.  

• In shearing dominant regime (𝜔𝑠
𝑎 > 𝐷𝑘⊥

2 or 0 < 𝛿 <
1

2
): 𝜏𝑣 ∝ 𝜌∗

− 1+2𝛿 /4
.

𝛿 = ln(𝑙𝑚𝑖𝑥/𝐿𝑛) / ln 𝜌∗

• Our estimate: 𝜏𝑣 ∼ 3 − 100 𝜇s vs. experiment: 𝜏𝑣 ∼ 3 − 20 𝜇s. 

𝐷 ∼ ෤𝑣𝑙𝑚𝑖𝑥



Section summary
• A theory incorporating density voids into turbulence dynamics.

• It goes well beyond the traditional predator-prey model.

• How the tail (edge) wags the dog (core): emission of drift waves from moving voids 
drives substantial inward turbulence spreading and so drives a broad turbulent layer.

• More specifically, we calculate:

• The width of the NML, which depends on the void parameters, is of order 100 𝜌𝑠.

• The shearing rate of the void-driven zonal flow is comparable to or even exceeds the 
ambient shear. 

• The void lifetime ranges from a few to 100 𝜇s, which encompasses experimental values 
reasonably well.

• Expect results apply not only to L-mode, but also to H-mode ⇒ ELMs are also GREs!1
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Summary and future research



Summary

Three new ingredients—stochasticity, toroidicity, and nonlocality—are added.

I. Theories of resistive interchange mode and quasi-mode in a stochastic magnetic field.

i. Microturbulence is driven to maintain quasi-neutrality at all scales.

ii. ෨𝑏𝑥 ෤𝑣𝑥 and ෨𝑏𝑦 ෤𝑣𝑥 develops ⇒ noisier turbulence ⇒ reduced complexity in experiments.

iii. Net effect of stochastic magnetic fields is to oppose mode growth ⇐ enhanced by toroidicity.

II. Physics of edge-core coupling by void-induced inward turbulence spreading.

i. Emission of drift waves from moving voids drives substantial inward turbulence spreading.

ii. Nonlocal turbulence spreading could be comparable to local production ⇒ 𝑤𝑛𝑚𝑙 ∼ 100 𝜌𝑠.

iii. Emitted drift waves can further drive zonal flow, with 𝜔𝑠
𝑣 ≥ 𝜔𝑠

𝑎.

iv. Voids are smeared and sheared by ambient turbulence and shear ⇒ 𝜏𝑣: a few to 100 𝜇s.
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compound



Future research

Theoretical:

I. Kinetic description.

II. Incorporating zonal flow.

III. A fully self-consistent model 
(radiation reaction).

Dissertation Defense46

Experimental:

I. Complexity-entropy analysis for BES data.

II. Direct examination of ෩𝒃෤𝑣𝑥 .

III. Evidence of void–turbulence–zonal flow 
interactions (wavelet bispectrum analysis).

Only half of the story……

I. Ku < 1 is adopted more or less.

II. Ku ∼ 1 for edge turbulence?

III. Realme of Ku > 1 ⇒ percolation? 

Ku=
෩𝑉𝜏𝑎𝑐

Δ
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Thank you!
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