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Abstract

Analytic solution for ion-acoustic collisionless shocks with reflected
ions is constructed. It extends a classic soliton propagating at the
Mach numbers M <M∗ ≈ 1.6 beyond this value at which the soliton
reflects the upstream ions. The soliton turns into a shock whose
parameters, such as the maximum and the minimum of the potential
in its trailing nonlinear wave, are obtained in terms of the number of
reflected ions. The latter can be related to the shock Mach number,
which is implemented for a particular, “box” (piece-wise constant)
distribution of upstream ions. The reflected ions, propagating at the
double shock speed, support a shock precursor (foot) whose potential
is also obtained. The process of expansion of reflected ions into the
upstream medium is self-similar, resembling that of the gas expansion
into vacuum.



Introduction

understanding of collisionless shocks is important for:
- particle acceleration in astrophysical settings
- supernova remnants, pulsar and black hole magnetospheres,
- laser-based tabletop proton accelerators
- inertial confinement
........................................

only laminar shocks of limited Mach numbers are well
understood, largely using soliton approach

when Mach number exceeds a critical value M = M∗, a number
of phenomena occur, starting from ion reflection off the shock
front



Problem setting and summary of results

the main question here is whether a quasi-laminar shock
transition can still be constructed, or else the shock becomes
turbulent

below we show that when M >M∗ the stationary shock
transition can continue, albeit in a different form

besides its departure from the solitary form, the shock acquirers
a wave train downstream which is strictly periodic in
collisionless regime, Fig.1

the new analytic solution has a higher limiting Mach number
M = M∗∗ >M∗, when all incident ions are reflected and a
stagnated ion flow fills the downstream medium



Summary of results cont’d

the degenerate state of complete reflection can not be extended to
higher amplitudes and Mach numbers and the flow is likely to be
non-stationary beyond this point

in the range M∗ <M <M∗∗, the only time dependent part of the
solution concerns the leading edge of the group of reflected ions

they form a pedestal attached to the shock potential profile
upstream and escape with double the shock speed, Fig.1

their further fate is determined by a relatively slow spreading of
the initially sharp front edge

by even a small velocity dispersion ions with higher initial
velocity undergo additional electrostatic acceleration by passing
through the shock pedestal



Shock Model

ion-acoustic soliton solutions first obtained for the Boltzmann
electrons [1] and extended later to the case of adiabatically
trapped electrons [2]

ions were assumed cold which strictly limits the maximum Mach
number to M∗ = 1.6 and M∗ = 3.1 for Boltzmann and adiabatic
electrons, respectively

we seek to extend the soliton solution beyond the ion reflection
point M >M∗while adhering to the exact treatment with an
explicit form of the nonlinear dispersion relation M = M (φmax),
where φmax is the soliton amplitude

to include the reflected ions adequately, the assumption about
cold upstream ions must be abandoned



Incoming Ion distribution

goal is to obtain a solution that continuously depends on the ion
reflection ratio

α = nrefl/n∞

this quantity can always be calculated given the shock speed and
the upstream ion distribution

assume a “box” distribution with the finite thermal velocity
VTi = v2− v1:

f ∞
i (v) =

1

v2− v1

{
1, −v2 < v <−v1
0, v /∈ (−v2,−v1)

use dimensionless eφ/Te → φ , measure coordinate in units of
λD =

√
Te/4πe2n∞, ion velocity in Cs =

√
Te/mi .



Ion Density and Shock Potential

Assume soliton propagates in with a nominal speed U =
√
2φmax,

where φmax = φ (0) is the maximum of its potential and v1 ≤ U ≤ v2.
The ion density upstream and downstream can be written as follows,
Fig.2
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Poisson equation

d2φ

dx2
= (1+ α)eφ −ni (φ) , where α =

U− v1
v2− v1

(1)

α is the fraction of ions reflected off the shock



Solution

integrate eq.(1) once imposing the condition φ ′ (φmax) = 0

1

2

(
dφ

dx

)2

= Φ(φ) +F± (φ)≡ Φ± (φ) (2)

where ′+′ or ′−’ relate to x ≥ 0 and x < 0. Here

Φ = (1+ α)
(
eφ − eU2/2

)
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−2φ

)3/2− (v2
2
−U2
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3(v2− v1)

(3)
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)3/2
ϑ
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)
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U2−2φ
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(4)
and ϑ is a Heaviside function.



Solution for the main shock

Implicit solution for the potential φ (x) in the regions x ≷ 0

x (φ) =± 1√
2

φmaxˆ

φ

dφ ′√
Φ± (φ ′)

(5)

The condition dφ/dx = 0 at x = ∞ that amounts to Φ+ (φ = 0) = 0

yields the dispersion relation for the soliton

eU
2/2−1 =

v3
2

+U3−2v3
1
−
(
v2
2
−U2

)3/2
3(1+ α)(v2− v1)

(6)

This is a relation between the soliton amplitude φmax = U2/2 and its
speed (Mach number) M = (v1 + v2)/2. Assuming
VTi = v2− v1� U , we obtain

eU
2/2−1−U2 =−1

3
(2U)3/2

(1−α)3/2

1+ α
V

1/2
Ti

(7)



Shock transition cont’d

Neglecting the r.h.s. (cold ions, VTi → 0) gives the solution for the
critical Mach number U = M∗ ≈ 1.6 [1]. For a finite VTi � v1,2 and
arbitrary α one obtains

U = M∗−
2
3/2

3

(1−α)3/2V
1/2
Ti

(1+ α)M
1/2
∗ (M2

∗ −1)
(8)

Downstream (x < 0), the potential oscillates between φmin and
φmax = U2/2 given eq.(8). Similarly, one obtains for φmin

eU
2/2− eφmin =

(
v2
2
−2φmin

)3/2− (U2−2φmin
)3/2− (v2

2
−U2

)3/2
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(9)
The solution for φmin when α � 1
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Solution for shock transition cont’d

Strong reflection, 1−α � 1 and VTi � 1−α � 1

φmin ' φmax −
2M2
∗ (1−α)2

(1+M2
∗ )2

For smaller 1−α

φmin ' φmax −
9

4
(1−α)VTi

M∗

[
1−

√
VTi

2(1−α)

(
1+M2

∗
)

√
M∗

]2
(10)

This solution cannot be continued to α = 1, as φmin reaches φmax at

α = αc ' 1−VTi

(
1+M2

∗
)2

/2M∗ < 1 (11)



Solution near α = αc

Solution with all particles reflected from the top of the shock potential
would require a finite density downstream (to neutralize electrons)
which would be possible only if the incident ions had zero velocity
dispersion (that is why 1−αc ∼ VTi ). Therefore, when α decreases
to α = αc a constant solution φ (x)≡ φmax establishes downstream.
We find it by requiring charge neutrality condition fulfilled identically
downstream

eU
2/2 =

1−α

1+ α

√
2U

VTi (1−α)
+1,

which yields the critical α = αc , eq.(11). Then, the maximum
potential φmax = U2/2 is determined by
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Ion Precursor

The leading soliton and the trailing shock in the case α 6= 0 propagate
through the foot region where the shock-reflected ions elevate the
electrostatic potential from zero at infinity to ψ = φ1 and partially
entrain the incident ions. We shift the variable φ to ψ: ψ = φ + φ1.
Denoting the reflected ion density by ρ and neglecting the thermal
spread of the incident ions we the Poisson equation rewrites

d2ψ

dx2
= eψ − 1√

1−2ψ/w2
−ρ (12)

Here the reference frame propagates with the front of reflected ions
w ' 2Vshock . By neglecting the thermal dispersion of reflected ions
we describe them using hydrodynamic approximation:

∂ρ

∂ t
+

∂

∂x
ρu = 0 (13)

∂u

∂ t
+u

∂u

∂x
=−∂ψ

∂x
(14)

where u is the flow velocity of reflected ions.



Ion Precursor, cont’d

The problem given by eqs.(12-14) has a close relation with the
problem of expansion of one gas into the other (or vacuum) [3, 4].
The solution should depend only on the variable ξ = x/t. The
equations then rewrite

(u−ξ )ρ
′+ ρu′ = 0 (15)

(u−ξ )u′+Qρ
′ = 0 (16)

where we have denoted the ξ - derivative by prime and
Q (ρ) = dψ/dρ . The solubility condition with respect to u′,ρ ′:

(u−ξ )2 = ρQ,

or, using eq.(16)

du

dψ
=± 1√

ρQ
, (17)



Ion Precursor, cont’d

where ρ (ψ) is given by eq.(12)

ρ = eψ − 1√
1−2ψ/w2

Q (ψ) = (dρ/dψ)−1. The solution for u takes the following form

u =

φ1ˆ

ψ

dψ

√√√√eψ −w−2 (1−2ψ/w2)−3/2

eψ − (1−2ψ/w2)−1/2
(18)

Integration constant φ1 obtained from the requirement that the
reflected beam density near the shock comprises an α fraction of that
of the incident ions

ρ (ξ =−∞)≡ ρ1 =
α√

1−2φ1/w2



Ion Precursor, cont’d

so that for φ1 we obtain

eφ1 =
1+ α√

1−2φ1/w2

which for small α yields

φ1 '
α

1−w−2

The reflected beam maximum velocity is reached at ψ = 0 in eq.(18).
In the case of small α , from eq.(18) we obtain umax ' 2

√
φ1 which, of

course, follows from the energy conservation of ions passing from the
shock foot of height φ1.



Conclusions

ion acoustic soliton solution limited by M <M∗ ' 1.6 condition
is extended beyond this point which also marks the beginning of
ion reflection

new solution may be formally extended to the point where
almost all incident ions are reflected off the leading soliton and a
constant potential establishes downstream

dispersive properties of the shock solution that relate its speed,
trailing wave train period and the shock amplitude and particle
reflection rate, are obtained

structure of the shock precursor where the reflected ions are
accelerated is determined

the obtained solution has immediate implications for the
laser-based tabletop proton accelerators
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Figure: Electrostatic potential of the shock structure consisting of pedestal,
leading soliton and trailing wave



Figure: Phase plane of ions at reflection point.



Figure: Pseudo-potentials of “oscillators” described by eq.(2).
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