Cosmic Ray Acceleration: the need and ways of doing it faster

M.A. Malkov

University of California, San Diego

Ackn: R.Z. Sagdeev, P.H. Diamond Supported by NASA and US DoE

Outline

Why need faster acceleration?

- Benchmarks are challenging for acceleration mechanisms (DSA)
- DSA sluggishness
- Selection of astrophysical settings
- 2 SNR and other large scale shocks
 - NL shock modification
 - Shock Rippling
- Proton Zevatrons in DM filaments
 - Accretion flows and CR Acceleration in Cosmic Web
 - Betatron inductive acceleration
 - Evading photo-disentegration in accelerator and exit fees

Knee, Ankle and GZK cutoff DSA sluggishness Selection of astrophysical settings

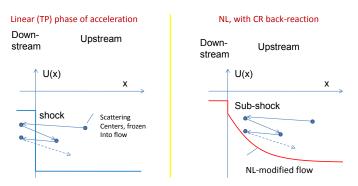
Benchmarks CR spectrum: knee, ankle, GZK Possible interpretations of the breaks

- need single acceleration mechanism up to the knee for protons
- may argue then that the spectrum extends to the ankle because
 - heavier nuclei
 - superposition of sources, exceptional SNRs, pre-supernova dense wind (Völk & Biermann 1988)
 - change in acceleration regime (M & Diamond 2006)
- diffusive shock acceleration -DSA operating in SNRs embodies above ingredients thus appearing plausible, BUT...

Knee, Ankle and GZK cutoff DSA sluggishness Selection of astrophysical settings

Maximum energy: knee

- predictions for maximum energy/knee for DSA in SNR are model dependent
- major problem: CR scattering environment: dominant turbulence mode and saturation level
- under optimistic assummptions might reach *PeV*;


-Bohm diffusion of $CR-\kappa_B \sim r_g c$ on resonant Alfven waves (e.g. Berezhko et al 90s);

-spreading of short non-resonant waves to resonance at $kr_g \sim 1$ -Bell 04; Bykov et all 11,13; Diamond & M 2007; Simulations largely supportive: Zirakashvili & Ptuskin, Spitkovsky+, Caprioli...

- pessimistic estimates: DSA falls short by one-two orders of magnitude (Laggage & Cesarsky 1983, partially also Bell 2014 recapitulates concerns)
- **bottom line**: DSA needs an order of magnitude boost to reach the knee during SNR active life

Knee, Ankle and GZK cutoff DSA sluggishness Selection of astrophysical settings

DSA: operation and potential for improvement

• In both cases momentum gain is small $\Delta p/p \sim U/c$ can be deduced from adiabatic invariant

$$\oint p_{\parallel} dl = const$$

Knee, Ankle and GZK cutoff DSA sluggishness Selection of astrophysical settings

DSA: why slow?

long waiting time upstream and downstream: number of scattering

 $N \sim c/U \gg 1$

needed before momentum is increased upon shock crossing by

 $\Delta p/p \sim U/c$

• acceleration time grows with momentum, as both the collision time (in the linear case $\omega_c^{-1} \propto p$) and precursor crossing time $[\kappa(p_{max})/U^2 = \tau_{acc} \text{ in NL regime}]$ increase

Knee, Ankle and GZK cutoff DSA sluggishness Selection of astrophysical settings

DSA characteristic times cont'd

$$au_{acc} \simeq rac{\kappa(p)}{U^2} \sim \lambda \, c \, / \, U^2 \sim au_{col} c^2 \, / \, U^2 = au_{col} N^2$$

 λ -particle mean free path (m.f.p.) au_{col} -collision time (ω_c^{-1} at least)

DSA time hierarchy

$$au_{acc}: au_{cycl}: au_{col}\sim rac{c^2}{U^2}:rac{c}{U}:1$$

• improvement strategy: decouple one of these ratios (or both) from the small parameter *U/c*

Knee, Ankle and GZK cutoff DSA sluggishness Selection of astrophysical settings

Case studies for enhanced acceleration

- OSA in large scale shocks such as SNR
 - working hypothesis of CR origin
 - DSA is robust and well established acceleration mechanism
 - plethora of new SNR observations
- Accretion flow on DM filament suitable site for UHECR acceleration
 - weak magnetic and photon fields in accelerator surroundings
 - synchrotron-Compton losses negligible
 - pair production losses insignificant
 - photo-pion losses are significant but beatable

NL shock modification Shock Rippling

Possible ways to accelerate DSA

 p(t) grows linearly (slow) both in unmodified and modified shocks but for different reasons

$$\dot{p}/p \propto 1/ au_{acc} \propto 1/p$$

• in modified shocks due to precursor inflation $L_p \propto p_{\rm max}$, as $\tau_{acc} =$ precursor crossing time

 \rightarrow attempt to prevent precursor from growing

• nonlinear shock modification with fixed precursor scale

$$\dot{p}/p \propto U/L_p(p_{\rm fixed}) = const$$

-exponential growth of momentum

• shock corrugation resulting in partially quasi-perpendicular acceleration regime without particle loss downstream - reduction in acceleration time by making τ_{cvcle} short

NL shock modification Shock Rippling

Acceleration in CR shock precursor

acceleration rate in CR modified shocks

•
$$\frac{\dot{p}}{p} = \frac{1}{3} \frac{\partial U}{\partial z} \sim U/L_{NL}(p_*)$$

is the same as in ordinary shocks except $L_{NL}\sim\kappa(p_*)/U$ instead of $L_p\sim\kappa(p)/U$

 p_* is where CR partial pressure is at maximum

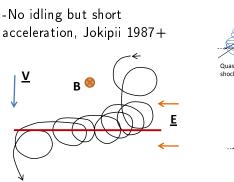
• if the spectrum is harder than p^{-2}

$$p_* \simeq p_{\max}$$

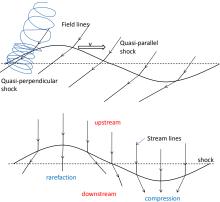
• If p_* is fixed, $p_* \ll p_{\max}$ then p(t) grows exponentially rather than linearly in the range

$$p_*$$

NL shock modification Shock Rippling


Enhanced Acceleration Scenario

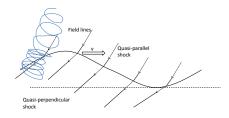
- Initial linear growth $p \propto t$ up to $p = p_*$ (M & Diamond 2006)
- OR NL shock modification, Drury instability on ∇P_{CR} (Drury & Falle 1986)
- Some of multiple shocks in precursor and CR losses for $p > p_* →$ steeper spectrum for $p > p_*$
- change of CR confinement regime to super-diffusive for $p > p_*$ to make a steeper spectrum
- precursor does not grow as max $P_{CR}(p)$ is fixed at $P_{CR}(p_*)$
- **(**) particle momentum grows exponentially for $p\gtrsim p_*$


Limitation: $r_g(p) \ll \kappa(p_*)/U \sim r_g(p_*)c/U$

NL shock modification Shock Rippling

Switch to quasi-perpendicular geometry

-rippled shock surface may result in protracted particle interaction with shock

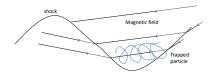


 but ordinary shocks are stable with respect to corrugations (LL, Mond and Drury'98 +CRs)

NL shock modification Shock Rippling

Combined \perp / \parallel acceleration scenario

 CRs destabilize shock surface since CR mirror force depends on shock normal angle



- set ripples in motion horizontally
- acceleration cycle comprises two phases: perpendicular and parallel

- particle return to shock through quasi-parallel parts of its surface
- perpendicular (fast) phase has no idling time
- parallel (slow) phase has p-independent duration
- $au_{acc} \lesssim \kappa/U^2$ with fast acceleration spikes in \perp -regime
- bottom line: a factor of a few gain in acc'n rate

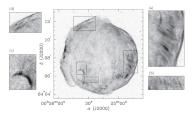
NL shock modification Shock Rippling

Stronger acceleration speed-up by particle trapping

- CR trapped between rapidly converging mirrors
- trapping suggests

$$\oint p_{\parallel} dl = const$$

- promotes corrugations


- energy gain up to factor c/U in one trapping event $(I_{min} \sim r_g, I_{max} \sim r_g c/U)$
- *I_{max}* may be longer if ripple dynamics results in their coalescence, akin 1D shock dynamics (bad for the previous ⊥ / || scenario)
- loss cone particles downstream have chances to reappear upstream on || shock region

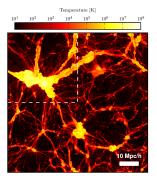
NL shock modification Shock Rippling

Evidence of shock rippling?

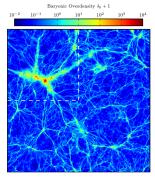
Chandra SNR 1006 -may be interpreted as shock corrugation or projected radial shocks

- Tycho (Eriksen et al 2011)
- straiates appear to be more consistent with surface phenomenon

Accretion flows and CR Acceleration in Cosmic Web Betatron inductive acceleration Evading photo-disentegration in accelerator and exit fees

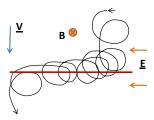

Why new UHECR acceleration mechanism? Proton Zevatrons in DM filaments

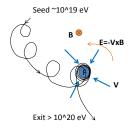
- GRB origin of UHECR is likely ruled out: neutrino upper limit factor ~3.7 below predictions (Abbasi et al, IceCube, 2012)
- AGN scenario encounters problems with IC/synchrotron losses, photo-pion losses; powerful accelerators generate strong photon- and magnetic fields (Norman et al 95)
- large-scale structure shocks accelerate particles too slow to overcome losses (Norman et al 95, Jones 04) \rightarrow BUT: seed population 10^{19.5} eV for the mechanism suggested here:
- operates inside accretion flow onto a filament between two nodes (M, Sagdeev & Diamond 2011)


Accretion flows and CR Acceleration in Cosmic Web Betatron inductive acceleration Evading photo-disentegration in accelerator and exit fees

Large-scale structure simulation

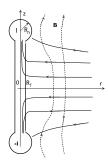
DM web: filaments and nodes Schaal & Springel 2014


• accretion flow onto filaments from voids


Accretion flows and CR Acceleration in Cosmic Web Betatron inductive acceleration Evading photo-disentegration in accelerator and exit fees

Acceleration mechanism Compare and Contrast with SDA

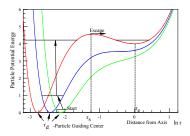
- starts similarly to shock-drift acceleration (SDA)
- in SDA part of the orbit is decelerating



- change of orbit topology from drift to circumscribing the filament -betatron regime
- pure energy gain, no deceleration phase

Accretion flows and CR Acceleration in Cosmic Web Betatron inductive acceleration Evading photo-disentegration in accelerator and exit fees

Accelerator setup

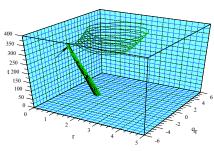


 two nodes connected by a filament provide magnetic trap as the field increases toward nodes

- flow pattern (solid lines) magnetic field (dashed lines)
- magnetic field increases towards filament $B_z \propto r^{-3/2}$
- initial drift acceleration regime: $p_{\perp}^2/B_z = const$ -slow phase
- change to betatron regime: *explosive acceleration*

Accretion flows and CR Acceleration in Cosmic Web Betatron inductive acceleration Evading photo-disentegration in accelerator and exit fees

Particle Dynamics

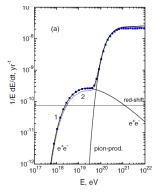


- drift motion toward filament, slow energy gain $p_{\perp}^2/B_z = const$
- acceleration control parameter

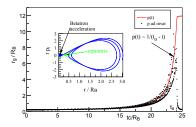
$$v = -\frac{ru_r B}{R_{\rm B} c B_{\infty}}$$

R_B- Bondi radius

● betatron regime >>


explosive acceleration

$$p(t) = (\mathscr{P}_0 - vt)^{-1}$$


 \mathscr{P}_0 -canonical momentum

Accretion flows and CR Acceleration in Cosmic Web Betatron inductive acceleration Evading photo-disentegration in accelerator and exit fees

Why short explosive acceleration is critical? Overjumping the photopion "wall"

- $\gamma \pi$ "wall" at $E \simeq 10^{19.5}$ eV (Berezinsky et al 2006)
- BUT! betatron energy growth is explosive!

- the photo-pion wall can be overjumped
- likely need tunneling with m.f.p $I_{\pi} \sim 10 \text{Mpc}$
- upon crossing separatrix particles escape immediately, thus evading high magnetic and photon fields

Summary

• Galactic CR, SNR, DSA

- NL shock modification speeds up acceleration in the smooth part of the upstream flow
- sizable fraction of $U_{shock}/c \gg 1$ factor can be used to increase acceleration rate
- shock surface is shown to be corrugationally unstable due to CR shock reflection
- acceleration at CR-corrugated shocks is significantly enhanced

UHECR

- betatron acceleration in DM filaments suggested
- acceleration end-thrust overcomes losses, fatal for other mechanisms (e.g., DSA)
- mechanism is capable of proton reacceleration to the maximum energy $\gtrsim 10^{20} \text{eV}$
- $\bullet\,$ seed particles with energies $\sim 10^{19}\,$ eV are required