On zonal flow dynamics and ITG turbulence saturation in NT tokamaks

Rameswar Singh, P H Diamond and A Marinoni UCSD

US-EU TTF Meeting, April 2024, Asheville

Acknowledgements: G Merlo & U.S. Department of Energy Award Number DE-FG02-04ER54738.

Motivation

- Improved confinement in NT tokamaks experiments is now well established. [Y Camenen+ NF 2007, M Austin+ PRL 2019, A Marinoni+ 2019]
- Theoretical understanding lacking!
 - TEM stabilization by precession drift reduction [A Marinoni+ 2009]
 - ITG turbulence and transport with NT are poorly understood.
- Zonal flow residuals + GAM frequency and Landau damping rates are lower for NT than for PT. [RS+PD NF2023, FEC 2023]
- NT turbulence saturation by Zonal flow, GAM or both? Nonlinearly generated shear flow more relevant than residual !?

0.3 analytic theory **RS+PD NF 2023** numerical integration 0.25 0.2 $(0)^{0.2}$ $(0)^{0.15}$ $(\infty)^{0.15}$ $R_0' = -0.4$ 0.1 0.05 $\kappa_0 = 0$ 0.5 -0.5 0.4 GAM damping rate 5.0 damping rate 1.0 damping rate

8. 1.7 B 1.6 B 1.5 B 1.5 B

1.4

.3

0.5

-0.5

RS+PD FEC 2023

- High dimensionality of shaping parameters space.
 - Coupled shaping parameters!
 - Important to isolate the effect of shaping parameters, one at a time.
- Here focus on interaction of triangularity and Shafranov shift gradient on ITG turbulence saturation, transport and nonlinearly generated zonal flow shearing using the GENE code.
- Shafranov shift gradient \rightarrow differential shift of the magnetic flux surfaces due to the plasma pressure and the hoop force from the toroidal plasma current. \rightarrow flux compression.
- Shafranov shift gradient $R'_0 \propto -\frac{r}{R_0}\beta_p$, thus α_{MHD}

related by plasma beta but they are NOT same.

- McClenaghan+ PoP 2019, G M Staebler+ PoP 2017].
- Stabilizing effect of α_{MHD} is well know [M Beer+ PoP 1997, S Ding+ PoP 2017, J - Effects of interaction of R'_0 and δ not well known for ITG turbulence.

$$g = -q^2 R \frac{d\beta}{dr}$$
 and R'_0 are dynamically

- Turbulent heat flux is lower for NT than for PT. Higher heat flux for any δ when $R'_0 \neq 0$.
- All turbulent fluctuations (n, T, v_{\parallel}) are lower for NT than for PT for $R'_0 = 0$.
- ωk spectra of zonal ExB shear show propagating finite frequency components. Total RMS shear dominantly from finite frequency components $0 < \omega \leq \omega_{GAM}$.
- Different δ -trends of zero frequency and total zonal shearing rates w or w/o Shafranov shift gradient! - $R'_0 = 0$: Zero frequency shear higher for NT than for PT. Total shear decreases with $|\delta|$. - $R'_0 \neq 0$: Both zero frequency and total shear lower for NT than for PT.
- Nonlinear shearing rates trend with δ is NOT always as expected from the residual calculations. - Possible Reason: Residual calculations do not account for Reynolds stress drive. - So, extrapolations based on residuals should be taken with caution.

Key results

Simulations set up

- GENE flux tube simulations of collisionless ITG turbulence with adiabatic electrons.
- - $\alpha_{MHD} = -q^2 R \frac{d\beta}{dr} = 0$, Shafranov shift gradient $R'_0 = [0, -0.4]$.
- $k_{v.min}\rho_i = 0.05$, hyp_z=2, hyp_v=0.2
- Gradients: $a/L_n = 1$, $a/L_T = [4,6]$

• Shaping parameters: aspect ratio a/R = 1/3, safety factor q = 2, magnetic shear $\hat{s} = 1$, triangularity $\delta = [varied]$, triangularity gradient $S_{\delta} = \frac{r \frac{\delta \sigma}{\partial r}}{1 - \delta^2} = \frac{\delta}{1 - \delta^2}$, elongation $\kappa = 1$, elongation gradient $S_{\kappa} = \frac{r}{\kappa} \frac{\partial \kappa}{\partial r} = 0$, squareness $\zeta = 0$, squareness gradient $S_{\zeta} = r \frac{\partial \zeta}{\partial r} = 0$, MHD alpha parameter

• **Resolutions:** $n_x = 257$, $n_{k_v} = 48$, $n_z = 64$, $n_{v_{\parallel}} = 48$, $n_{\mu} = 8$, $L_{v_{\parallel}} = 3$, $L_{\mu} = 9$, $L_x = [120 - 140]\rho_i$,

Linear results

- Growth rate spectra:
- Zero Shafranov shift gradient: Growth rates are lower for NT than for PT.
- Finite Shafranov shift gradient:
 - At small $|\delta|$,
 - growth rates are smaller for NT than for PT.
 - Growth rate peak moves towards high k_v .
 - Instability window expands to sub-larmor radius scales i.e., $k_v \rho_i > 1$.
 - At large $|\delta|$,
 - low k_y growths are smaller for NT than for PT; high k_y growths are higher for NT than for PT.

Nonlinear Heat flux vs Triangularity

Saturated fluctuation intensity vs Triangularity

- weaker.
- NT than for PT. —>Effect of δ on cross phase must be stronger at finite $R'_0 \neq 0$.

• Fluctuations are lower for NT than for PT for $R'_0 = 0$. Cross phase dependency on δ

• Fluctuations are higher for NT than for PT for $R'_0 = -0.4$. Yet heat flux is lower for

Zonal ExB shearing rates: $\omega - k$ spectra

0.035 0.03 0.025 0.02 0.015 0.01 0.005 Ω

• The spectra roll over at \sim GAM frequency \rightarrow all frequencies up to the GAM frequency matters for total shearing effect!

Relative contributions of zero frequency and finite frequency zonal components

- Most of the spectrum is dominated by finite frequency components.
- Zero frequency zonal components are dominant only towards the low k_x side of the spectrum.

RMS Zonal ExB shearing rates at saturated state

- Zero Shafranov shift gradient:
 - Zero frequency shearing higher NT than for PT
 - Total and finite frequency shearing decreases with $|\delta|$.

- Finite Shafranov shift gradient:
 - Higher shearing than w/o Shafranov shift gradient !
 - Zero frequency shearing lower for NT than for PT
 - Total and finite frequency shearing increases with δ . Lower shearing for NT than for PT.

12

- Turbulent heat flux is lower for NT than for PT. Higher heat flux for any δ when $R'_0 \neq 0$.
- Different δ -trends of turbulent fluctuations:
 - $R'_0 = 0$: All fluctuations are lower for NT than for PT.
 - $R'_0 \neq 0$: All fluctuations are higher for NT than for PT, and yet the heat flux is lower for NT.
- finite frequency components $0 < \omega \leq \omega_{GAM}$. Dispersive effects akin GAM seen.
- Higher total shear for all δ when $R'_0 \neq 0$.
- Different δ -trends of zero frequency and total zonal shearing rates w or w/o Shafranov shift gradient! - $R'_0 = 0$: Zero frequency shear higher for NT than for PT. Total shear decreases with $|\delta|$. - $R'_0 \neq 0$: Both zero frequency and total shear lower for NT than for PT.
- Non-linear shearing rates trend with δ is NOT always as expected from the residual calculations. taken with caution.

Summary

• $\omega - k$ spectra of zonal ExB shear show propagating finite frequency components. Total shear dominantly from

- Residual calculations do not account for Reynolds drive! So, extrapolations based on residuals should be

Future work

- What we do not understand:

• Why is total shearing rate decreasing with $|\delta|$ when $R'_0 = 0$ whereas, monotonically increasing from NT to PT when $R'_0 \neq 0$? \rightarrow requires analysis of Reynolds power $\frac{\partial \langle v_\theta \rangle}{\partial r} \langle \tilde{v}_r \tilde{v}_\theta \rangle$. • Why both heat flux and zonal shearing are increasing for PT with $R'_0 \neq 0$? What happens to the feedback

- loop with $R'_0 \neq 0$?
- transport transport cross-phase affected by combination of δ and R'_0 ?

• Why are fluctuations higher for NT than for PT when $R'_0 \neq 0$ and yet heat flux is lower for NT? How is the

For experiments

- Reynolds power $\frac{\partial \langle v_{\theta} \rangle}{\partial r} \langle \tilde{v}_r \tilde{v}_{\theta} \rangle$ vs triangularity comparison? \rightarrow BES velocimetry
- Bi-spectra analysis to identify how dominant interactions change with triangularity?

• Should calculate $\omega - k$ spectra of the zonal flow. Identify finite frequency components? \rightarrow BES velocimetry

Back-up slides

• What is different from Duff and others?

- New effect of Shafranov shift gradient.
- Detailed zonal ExB shearing rate spectra analysis.