Physics of the Power Threshold Minimum for L-H Transition

M.A. Malkov

University of California, San Diego

Collaborators: P.H. Diamond¹, K. Miki², J.E. Rice³ and G.R. Tynan¹ Supported by US DoE

Outline¹

- $P_{\rm thr}$ the LH transition Power Threshold
- \bullet -Micro Macro connection \rightarrow How does physics set $P_{thr}?$
- 2 Key Questions
- 3 Reduced Model
 - Basic Structure
 - T_e and T_i equations
 - Anomalous Coupling
- 4 Model Studies
 - Recovering the Minimum
 - Towards the Anomalous Regime (Preliminary, if time allows)

5 Conclusions

¹N.B. No discussion of hysteresis, back transition due to time limitation

Motivation and brief history of LH studies

- L \rightarrow H transition is a 33 (!) year-old story (Wagner, et al 1982)
- revolutionized confinement physics
- central to ITER ignition

Underlying ideas

- dimensional analysis (e.g. Connor and Taylor, 1977) and simple scalings
 - in general $P_{\rm thr} \propto nBS$
 - early phenomenology (fit) $P_{thr} \propto n^{0.7}$ inconsistent with the minimum in $P_{thr}\left(n\right)$
- connection of the power threshold to the edge parameters (*Fukuda* et al 1988): evolving story
- Mechanism: shear suppression paradigm (Biglari, Diamond and Terry, 1990 ++)

LH-triggering sequence of events

 $\begin{array}{lll} Q \uparrow \implies \tilde{n}, \; \tilde{v} \; \uparrow \Longrightarrow \; < \tilde{v}_r \tilde{v}_\vartheta >; \; < \tilde{v}_r \tilde{v}_\vartheta > d < v > / \mathrm{dr} \uparrow \implies |\tilde{n}|^2 \downarrow, \\ \mathrm{etc.} \end{array}$

 $\implies \nabla P_i | \uparrow \implies \text{lock in transition } (Tynan \ et \ al. \ 2013)$

- ∇T etc. drives turbulence that generates low frequency shear flow via Reynolds stress
- Reynolds work coupling collapses the turbulence thus reducing particle and heat transport
- Transport weakens $\rightarrow \nabla \langle P_i \rangle$ builds up at the edge, accompanied by electric field shear $\nabla \langle P_i \rangle \rightarrow \langle V_E \rangle'$
- locks in $L \to H$ transition: (see Hinton , Staebler 1991, 93)
- Complex sequence of Transition Evolution and Alternative End States (I-mode) possible (*D. Whyte et al. 2011*)

Some Questions:

Figure 3. Power threshold versus density for the L–H transition normalized to $|R_{\rm H}| = 2.35$ Tb the $R_{\rm H}^{2/2}$ dependence. The first to the $P_{\rm L-H}$ data indicated here are also shown in figure 4. The error bars include all the contributions to $P_{\rm Hes}$. The larger error bars are due to the dW/dt term for discharges with a rather strong change of heating power before the occurrence of the L–H transition.

Ryter et al 2013

- How does the scenario relate to the Power Threshold?
 - Is $P_{thr}(n)$ minimum recoverable?
- Micro-Macro connection in threshold, if any?
- How does micro-physics determine threshold scalings?
- What is the physics/origin of $P_{thr}(n)$? Energy coupling?
- Will *P_{min}* persist in collisionless, electron-heated regimes (ITER)?

Further Questions and important Clue:

Rice et al., 2009

- J. Hughes, Y. Ma, J. Rice, 2011,12
 - Is P_{thr} set only by local properties at the edge? (Common wisdom)
 - Is P_{thr} minimum related to collisional energy transfer? i.e. $\nu n (T_e - T_i)$. Low *n* branch couples to ions, enables ∇P_i ?
 - P_{thr}(n) minimum correlates with n 'LOC-SOC' transition
 ⇒ i.e. min power related to collisional inter-species transfer
 - Threshold is controlled by *global* transport processes!?

Scenario (inspired partly by F. Ryter, 2013-14)

- $\nabla P_i|_{\text{edge}}$ essential to 'lock in' transition
- to form ∇P_i at low n, etc. need (collisional) energy transfer from electrons to ions

$$\frac{\partial T_{e}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{e} = -\frac{2m}{M\tau} (T_{e} - T_{i}) + Q_{e}$$
$$\frac{\partial T_{i}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{i} = +\frac{2m}{M\tau} (T_{e} - T_{i}) + Q_{i}$$

• suggests that the minimum is due to:

- $\circ~P_{thr}$ decreases due to increasing heat transfer from electrons to ions
- P_{thr} increases (stronger edge ∇P_i driver needed) due to increase in shear flow damping
- Power and edge heat flux are not the only crit. variables: also need the ratio of electron energy conf. time to exceed that of e i temp. equilibration $T_r = \tau_{Ee}/\tau_{ei}$ most important in pure e-heating regimes
 - $\circ~T_r\gg 1$ somewhat equivalent to direct ion heating
 - $T_r \ll 1$ ions remain cold \rightarrow no LH transition (or else, it's anomalous!)

Predator-Prey Model Equations

- Based on 1-D numerical 5-field model (*Miki & Diamond++* 2012, 13+)
- Currently operates on 6 fields $(+P_e)$ with self-consistenly evolved transport coefficients, anomalous heat exchange and NL flow dissipation (*MM*, *PD*, *K*. *Miki*, *J*. *Rice and G*. *Tynan*, *PoP* 2015)
- Heat transport, + Two species, with coupling, i,e (anomalous heat exchange in color):

$$\frac{\partial P_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} \left(P_e - P_i \right) + Q_e - \gamma_{CTEM} \cdot I$$
$$\frac{\partial P_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = \frac{2m}{M\tau} \left(P_e - P_i \right) + Q_i + \gamma_{CTEM} \cdot I + \gamma_{ZFdiss} \cdot I$$
$$= -\left(\chi_{neo} + \chi_t \right) \frac{\partial P}{\partial r}, \quad \gamma_{ZFdiss} = \gamma_{visc} \left(\frac{\partial \sqrt{E_0}}{\partial r} \right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{E_0}}{\partial r^2} \right)^2$$

 $\bullet~I$ and E_0 - DW and ZF energy (next VG), plasma density and the mean flow, as before

Equations cont'd; Anomalous Heat Exchange

- in high T_e low n regimes (pure e-heating) the thermal coupling is anomalous (through turbulence)
- ZF dissip. (KH?) supplies energy to ions, and returns energy to turbulence

• DW turbulence:

$$\frac{\partial I}{\partial t} = \left(\gamma - \Delta \omega I - \alpha_0 E_0 - \alpha_V \langle V_E \rangle^2\right) I + \chi_N \frac{\partial}{\partial r} I \frac{\partial I}{\partial r}, \ \chi_N \sim \omega_* C_s^2$$

Driver : $\gamma = \gamma_{ITG} + \gamma_{CTEM} + NL ZF$ Dissip less P_i Heat (currently balanced)

• ZF energy:

$$\frac{\partial E_0}{\partial t} = \left(\frac{\alpha_0 I}{1 + \zeta_0 \langle V_E \rangle'^2} - \gamma_{damp}\right) E_0, \quad \gamma_{damp} = \gamma_{col} + \gamma_{ZFdiss} \cdot I/E_0$$

$$\gamma_{ZFdiss} = \gamma_{visc} \left(\frac{\partial \sqrt{E_0}}{\partial r}\right)^2 + \gamma_{Hvisc} \left(\frac{\partial^2 \sqrt{E_0}}{\partial r^2}\right)^2 \text{- toy model form (work in progress)}$$

Model studies: Transition (Collisional Coupling)

- ion heat dominated transition $H_{i/(i+e)} = 0.7$
- strong pre-transition fluctuations of all quantities
- well organized post-transition flow
- strong P_e edge barrier

• Heating mix

$$H_{i/(i+e)} \equiv rac{Q_i}{Q_i+Q_e}$$
 (aka $H_{ ext{mix}}$)

- Density (center-line averaged) is NOT a control parameter. It is measured at each transition point
- Related control parameter is the reference density given through BC and fueling rate
- There is a complicated relation between density and ref. density
- Other control parameters:
 - ${\scriptstyle \bullet} \,$ fueling depth
 - heat deposition depth and width, etc.
 - \rightarrow they appear less critical than $H_{i/(i+e)}$

$P_{th}(n, H_{i/(i+e)})$ scans: Recovering the Minimum

 $P_{\mathrm{thr}}\left(H_{i/(i+e)},n\right)$ -

- electron heating at lower densities
- ion heating at higher densities

• Relate $H_{i/(i+e)}$ and n by a monotonic $H_{i/(i+e)}(n)$

Summary of collisional coupling results

- $P_{\text{thr}}(n)$ grows monotonically in both pure ion $H_{i/(i+e)} = 1$ and pure electron $H_{i/(i+e)} = 0$ heating regimes with collisional coupling
- The descending (low-density) branch, followed by a distinct minimum, results from a combination of:
 - \bigcirc increase in electron-to-ion collisional heat transfer and
 - ② growing fraction of heat $H_{i/(i+e)}$ ↑ deposited to ions (relative to total heat)
- The later upturn of $P_{\text{thr}}(n)$ is due to increase of the shear flow damping
- The heating mix ratio $H_{i/(i+e)} \neq 0$ is essential for the heat transport from the core to build up the ion pressure gradient at the edge, ∇P_i , which is the primary driver of the LH transition
- There are many possibilities to render $H_{i/(i+e)} \neq 0$

Anomalous Regime (Preliminary)

- Anomalous Regime: $\nu_{ei}n(T_e T_i) < \gamma_{anom-eicoupl} \cdot I$ (Manheimer, '78; Zhao, PD, 2012; Garbet, 2013)
 - Anomalous regime, strong electron heating (ITER)
 - n scaling coupling \implies Anomalous coupling

$$\frac{\partial T_e}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_e = -\frac{2m}{M\tau} (T_e - T_i) + Q_e$$
$$\frac{\partial T_i}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_i = +\frac{2m}{M\tau} (T_e - T_i) + Q_i$$

• Anomalous coupling dominates

 $\bullet \ {\rm scaling} + {\rm intensity} \ {\rm dependence} \Longrightarrow {\rm coupling}$

$$\frac{\partial T_{e}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{e} = Q_{e} + \langle \mathbf{E} \cdot \mathbf{J}_{e} \rangle \rightarrow (<0)$$
$$\frac{\partial T_{i}}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} r \Gamma_{i} = Q_{e} + \langle \mathbf{E} \cdot \mathbf{J}_{i} \rangle \rightarrow (>0)$$

LH transition: Anomalous Transfer Dominates

Extreme limit to illustrate temperature relaxation: Pure electron heating, $\nu_{ei} \rightarrow 0$

- CTEM \rightarrow Heat Exch \searrow turbulence \searrow ions
 - Is $P_{\rm thr}$ set only by local properties at the edge?
- $\bullet e i$ -temperature equilibration front
- $P_i \uparrow \text{globally} \rightarrow \text{strong } \nabla P_i$ at the edge \rightarrow LH transition

Anomalous Regime: Issues

• An Issue:

- Predator-Prey \Rightarrow Shear Flow Damping
- \Rightarrow Anomalous regime: collisional drag problematic
- $\, \circ \,$ Low collisionality \rightarrow what controls heat exchange?
- NL damping ⇔ mediated by ZF instability (i.e. KH, tertiary; *Rogers et al 2000; Kim, PD, 2003*)

 \Rightarrow hyperviscosity, intensity dependent

• Returns ZF energy to turbulence $\to P_i$

Results so far

- transition with anomalous heat exchange happens!
- requirements for LH transition in high T_e regimes when the collisional heat exchange is weak:
 - efficient ion heating by CTEM turbulence
 - energy return to turbulence by ZF damping (caused by KH instability?!)
 - may be related to Ryter~2014. Subcritical $\nabla T_e\uparrow$ states at ultra-low density

Conclusions

(1) density minimum in $P_{thr}(n)$ is recovered in the extended model

- $\circ~P_{thr}$ decrease: due to $e \to i$ heat transfer and ion heating increase
- $\circ~P_{thr}$ increase: due to increase in flow damping
- 2) ion heat channel (direct or indirect \Leftrightarrow through electrons) is ultimately responsible for LH transitions
- 3 The role of $T_r = \tau_{Ee}/\tau_{equil}$ (global quantity!) in LH is crucial:
 - $a^2/D_{GB}\tau_{equil}\ll 1$ no electron-heated LH transition
 - $a^2/D_{GB}\tau_{equil}\gg 1$ LH trans. originated by electron heat. is possible
- (4) Threshold physics requires, but is not limited, to edge physics
- anomalous heat exchange important in low collisionality, anomalous coupling regimes (collisional e - i heat coupling negligible)
 - $\,\circ\,$ Anomalous exchange \Leftrightarrow Fluctuation intensity dependent
 - $\, \circ \,$ CTEM driven turbulence dissipation \rightarrow ion heating
 - $\, \bullet \,$ ITG driven turbulence dissipation \rightarrow ion heating
 - ZF dissipation \rightarrow ion heating
- ⁶ Density minimum is TBD

- continue exploration of anomalous regime
- explore effects of ZF anomalous spreading
- back transitions, hysteresis
- fate of minimum in anomalous regime
- what are relevant global parameters?
- ${\scriptstyle \bullet} \,$ toroidal rotation
- geometry/configuration (builds on *Fedorczak, PD, et al. 2012*) \rightarrow Collisionless saturation/damping of CTEM-driven ZF is fundamental issue