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Motivation and brief history of LH studies

L→H transition is a 33 (!) year-old story (Wagner, et al 1982)

revolutionized con�nement physics

central to ITER ignition

Underlying ideas

dimensional analysis (e.g. Connor and Taylor, 1977) and simple
scalings

in general Pthr ∝ nBS

early phenomenology (�t) Pthr ∝ n0.7 - inconsistent with the
minimum in Pthr (n)

connection of the power threshold to the edge parameters (Fukuda
et al 1988): evolving story

Mechanism: shear suppression paradigm (Biglari, Diamond and

Terry, 1990 ++)
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Emerging Scenario

LH-triggering sequence of events

Q ↑ =⇒ ñ, ṽ ↑=⇒ < ṽr ṽϑ >; < ṽr ṽϑ > d < v >/dr ↑ =⇒ |ñ|2 ↓,
etc.
=⇒ ∇Pi | ↑ =⇒ lock in transition (Tynan et al. 2013)

∇T etc. drives turbulence that generates low frequency shear �ow
via Reynolds stress

Reynolds work coupling collapses the turbulence thus reducing
particle and heat transport

Transport weakens → ∇〈Pi 〉 builds up at the edge, accompanied
by electric �eld shear ∇〈Pi 〉 → 〈VE 〉′

locks in L→ H transition: (see Hinton ,Staebler 1991, 93)

Complex sequence of Transition Evolution and Alternative End
States (I-mode) possible (D. Whyte et al. 2011)
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Some Questions:

Ryter et al 2013

How does the scenario relate to
the Power Threshold?

Is Pthr (n) minimum
recoverable?

Micro-Macro connection in
threshold, if any?

How does micro-physics
determine threshold scalings?

What is the physics/origin of
Pthr (n)? Energy coupling?

Will Pmin persist in
collisionless, electron-heated
regimes (ITER)?
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Further Questions and important Clue:
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Is Pthr set only by local
properties at the edge?
(Common wisdom)

Is Pthr minimum related to
collisional energy transfer? i.e.
νn (Te − Ti ). Low n branch
couples to ions, enables ∇Pi?
Pthr (n) minimum correlates
with n 'LOC-SOC' transition
⇒ i.e. min power related to
collisional inter-species transfer

Threshold is controlled by
global transport processes!?
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Scenario (inspired partly by F. Ryter, 2013-14)

∇Pi |edge essential to 'lock in' transition

to form ∇Pi at low n, etc. need (collisional)
energy transfer from electrons to ions

∂Te

∂t
+

1

r

∂

∂r
rΓe = − 2m

Mτ
(Te − Ti ) + Qe

∂Ti

∂t
+

1

r

∂

∂r
rΓi = +

2m

Mτ
(Te − Ti ) + Qi

suggests that the minimum is due to:

Pthr decreases due to increasing heat transfer from electrons to ions
Pthr increases (stronger edge∇Pi driver needed) due to increase in
shear �ow damping
Power and edge heat �ux are not the only crit. variables: also need
the ratio of electron energy conf. time to exceed that of e − i temp.
equilibration Tr = τEe/τei - most important in pure e-heating regimes

Tr � 1 somewhat equivalent to direct ion heating
Tr � 1 ions remain cold → no LH transition (or else, it's
anomalous!) 7 / 18



Predator-Prey Model Equations

Based on 1-D numerical 5-�eld model (Miki & Diamond++

2012,13+)

Currently operates on 6 �elds (+Pe) with self-consistenly evolved
transport coe�cients, anomalous heat exchange and NL �ow
dissipation (MM, PD, K. Miki, J. Rice and G. Tynan, PoP 2015)

Heat transport, + Two species, with coupling, i,e (anomalous heat

exchange in color):

∂Pe
∂t

+
1

r

∂

∂r
rΓe = − 2m

Mτ
(Pe − Pi ) + Qe − γCTEM · I

∂Pi
∂t

+
1

r

∂

∂r
rΓi =

2m

Mτ
(Pe − Pi ) + Qi + γCTEM · I + γZFdiss · I

Γ = − (χneo + χt)
∂P

∂r
, γZFdiss = γvisc

(
∂
√
E0

∂r

)2

+ γHvisc

(
∂2
√
E0

∂r2

)2

I and E0 - DW and ZF energy (next VG), plasma density and the
mean �ow, as before
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Equations cont'd; Anomalous Heat Exchange

in high Te low n regimes (pure e-heating)
the thermal coupling is anomalous
(through turbulence)

ZF dissip. (KH?) supplies energy to ions,
and returns energy to turbulence

DW turbulence:

∂I

∂t
=

(
γ −∆ωI − α0E0 − αV 〈VE 〉′2

)
I + χN

∂

∂r
I
∂I

∂r
, χN ∼ ω∗C 2

s

Driver : γ = γITG+γCTEM+NL ZF Dissip less Pi Heat (currently balanced)

ZF energy:

∂E0
∂t

=

(
α0I

1 + ζ0 〈VE 〉′2
− γdamp

)
E0, γdamp = γcol + γZFdiss · I/E0

γZFdiss = γvisc

(
∂
√
E0

∂r

)2
+ γHvisc

(
∂2
√
E0

∂r2

)2
- toy model form (work in

progress) 9 / 18



Model studies: Transition (Collisional Coupling)
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Model Studies: Control Parameters

Heating mix

Hi/(i+e) ≡
Qi

Qi + Qe

(aka Hmix)

Density (center-line averaged) is NOT a control parameter. It is
measured at each transition point

Related control parameter is the reference density given through
BC and fueling rate

There is a complicated relation between density and ref. density

Other control parameters:

fueling depth
heat deposition depth and width, etc.
→they appear less critical than Hi/(i+e)
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Pth

(
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)
scans: Recovering the Minimum
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Summary of collisional coupling results

Pthr (n) grows monotonically in both pure ion Hi/(i+e) = 1 and
pure electron Hi/(i+e) = 0 heating regimes with collisional coupling

The descending (low-density) branch, followed by a distinct
minimum, results from a combination of:

1 increase in electron-to-ion collisional heat transfer and
2 growing fraction of heat Hi/(i+e) ↑ deposited to ions (relative to

total heat)

The later upturn of Pthr (n) is due to increase of the shear �ow
damping

The heating mix ratio Hi/(i+e) 6= 0 is essential for the heat
transport from the core to build up the ion pressure gradient at the
edge, ∇Pi , which is the primary driver of the LH transition

There are many possibilities to render Hi/(i+e) 6= 0
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Anomalous Regime (Preliminary)

Anomalous Regime: νein (Te − Ti ) < γanom−eicoupl · I (Manheimer,

'78; Zhao, PD, 2012; Garbet, 2013)

Anomalous regime, strong electron heating (ITER)
n scaling coupling =⇒ Anomalous coupling

∂Te

∂t
+

1

r

∂

∂r
rΓe = − 2m

Mτ
(Te − Ti ) + Qe

∂Ti

∂t
+

1

r

∂

∂r
rΓi = +

2m

Mτ
(Te − Ti ) + Qi

Anomalous coupling dominates

scaling + intensity dependence =⇒coupling

∂Te

∂t
+

1

r

∂

∂r
rΓe = Qe + 〈E · Je〉 → (< 0)

∂Ti

∂t
+

1

r

∂

∂r
rΓi = Qe + 〈E·Ji〉 → (> 0)
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LH transition: Anomalous Transfer Dominates
Extreme limit to illustrate temperature relaxation: Pure electron heating, νei → 0
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Anomalous Regime: Issues

An Issue:

Predator-Prey ⇒ Shear Flow Damping
⇒Anomalous regime: collisional drag problematic

Low collisionality → what controls heat exchange?
NL damping ⇔ mediated by ZF instability (i.e. KH, tertiary;
Rogers et al 2000; Kim, PD, 2003)

⇒ hyperviscosity, intensity dependent
Returns ZF energy to turbulence → Pi

Results so far

transition with anomalous heat exchange happens!

requirements for LH transition in high Te regimes when the
collisional heat exchange is weak:

e�cient ion heating by CTEM turbulence
energy return to turbulence by ZF damping (caused by KH
instability?!)
may be related to Ryter 2014. Subcritical ∇Te ↑ states at ultra-low
density
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Conclusions

1 density minimum in Pthr (n) is recovered in the extended model

Pthr decrease: due to e → i heat transfer and ion heating increase
Pthr increase: due to increase in �ow damping

2 ion heat channel (direct or indirect ⇔ through electrons) is
ultimately responsible for LH transitions

3 The role of Tr = τEe/τequil (global quantity!) in LH is crucial:

a2/DGBτequil � 1 - no electron-heated LH transition
a2/DGBτequil � 1 - LH trans. originated by electron heat. is possible

4 Threshold physics requires, but is not limited, to edge physics
5 anomalous heat exchange important in low collisionality,
anomalous coupling regimes (collisional e − i heat coupling
negligible)

Anomalous exchange ⇔ Fluctuation intensity dependent
CTEM driven turbulence dissipation → ion heating
ITG driven turbulence dissipation → ion heating
ZF dissipation → ion heating

6 Density minimum is TBD
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Future (ongoing) work

continue exploration of anomalous regime

explore e�ects of ZF anomalous spreading

back transitions, hysteresis

fate of minimum in anomalous regime

what are relevant global parameters?

toroidal rotation

geometry/con�guration (builds on Fedorczak, PD, et al. 2012)
→ Collisionless saturation/damping of CTEM-driven ZF is
fundamental issue
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