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Outline

Motivating issues
— How to represent inhomogeneous PV mixing during relaxation processes?

— How to calculate spatial PV flux?

Non-perturbative analyses of the general structure of PV flux

—> structural approach

- Minimum enstrophy model (selective decay of potential enstrophy)
—> viscous and hyper-viscous transport

- PV-avalanche model (joint reflection symmetry)
- K-S equation

Perturbative analyses of transport coefficients in PV flu
— Modulational instability, revisited

—> negative viscosity & positive hyper-viscosity
— Parametric instability

- Burgers’ equation

Summary



Motivating Issues

— Real space structure of ZF is of practical interest for predictive transport modeling
in quasi-2D turbulence. PV mixing in space is essential in ZF generation.

Taylor identity: <ﬁyV2$> = _ay <ﬁyﬁx>

vorticity flux ~ Reynolds force

— The relaxation dynamics is of fundamental importance in MHD and QG fluid.
While Taylor's theory is successful in explaining some plasma experimental results,
a relaxation model of vorticity transport is worth researching.

Key points

— turbulence self-organization complex —> What are the general principles?
— PV flux as route to relaxed state —> Is PV homogenization the case??

— zonal flow saturation — how?, especially collisionless cases?

Generic problems

— How to describe mean PV relaxation to a minimum enstrophy or SOC state?
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Non-perturbative analyzes
i) Minimum enstrophy principle

Turbulent magnetic relaxation (J.B. Taylor, 1974)

* minimized magnetic energy subject to constant global magnetic helicity

3 3
fd x_+)tfd xA+B|=0 /Taylor state: b
— VxB=uB - force free B field configuration
_ JBZB _ const - Homogenized J, profile )

2D turbulence relaxation (Bretherton & Haidvogel 1976)

* minimized total enstrophy subject to constant total energy

0 fdzx%2+lfd2x(

= q = U - flow structure emergent

PV  stream
function

minimum enstrophy state:
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* Theory predict end state, but no dynamical insight
-> flux? what can be said about dynamics?
-> structural approach (Boozer)
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PV flux
- PV conservation

a<q>+8

mean field PV: g7

(00) = a)

I‘q : mean field PV flux

selective decay

> energy conserved - [149)
= [(9)o,r,=-[o (9T, =T,= aa<r¢>
> enstrophy minimized 9=f%
=-J{@)o.r,=-] (a Xg)
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Key Point: what form does
PV flux have s/t dissipate
enstrophy, conserve energy
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Structure of PV flux
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diffusion variable calculated

dlffu5|on and hyper diffusion of PV

by perturbation theory

relaxed state:
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9,(9)

Homogenization of
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critical scale v/ _(a
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(Prandtl, Batchelor, Rhines, Young)

Homogenization of PV

(=1(, :T4=0 - ZF growth rate zero
(>0, : ZF energy growth
(<l : ZF energy damping




PV staircase

9,{4)

()

- Zonal flows track the PV gradient - PV staircase

relaxed state: homogenization of

(9)

(v:)
L,

* Highly structured profiles of the staircase is reconciled with the
homogenization or mixing process required to produce it.

e Staircase may arise naturally as a consequence of minimum
enstrophy relaxation.



The “minimum enstrophy”

The relaxation rate can be derived by linear perturbation theory
about the minimum enstrophy state

(q@)=4q,,(y)+3q(y,1)

_ (k4+4)\k'2+3)\2 B 8q,2n(k2+)\)>
(9) =8, () + 30 (3.0) Tt = (T o
= W = _ 4gmk® 4 10gmkX | 8g3k
aqu - Aay¢m L < <’U$>3 + <U$>5> -

0q(y,t) = 0q, exp(-y,,t —iwt +iky)

The condition of relaxation (modes are damped):

2

8¢
2 m
Yre|>0 9 k > <vx>2 — 3/\1

2
k2>0-> (i%; >3\. > ¢.:the ‘minimum enstrophy’ of relaxation

A critical residual enstrophy density is needed in the minimum
enstrophy state, so as to sustain a zonal flow of a certain level.



Non-perturbative analyzes
ii) PV-avalanche model

—— q(y,t) : PV profile
- = g,(y) :self-organized state
dq=q-q, : deviation
I'[dq] : PV flux

Key Point: what form does PV
flux have s/t satisfy joint-
reflection symmetry principle

> Y

* Joint-reflection symmetry: I [6q] invariant undery = -y and 6q =2 -6q
> T[g) =Y a(9)? + 3 Bn (0,00)™ + Y v (838)" + ...
l m n

* large-scale properties : higher-order derivatives neglected
small deviations : higher-order terms in 6q neglected

- Simplest approximation: T'[dq] = 3(5(1)2 + 80,6q + 7835(1, 11



PV equation:  0,6q + adqd,dq + B@jdq - 78;15q = 0.
\ J \ v,

Kuramoto-Sivashinsky
equation

l diffusion and hyper diffusion of 6q

Non-linear convection of 6q

Avalanche-like transport is triggered by deviation of PV gradient

- &g implicitly related to the local PV gradient

- transport coefficients (functions of 6q) related to the gradient

Convective component of the PV flux can be related to a gradient-

dependent effective diffusivity
[y ~ —D(9,9)0yqg — —D(dg)dq

I'[6q] ~ 6¢* — —D(8q)dq, with D(6q) — Dydq
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Perturbative analyses of PV flux
i) Modulational instability

* The evolution of perturbation (seed ZF) as a way to look at PV transport

Seed ZF

Modulation
(nonlocal)

v

Inverse cascade

Fluctuations
(broad spectrum)

/scrambling
/PV mixin necessary for
(local) & irreversibility

N.B. Modulational instability (large
scale pumping) requires small
scale PV mixing <-> irreversibility
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Revisiting Modulational Instability

ZF evolution determined by Reynolds force

0
—oV =—— a y N
al’ X )C E
vorticity
flux

= k2|1pk|2/a)k is wave action density, for Rossby
wave it is proportional to the enstrophy density.

N, is determined by WKE:

IN

—+, VN + 6w N—

ot

=>» Turbulent vorticity flux derived

d(k oV ) ON,
dy ok

y

—5V =—q°0V, E 0w, N,
ot (a) -q- U) + 6w, 812V
Y
K(q)

q: ZF wavenumber

0
55‘/(1 =-q°x(q) v,

k(g) # const at larger g

=>» scale dependence of PV flux

L =¥ non-Fickian turbulent PV flux )
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 Asimple model from which to view « (g):

— Defining MFP of wave packets as the critical scale ¢.' = vgéw,zl

— coarse graining scales smaller than g,

— keeping next order term in expansion of
response function

2
q_l >> qgl = 525% -~ l l—q—2
(qu,)” +dw, dw,

capture expected and sensible trend!

=?» zonal growth evolution: D=

9.0V. =—q°DSV_+q " HSV. ]

=¥ negative viscosity and
positive hyper-viscosity

(expected wave enstrophy
spectrum statistics)

&) previous calculation of relaxation models:

o) [ (4)3,(a) & <q>}
ot 9 <¢> (a (¢ >) a {#)

(8]
[(dq] = 7 (89)° + 0,0q + 9,4,




Discussion of D and H

* Roles of negative viscosity and positive hyper-viscosity (Real space)

a—av = Do 6V Ha“av
t

= ) %&/jdzx =D [(8,0v,) d*x~H [(8°0V,) d*x

D<0=vy, ,>0  ZF growth (Pumper D) Energy transferred
H>0=vy, ,<0 ZF suppression (Damper H) to large scale ZF

=» D, H as model of spatial PV/momentum flux beyond over-simplified
negative viscosity

e | D= Hgq’ sets the cut-off scale Minimum enstrophy model ;
» |H S ( (4 >)] ay<q> 2
l = —_— q f
B R Gt 9,(9)

\ J .

¢>/{_ : ZFenergy growth -> D process dominates at large scale

¢ </l : ZF energy damping -> H process dominates at small scale



Perturbative analyses
ii) Parametric instability

Pseudo-fluid (wave packets) model

pseudo-fluid molecular fluid
distribution function Ni. f
mean free path
scale @ mean free path of wave packets
density n* = [ Npdk n= [ fdv
momentum p“ = [kNedk  p= [mvfdv
energy E" = [wpNrdk E = [ 3mv*fdv
velocity v = [relidk g, % = £

f Nidk
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-- pseudo-fluid evolution:
multiplying the WKE by v,, and integrating over k
normalizing by pseudo-density n%

——————————————————————————————————————————————————————————

0 0 3 inviscid Burgers’eq.
—a<vx> ' source: zonal shear

2Bk (, 4k
a= f4x(1—k;}vkdk/kadk

P.» evolves in the same way as <v,>
i d J

yix oo kWKE d’k = — | kN d’k =-— | v k.Nd’k
i J* 8tf o ayf ‘

&y X
_______________________________________________

e ZF growth rate in monochromatic limit:
linearizing the above two egs.

y, = \/ q’k’

-

k2

2( 4k2) The reality of ¥, requires k >3k ?
Cﬁk‘

Y, & ‘q‘ indicates convective instability
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PV flux eonvective] inscous P hyper-viscogs coefficients
Min. enstrophy relaxation ) .
(non-perturb.)
PV-avalanche relaxation ) ° .
Modulational instability . . D;(< 0),H;(> 0)
(perturbative)
Parametric instability . Yo(~ |q|)
- a(v.) (4)9,(a) , 9,(4)
* Minimum enstrophy 1= o |ul-
o a0) 7 (6,49) 6 (9)
 PV-avalanche I'[6q] = g((sq)? + 88,09 + 7625(]
2 ) \ J \ J
2 4
« Modulational instab. 9,0V, ==q DoV +q HOV,
\ J \ )
4k>
* Parametric instab. Y, = \/q2ki 2( kzy)
\ )
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Summary

Inhomogeneous PV mixing is identified as the fundamental mechanism for
zonal flow formation. This study offered new perspectives and approaches to
calculating spatial flux of PV. The structure of PV flux is studied by non-
perturbative relaxation principles and perturbative analyses of wave kinetic

equation. These are synergetic and complementary approaches.

Vorticity flux from selective decay of enstrophy shows complex structure of
diffusion and higher order diffusion terms. The homogenized quantity in the
minimum enstrophy state is the ratio of PV gradient to zonal flow velocity. This
is consistent with the structure of the PV staircase.

Vorticity flux from PV-avalanche model is constrained by the joint reflection
symmetry condition, and contains diffusive, hyper-diffusive, and convective
terms. The convective transport of PV can be generalized to an effective

diffusive transport.

Transport coefficients are derived using perturbation theory. Both relaxation
principle and perturbation theory reveal some critical scales at which ZF
growth and ZF damping are equal.



